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Quantum error-correcting codes have been developed to protect a quantum computer from decoherence due
to a noisy environment. In this paper, we present two methods for optimizing the physical implementation of
such error correction schemes. First, we discuss an optimal quantum circuit implementation of the smallest
error-correcting codéhe three bit code Quantum circuits are physically implemented by serial pulses, i.e., by
switching on and off external parameters in the Hamiltonian one after another. In contrast to this, we introduce
a parallel switching method which allows faster gate operation by switching all external parameters simulta-
neously, and which has potential applications for arbitrary quantum computer architectures. We apply both
serial and parallel switching to electron spins in coupled quantum dots subject to a Heisenberg ddupling
=J(1)S;-S,. We provide a list of steps that can be implemented experimentally and used as a test for the
functionality of quantum error correctiohS0163-182@09)03740-¢

. INTRODUCTION junctions!! and charge degrees of freedom in quantum
Quantum computers are capable of efficiently solvingdots!?
problems such as prime factoringr simulating other quan- The physical implementation of quantum computation

tum system$, for which no efficient classical algorithm is hinges upon the ability to find or design systems in which

known. A quantum computer is a device that stores and proguantum phase coherence is maintained over long times
cesses information which is physically represented in itscompared to the duration of the typical controlled coherent
quantum staté.Typically, such a device contains a collec- operation. The discovery of quantum error-correcting codes
tion of quantum two-state systems, e.g., spiparticles. The has been a landmark in the effort to find methods to protect
state of each two-state system then represents a quantum gitguantum computer from the decohering effects of a noisy
or qubit, the smallest indivisible unit of information in a environment? The smallest quantum error-correcting code

guantum computer. Computations are driven by interactionfr one qubit involving three code qubits has already been
between the qubits, generating logic gates operating on thed’mplemented in NMR* _ o

A quantum gate operating dvi qubits can be represented as N this paper, we present theoretical methods for finding

a 2% 2M unitary matrix. Usually, a computation or algo- an optimal implementation of three-bit error correction. The

rithm is split up into a series of elementary gate operation@Ptimization is understood here in terms of switching speed
involving only one or two qubits. In this representation, al- and switching complexity. The former is mainly motivated

gorithms are also called quantum circuits. It has been demt—)y t'he presence of decoherence which makeg fast swﬂchlng
. . desirable, while the latter can be necessary if the physical
onstrated that there exist elementary two-qubit gdtes

which are universal when complemented with ficientl implementation sets limits to the complexity of the switch-
ch are universa en compiemente a suthicie ying. The two optimization goals usually are in conflict with

Iarge_set of single-qu_bit ga_ltés'[his means th_at any qgantum each other, i.e., a fast implementation usually requires a
algorithm can be split up into a quantum circuit which CON-complex switching mechanism while switching with a
tains onlyU and single-qubit gates. Quantum circuits are i”simple mechanism is slow. First, we will study the “simple
general not the most efficient way of implementing a quanyng slow” switching provided by quantum circuits, and try
tum computation, as we will demonstrate in this paper. o optimize it. Then, we will go on to “complex and fast”
First experimental realizations of quantum computationswitching, for which we introduce paralléhs opposed to
using trapped ion3,optical cavities, and NMR! involving  seria) pulses for the control parameters of the system, and
two or three qubits, have been reported. Contrary to all okhow that the parallel pulses allow faster switching than se-
these systems, solid-state implementations have the potentighl pulses. We also introduce a numerical method for finding
for a large-scale quantum computer involving hundreds osuch parallel pulses for arbitrary gates and Hamiltonians. We
thousands of qubits. In this paper, we will concentrate on aote that in a similar approach, Sandetsal!® use a genetic
theoretical proposal to use coupled semiconductor quanturlgorithm to find optimized complex pulses to generate
dots in which the spin of the excess electron on each dajuantum gates using an Ising-type Hamiltonian for optically
represents a qubitApart from electron spins in quantum driven quantum dots coupled by dipole-dipole interactions.
dots, a number of other solid-state systems have been pr@ur approach differs from this work in the underlying
posed for quantum computation: Nuclear spins of donor atHamiltonian (i.e., the mechanism proposed for quantum
oms in silicon’ Josephson junction8, d-wave Josephson computatiof; in addition, the parallel pulses we suggest are
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(g> XOR XOR  XOR XOR 1 s |+)=(]0)=|1))/\/2. We emphasize that the following con-
1 lo>u} C . | . .
? L= comected siderations are applicable to both the bit and phase error-
2 10> 4 Fan @ state .
N ( N J correcting codes.
3 10> - b @ For a first experiment one would probably want suffi-

T N
i coder nise decoder measurement ciently low noise such that the stdté) is not destroyed by
PPN g E-E “natural” noise. One would then introduce bit flips “by
hand” by applying a random oscillatory magnetic field in the

FIG. 1. The circuit representation for three-bit quantum errory girection and then check whether those artificial errors can
correction, where time is evolving from the left to the right. First, be corrected for.

the three qubitgrepresented by the horizontal lineswe initialized.
The following unitary transformatiotJ on qubit 1 prepares the
state|¥). The encodeE encodes the statel) in an entangled
state of all three qubits. In the next stépimulated decoherence
partly disrupts the state. After the decoding stepich is identical

For the sake of concreteness, we will apply our methods
to a system of coupled spit® with s=3 (each representing
a qubiy, subject to isotropic spin-spin interaction and local
magnetic fields. With this model we capture the physics of
to the encoding the qubits 2 and 3 are measured. If they are bothelectron_s In coupled quantum d@'gﬂVe_empha&ze _that_ a
one, qubit 1 has to be flippecC o), otherwise qubit 1 is left genere_lllzatmn to other systems with cﬁfferent Hamiltonians
unchanged €=1). If no more than one bit flip error occurred, the 1S Straightforward and does not require a new method for
resulting state in register 1 is agdit) despite the presence of the OPtimizing the switching process. _
decoherence. The same circuit can also be used to protect the state OUr paper is organized as follows. In Sec. II, we introduce
|W) against phase errors if, after the encoding step, each qubit i€ formalism that we use to describe the dynamics of elec-
rotated byz/2 about they axis and rotated back before the decod- tron spins in coupled quantum dots and other Heisenberg
ing. systems. The methods developed in Secs. Il and 1V, includ-

ing the use of parallel pulses, are not special to the Heisen-

general pulses that are discretized in time, whereas the pulsberg Hamiltonian Eq(1). As an example, we give some
in Ref. 15 are chirped Gaussian pulses. results for transversely coupled spinéY mode) in Sec. V,

Three-qubit quantum error correction is able to correctbecause they are encountered when electronic spins are
either one bit flip or one phase flip errécorrecting both  coupled using cavity QEE’ The results of Secs. IlI-V are
types of errors requires a code with at least five codeéndependent of the mechanisms that are involved in their
qubits®). The operation of the scheme is shown in the quanphysical implementation—they are derived under the as-
tum circuit, Fig. 1. First, all three qubit&epresented by sumption that the model Hamiltonian Eq) [or Eq.(46)] is
horizontal line$ are initialized to the statf0), e.g., by po- exact. In Sec. VI, we discuss some limitations and necessary
larizing the spins with a strong magnetic field. Then qubitconditions for the validity of this approach. Finally, in Sec.
one is rotated into an arbitrary statd’)=U|0)=«|0)  VII, we give a detailed list of instructions for both serial and
+ B|1). The purpose of the quantum error correction schemgarallel switching which must be followed in order to imple-
is to protect this state from external decoherence. In order tment three-qubit quantum error correction in a system of
do this, the statéW) is encoded in the highly entangled spins subject to Heisenberg interactions in experiment.
three-qubit  state |W' ) =E(|¥)4]0),|0)3) = @[0);|0),|0)3

+B[1)1]1)2[1)s. IIl. MODEL
The encoded statgl'| ) can then be subject to external ) L
noise causing dpartia) bit flip of one of the spins|¥, ) In the system we consider, the qubit is represented by the

spin+ state of the excess electron in a quantum dot, i.e., the
“spin up” state |1) is identified with the logic staté0)
=|1) and likewise|1)=||), where the quantization axis is
chosen along the axis, o/ 1)=+[1) anda?||)=—|!).

—expleo))| ¥ )=|P/), without the information contained in
the encoded stateV, ) being lost. The staté¥, ) is recov-
ered (decoded by applying the inverted encoding network

E-1=ET=E which is identical toE sinceE is Hermitian. | N i of hich
Then the qubits 2 and 3 are measutéat physical imple- The excess electron spins in a pair of quantum dots whic

mentations of quantum measurements on spins in quantu@f€ liNked through a tunnel junction can be described by the

dots, see Refs. 8 and 1691& both qubits are in statfl), Heisenberg Hamiltonidt

then qubit 1 is flipped, otherwise it is left unchanged. This RBl—1e.c LR, s

restores the statel’) in qubit 1, which then can be measured H(J.Bi B))=JS-S+Bi-S+B;-S, @)

in order to check the functionality of the scheme. It has towhereS = ¢;/2 describes théexces$ spin 3 on doti andJ

emphasized that the three-bit code is by far not the best cod¢enotes the exchange energy, i.e., the energy gap between

for protecting a quantum computer from decoherence, buthe spin singlet and triplet statehis effective Hamiltonian

since it is the most simple code it seems to be suited for thean be derived from a microscopic model for electrons in

first experiments which test the functionality of quantum er-coupled quantum doté,see also Sec. VI. It is found that

ror correction. can be changed using a variety of external parameters. Tun-
If we choose to correct phase errors instead of bit errorsing the gate voltage between the coupled dots changes the

all three qubits have to be rotated about thexis by /2 height of the tunneling barrier and therefore directly alters

after the action of the encoder gdteand back again before Note thatJ is exponentially sensitive to barrier changes.

the decoding step. These basis changes can be implement&bo, applying a magnetic field perpendicular to the 2DEG

by applying a homogeneous magnetic fied, along they  within which the quantum dots are defined greatly influences

axis for a durationr7/2gugBy, . The encoded qubit has then the exchange couplinand can even result in a sign change

the form | W )=a|—)q|— )| = )3+ B+ )1+ )2/ + )3, where  of Jfor unscreened Coulomb interactibhSome coupling of
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FIG. 2. Circuit notation of two universal gatds) The “square-

root-of-swap” (S) gate,(b) the XOR gate. FIG. 3. A circuit representation for the conditional phase flip
(CPF), Eq.(5), as given in Eq(6). The single qubit rotations are

the spinS to a local external magnetic fiel; is also nec- F=¢'"S" andG=¢/("?S" The CPF is related to the XOR gate Eq.
essary for quantum computation, and has been included i(7) by the basis transformation E¢B).
the Hamiltonian Eq.(1). Note that we have included the
factorg;ug in the definition of the magnetic field;, where  error correction, as shown in Fig. 1, and can be obtained by
g; is theg factor for doti and ug is the Bohr magneton. The two successive XOR gat¢Fig. 4a)],
physical realization of the field gradients or inhomogeneous
g factors required for the local magnetic fields is challenging, E=Uxor(1,3Uxor(1,2. 9

but there exist several possibilities for generating t&#. | 1< 16 e noted that the quantum gate which performs the
_ From ';he Hamiltonian Eq(1) we can generate the follow- ¢ cq4ing must only be equal Bbin the subspace spanned by
Ing set of quantum gates: the state4000) and|100), because it is always guaranteed
_ ; that the qubits 2 and 3 are initially in st4@ . However, this
U, =expi¢-S), 2 . . :
(¢ Hig-S) @ is not true for the decoding gate which must be equé tm
the entire Hilbert space since it acts on an unknown state.

S=5(i ,j)zug\ﬁap: e "8 ex igS'Sj). ©) The very similar quantum gaféig. 4(b)]

The single-qubit operatiob;(¢) for the spinS is generated Er=Uxor(2,3Uxor(1,2) (10

by applying a magnetic field puld&(t) at the location of the has the nice property that it can be used for implementing the
spinS such that/;d7B(7) = ¢. Similarly, the “square-root- quantum teleportation of one qubit as a quantum
of-swap” gaté (which we denote by§ in the following is  computatiorf® It is clear that our analysis of the XOR gate
obtained by switching the interactiarft) between the spins can also be used for implementing this gate.

S andS; such thatf},d 7J(7) = /2. We introduce the circuit

notation forSin Fig. 2@). Note thatU;(¢) is 4ar-periodic in lIl. SERIAL PULSE MODE

¢ and 2mr-periodic up to a global phase 1, which for our ) ) ) o
purposes is not important. Equatio(® and (3) are a uni- _ In the foregoing discussion we made clear why it is de-
versal set of gates. Other powelg, ., of the swap gate sirable to generate certain quantum gates or networks such as
Uswag= =€ ™ exp(nS - S): (lab)=|a);®|b);), XOR, E, andEy, and that it is indeed possible to produce

them using a system of spins that are mutually coupled by

|00)—>|00), [01)—|10), |10)—|01), |11)~|11), (4)  the Heisenberg interaction E@L). In fact, we know that we
o can generate every quantum gate using those interactions,

can also be generated by the Hamiltonian @g}. but are not  gjnce Eqgs(6) and(8) explicitly tell us how to produce XOR,

necessary for universality, on&= UL~ is included. which together with the set of single-qubit operations forms
We can use “square root of swap” to generate the cona universal set of gates for quantum logic.We now go one
trolled phase flip gatéJ cpr: step further and ask ourselves which is thest efficientvay

of implementing a certain quantum gate. More precisely, we
|00)—100), [01)—[01), |10)—[10), [11)——[11), (5) are interested in minimizing the switching timeg for the

with the quantum circuit depicted in Fig. @me evolving desired quantum gate. This kind of optimization is crucial

from the left to the right or formally® pecause the error prqbability per gate operation is propor-
tional to the switching times= 75/7,, wherer,, denotes the
U _e—i(7-r/2)ei(w/2)Sie—i(7-r/2)S§Sé7rSiS, 6 dephasing time of the system. Other criteria for optimization
cPF © can be added, if, e.g., one kind of elementary t@sky, spin-
which in turn is related to the XOR gatéyor [Fig. 2b)]: spin interactions is much harder to perform than another

(such as single-qubit rotationr if the switching of param-
|00)—[00), [01)—|01), [10)—[11), [11)—[10), (7)  eters turns out to be difficult.
For the purpose of finding an optimal implementation of

by the basis change quantum gates, we first define which set of elementary op-

Uyor=VUcpV',

1 P—

®)

2 N 2 T

V=exp —i7SY2).

3 AR 3
Since XOR with one-bit gates is a universal quantum §ate, () (b)k
this confirms that Eqg2) and(3) are a universal set of gates.
In what follows, we will use the XOR gate to construct the  FIG. 4. The quantum circuits fdi) the three-bit encodek, cf.
gate E that performs the encoding for three-qubit quantumeg. (9), and(b) the teleportation encodé;, cf. Eq.(10).
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erations we are going to use. We will call this set the serial P(S)={|W)eP|A|p) e Hy: |¥)=|pd)}. (14)
pulse operations, since they can be achieved by “switchin

on” exactly one of the parameters=(J,B;,B,) in the
Hamiltonian Eq.(1) for some finite time. Clearly, XOR does
not belong to this class of gate operations—it takes th
whole sequence E@6) to produce it. Note that the definition
of serial(and later parallelpulse operations depends on the sequence given in Ec(6) is optimal in the sense that both
Hamiltonian and on how we parametrize it. The distinction. “square root of swap” operations are really needed. Allow-
only makes sense if serial pulse operations correspond f{}g arbitrary powers ol s,y does not reduce the number of
physically switching on and off a part of the device, e.g., thelV0o-qubit gates required for XOR either, since dug,s,
magnetic field at the location of one of the spins. We will 'useWherea is not an even multiple of, cannot act as a perfect

the serial pulse operations defined in E(.and (3). entangler which is required for the XOR gate. For complete-
ness, we give here the generalization of E4®) and (14)

for arbitrary powers of swap,

%or any choice of the,, in Eq. (11), we can construct the
state|0)® ulu4|1) which is in P(Uyxog) but not inP(S,)
éincesﬂllf} is entangled. Thereforé?(S;) # P(Uxor) and
consequentlyS; # Uy for any choice ofu,,. Thus, the

A. XOR gate

As a first example for our efficiency analysis, we take the Cimal2

sequence Eq6) for XOR. We do not try to optimize the SwaFJqSX) € COS( >|¢X>+'Sm )|X¢>}

length of the single-qubit pulses. Instead we investigate (15)

whether it really takes two instances $r if XOR can be

performed with oneS plus single-qubit operations. This is P(S), a#integer,

most reasonable if coupling two qubits is more coséyg., P(U gwap = P, a=integer.

due to decohereng¢han operating on a single qubit. Thus,

our question is whether It is interesting to check whether XOR could be per-

formed with oneS gate only if we know that the target qubit

S1=[U21® Uzo]J Up1® Uyo] (1D s initially in the state|0). If this were the case, one could

save twoS gates in the encoding stéthis is not true for the

decoding step However, one finds that even in the subspace

spanned by00) and|10), the circuit Eq.(11) cannot repro-

duce an XOR gate, because for any choice of single-qubit

is equal toUyogr for some choice of single-qubit gates,,
=U(dnm or not. We will shortly prove that the answer is
negative and it indeed takes at least t&to produce XOR,
but first we introduce the method we developed in order tg
prove this kind of “no-go” theorem. The idea is that very (Ltglnor:deO) €P(Uxor) andfor |10) e P(Uxor) become
often quantum gates can be distinguished by their ability o 9 1
produce entanglement. This property of quantum gates has
the advantage that it is invariant under concatenation with
arbitrary single-qubit gates. Regarding the three-bit encodgr Eq. (9), our result tells

We denote the producpure states in our two-qubit Hil-  us that the straightforward implementation Bf requires
bert space H=H3?> by P={|¥)eH||¥)=|¢) “square root of swap” four times, i.e., twice for every XOR.
®|x); |@),|x) e Hpt.?? Here, H, denotes the single-qubit This does not mean that there cannot be a more efficient
Hilbert space with basif0),/1). A state|¥)e¢ P is called implementation ofE than given in Eq.(9). We can try to
entangled. For every quantum gdtmitary matriy U acting  implementE using the serial pulse gate set instead of XOR'’s.
on H, we define the subsetP(U)={|¥)eP|U|¥) It turns out that this is impossible with fewer than fo8r
e P}C P of product states which are mapped onto a producgates. The analysis still relies on the previously introduged
state byU. The idea is now simply that two quantum gatesset but is slightly more complicated than the one for XOR
U, and U, which have differentP sets, P(U;)#P(U,), since in the case of three qubits each dawan be applied to
obviously must be differentJ,# U, (note that this implica- one of three possible pairs of qubits.
tion cannot be reversgdThe P set of XOR is It is clear that just one use & (plus arbitrary single-qubit

operationg cannot producés,
P(Uxor)=1/0¢),|18),|px)[| ) € Ha}, (12

where we used the notatigrt )= (|0) +|1))/ /2.

In order to findP(S), it is useful to convince oneself that
the “square root of swap” operates on a product sfetg)
according to the very intuitive formula

B. Three-bit encoder E

U1 =[U2®Up® U] S(i,]j)[U® U@ U] #E,  (16)

for any choice ofu,, for the simple reason th& is able to
entangle the qubit 1 with 2, and also 1 with 3, whergésj)
can only entangle the qubitsandj with each othefat most
one paij.

It is less obvious that none of the sequences

by first checking it for the basis of products |@) and|1), with UM=u_;®u,,®uny; can reproduc&. The idea of the
and then using that the right-hand side of Ek) is linear in ~ following argument is the same as for the one for XOR: We
|#) and |x). From this rule we conclude that all product are seeking a stafel’) that becomes entangled when acted
states become entangled Bynless they are the product of on with the operatolJ, given in Eq.(17) but remains unen-
two equal single-qubit states, tangled under the operatidg i.e.,|¥) e P(E)\P(U,). This
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L Ups—eH Upg Us1- 1 /Uy, Upy [ Us; Uy
‘::::::::::::::::::":v 3 E
2 —Uiz— Up2 Ugz—— 2 — U Ups e Ugs Uy
: : 3 w
3 —ls ; Ups %3_.% 3 — U3 Uss - Uzs Uyg
FIG. 5. Quantum circuits of the type described in E#8). FIG. 6. Quantum circuits of the type described in Eg3).
Dashed lines represent the grouping in Ecf). Dashed lines represent the grouping in E2#).

is the case if¥) is entangled by(i,j) and not disentangled With arbitrary single-qubit gates ™ =uy;© U@ Ups. First

by S(k,1). We can exclude the case whetelj=(i,j) or  We observe that ifi¢,j2) = (is,j3) or (i2,j2) =(Js,i3), then
(k,1)=(j,i), using the same argument as fdg, defined in We can apply the same argument as for circuits of the type
Eq. (16). In the remaining cases it is clear that |W) Uz with (i,j)=(i1,j1) and k,1)=(i2,]3). In the case where

e P(E) is chosen such that it is entangled 8§i,j), then it  the first twoS gates(but not the third oneact on the same
will not be disentangled again b§(k,1), and we are done. Pair of qubits, {1,j1)=(i2,j2) or (i1,j1)=(j2,i2), we note
Since Eq.(17) is invariant wheni andj (or k and 1) are that either[0); |0); [0)xe P(E) or [0); |0); [1)e P(E),
interchanged, we can always arrange ihatandk are mu-  wherek#i4,j;, becomes entangled by;. Therefore,U;
tually different, and =i. In the case wher¢+1, the state +#E if the first two or the last twdS gates operate on the
|\P>=|O>i®uLu1i|1>j®|O>keP(E) is not in P(U,), be- same pair of qubits. In all other cases, we can label the three
cause the entanglement between qiilbibd the qubits and  qubits with three distinct numbees b, andc between 1 and

k created by8(i,j) cannot be undone §(i,k). Forj=1we 3 such that S(i,,j;)=S(a,b), S(i,,j,)=S(a,c), and
choose the stat¢W)=ul;u;j|1);®|0);®|0) e P(E) with  S(iz.jz)=S(b,x), with x=a or x=c. The state|V), de-

the same property. This concludes our proof that there is nfined as

circuit U, of the form Eq.(17) which is equal tcE. Note that

T Tt PR
this conclusion is independent of the choice of single-qubit ~ 107a®U1pU1a| 0)p® U1cUzclzaliza| 1)e (if a=1),
operations inU,, hence the inequality we proved concerns + + ot .
all circuits of the typeU,. U1aU1p|0)a®|0)p® UsUpcUzaUisp| 1) (if b=1), (22)

As an example, consider the circuit - - _
U1aUzaUzcU1c|0)a® UppUpaUzclsc|0)p® (1), (if c=1),

_u® @) (1)
U=UMS(23U (LU (18 is chosen such thdt?)e P(E) and has the property that
for whichi=3, j=1, andk=2. By rewritingU, in the form  S(a,b)UM)|¥) is unentangled, but in
shown in Fig. 5, S(a,c)UPS(a,b) UM | W) there is entanglement between
the qubitsa andc. Finally, theS(b,x) gate cannot remove
Upo=[veV(2,3]S(1,3 U, (19 the entanglement; in the final stdtis| W), either the qubia

; _ _ if x=c) or the qubitc (if x=a) is entangled with the other
With v=uUsl,; and V(2,3)= (18 Us® Uz S(2,3) 10Uy, U _ _ _
@uz), an using Eq(13), we abserv that the procuct sate (18 T (EAIB RS BASlT) € ML B0
W)=|0);®]0),®uluy1 E) i dt 87 - )
[¥}=10)1©10)2® Uiz 1)3. P(E) is mapped to trate our proof, we apply it to the specific exampie=(2,

1 b=1,c=3,x=c=3)
Uo| W)= -—=(v[a)1®V|8) 25T iV[B)1®V|7),3.
1+i Us=UMWSg(1,3u®s(2,3u@s(1,2u®, (23

(20
o N . hich b itten in the f h in Fig.
The unitarity ofu,, implies that| a) = u4,|0) is orthogonal to which can be written in the forrtshown in Fig. 6
|B)=u1/1), and [y)=u1j]0)®|a) is orthogonal to|s) WS2,3U@s(1,2UM, (24)

=U,,0)®|B). The gatew andV are also unitary, thug| «) _ . .

is orthogonal tov|8) andV/|y) is orthogonal tov| 5), which Whe_reW|s a gate thgt does not couple qubit 2 with any other
implies thatU,|¥), Eq.(20), is an entangled state between dubit. Applying this operator to the state¥)=[0),
qubuts 1 and the pair of quibits 2 and 3. From this we con® Ul5U14/0),® Ul ulalostyg 1) proves thatUs+E for any
clude that|¥)eP(E) is not in P(U,), and thereforeE  choice of the U™, because Us|¥) is entangled,
#U,. | W) & P(Us).

Next, we develop a proof that even with the use of ttBee  Strictly speaking, the gate which is used for encoding the
gates E cannot be implemented. Since e&tan couple one qubit has to be equal t& only in the subspace spanned by
of three possible pairs,,jx=1,...,3, ix#jx, of qubits, |000 and|100), since it is guaranteed that the qubits 2 and
there are 8=27 sequences including three “square-root-of-3 are prepared in thi@) state initially (note that this is not
swap” (S gates, having the form the case for the decoding step since the error syndrome is

unknown when the state is decogled@his could in principle
Us=U®S(i5,j) UPS(i,,j)UPS(i,,j)UD, (21)  allow a more optimal implementation of the encoder circuit
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than the one which we have described above. However, wehere theX,, are arbitrary but fixed 2,3..,M qubit gates
find that |000) e P(E) and/or |100 e P(E) become en- andU™=u,;®---®u,y, are arbitrary and variable prod-
tangled by any(nontrivial) circuit with three or fewerS  ucts of single-qubit gateseveralu,, can be unity. A result
gates. This statement is proven by exhausting all possiblef a numerical search is a ligu,,} of single-qubit gates,
cases. It implies that even the encoding step requires at leashich satisfy the equatiob){UM} = Ug. The computer al-
four S gates. gorithm can thereforgiin the case of a successful pun
“prove” equalities, but one or several unsuccessful runs do
C. Teleportation encoderE+ not constitute a proof that the gdtg, cannot be constructed
i . with a given sequenck¥,, n=1, ... N. Note that the situ-
Now we consider the teleportation encoder dgafg EQ.  aiion is thus exactly opposite to tieset method. The op-

(10), which is shown in Fig. &). The gateEr consists of  gration of the computer algorithm consists of minimizing the
two XOR gates, but in contrast tB these two XORs are fnction

arranged in a less symmetric way. As a consequeRe;)

is only a subset ofand not equal toP(E), since, e.g.|0
+0) is in P(E) but not in P(Ey). Again, we can ask
whether it is feasible to assembig; using fewer than the
four Sgates that are used when we simply combine Eg)s.
(8), and(10). The answer is again negative. The proof of this
statement is similar to the one given fér It is again clear
that a circuit involving ones cannot entangle any pair of the

f({unh @)= €“U{und —Ug[? (26)

numerically in the space of all possible combinations of
single-qubit gatesi,,, where the matrix norm is given by
|A|?=Tr(ATA). The single-qubit gates,, are parametrized
by the three angleg,,, 0,«, andy,, according to the pre-

three qubits, as it should in order to reprodi€e. scription

A circuit of the formU,, Eq. (17), involving two S gates _ )
cannot be equal td&E; either. We first note that iS(i, ) [ codpy  —e'lenktVnd sin( 6y
=3(k,l), thenU, cannot produce entanglement between the Unk= e #nksin( 6,,,) e'¥nkcog 6, - (@D

third qubitm=i,j andi or j, and thusJ,# E;, becausés
can entangle any pair of qubits. $(i,j) # S(k,!), we find  |ncluding the global phase, we count 3 (N+1)+1 real
that either|W)=10);|0);|0),e P(Ey) or [¥)=]1){|0);|0)x  parameters. If the numerical search yields a minimum
e P(Et), wherek#i,j, is entangled by the gat&(i,j).

Since this entanglement cannot be undone $K,l) _

#9(i,j), the statdJ,|¥) is entangled. Thus, we have found F({und ) =0, 28)
a state which is ifP(Eg) and not inP(U,) and therefore

then the corresponding sequence &9 is identical toU, .
U,#E.

' L . The numerical results fod ,=U and X,= S support
We flnaII_y explore whether a circul; containing _thr(_eés the analytical result, i.e., tﬁere Xi(:ano cirncuit chp:pl.
gates as in Eq.21) can reproduceEr. For S(ijz) For N=2, we find a vast number of circuits other than Eq.
=S(i3,13) we can see that this is no_t th_e case by applylng(e) combined with Eq(8). For U,=E,Ey, we do not find
the Sa.rtne argumeSnt_ as at;ogg fo_r a cwc%c W'tht?'dn t{]et a solution forN<4, as guaranteed by the result of our pre-
OODPO(S)l e o case, E('z,Jz) f (la,Js)aO e(') erl € ES al®  yious analysis. As previously remarked, the gate for the en-
| .>i1| >i_1| JxeP(Eq) or the s.tat.e| iyl >Iil| L)ke P(Er):  coding must be equal tB only in the subspace spanned by
with k#i1,j,, is entangled bys(i,,j,) or S(is,j3). Because |000) and|100) (the gate for decoding has to be equaEo
S(isz,js)#S(i2,]2), entanglement produced (iz,j2) i on the entire three-qubit Hilbert spacé\ numerical search
not undone bys(i3,j3) and therefore we have found a state with this relaxed constraint was performed by minimizing
in P(Et) which is not inP(Us), completl.ng .the pr_oof _for the functionF({Upe,a})=||(e'“Ulu,} —E)P||?, where P
Us# E_T for the case of th_rets gates. This finally implies ~1000)(000 + |100/(100 denotes the projector onto the rel-
that, like E, the teleportation encodey cannot be con- o ant subspace. The numerical analysis confirmed our earlier
structed using fewer than fo gates. formal result thatUP+EP if U involves fewer than fous
gates.
D. Numerical search The impossibility of reducing the number & gates re-
The method that vas preseied for proving ncualie 10 [0 166 5 0 e ldea ht  mightbe et o
between two gated; andU, involving the setsP(U;) and . R
g ! 2 d (U) I_the three-qubit Hamiltoniai;=J(S;- S+ S,- S+ S5+ Sy),

P(U,) has the advantage that it yields rigorous results a 4 ibing th imult T . . o |
though we do not know the details about the involved single- escribing three simultaneously interacting spins with equa

qubit operations. Sometimes, however, proofs becomgoyplmgﬂc}:onsttanﬂ. We find that the analog o for three
lengthy and rather unsystematic, so we would like to have gPins Is the gate
better tool for the complex cases. Unfortunately, we do not

have such a tool which is capable of giving rigorous proofs  inh 4m Hg

for inequalities, like theP-set method. However, we have S=e eXp('?T ' (29
developed a computer algorithm that searches foMhgu-

bit gateU in the set which is obtained when the interactidnis switched on for

time r=4#7/9J. In analogy to Eq(13), we can express the
U{UM=uyN+Dx uM...x,Uu@x, U™, (25  action ofS; on product states as
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_ Qi /6 27h 4
Sg|0[1(1’2(13>:_e”T/3|0[1Cl’2(13>+m 2 lapaga,s), pi(t) = P v Lo ST<ty, (33

oeS3

(300 where r,=t,—t,_; andt,=0, ty=t; the time stepr, has

where the second term is the symmetrization of the inpuPeen absorbgd {nto th_e dimensionless payampf@rs Once )

state (S, denotes the permutation group of three objects the problem is discretized, it becomes suitable for numerical
- treatment using the minimizer algorithm presented in Sec.

Whereass*=1, we find thatS3=—1. In e>§act analogy to the Il minimizing q[he function [|U _% {p-(k)‘F:;S}HZ with re-

“square-root-of-swap” gateP(S;) consists of states that ) NUEG o X

have the forma)® |a)®|a), |a) e H,. We can show the spec_t to thePN+(%) parameterp; _ and ¢. We try to find a

is not equal to any gate involving only one or tig. The  Solution toUn{p;” ;$}=Ug starting fromN=1 and then

case of thres, was studied numerically, but no circuit rep- incréasingN in unit steps. In practicelN is limited by the
resentation folE was found. available computational resources.

One approach to the problem would then be toNiand
t; (e.g., use time steps of equal sizg= 7=1/N). Then, the
constraint p;(7)|<M; implies|p®| < 7,M;/27%. In the fol-

Operating a system described by the Hamiltorkagp)  'owing, however, we 50|V‘*JN{Pi(k) 1¢y=Ug with fixed(ll(\)l
with parameterg;_i:(J,Bl,Bz) given in Eq.(1) as a quantum (chosen as small as pogsﬂaimthout any cqnstralnt fop;
gate in the serial pulse mode is not optimal in the followingand then calculate for given boundsVi; using the formula

sense: If several or all parameteﬁscan be changed simul- [cf. Bq. (33)]

taneously, we expect that a given quantum gate, say XOR, N N ot

can be performed faster than by changing only one parameter t=> 7=, mﬁo<—|pi(k)|
at a time as in the serial pulse mode. Generally, all param- k=1 =1 LM

etersﬁ are arbitrary functions of time such that the time 11,4 parametepi(k) with the Iarges’pi(k)/Mi ratio determines

evolution operator after timeis a functional inf) given by  the switching time for théth step.
the time-ordered exponential

IV. PARALLEL PULSE MODE

. (34)

A. XOR gate

- LI
Ut[p(r)]=Tex;< %f H(p(r))dr). (31 We now want to use this method for finding a pulse se-
0 quencep ¥ that generates the quantum XOR gate, &0

Given some quantum gatg,, we would now like to solve ~Since ﬁoi is thehsame acsﬁ)the con.ﬁi;i_onal phase flip (CPF)
he | | ; 57 1=U - for the functionss(r). up to the basis change E(B), we will first try to generate
the Integra .eql;at!otht[p(dr)] bUg Zr (tj ? un_ctlopsp(f) CPF. In the S, basis, the Heisenberg Hamiltonian
For unrestricted timé and unbounded functions(r) we 33 g B.), Eq.(1), can be written in the following matrix
immediately know how to construct such a solution by usin orm:
the known universal set of gates E¢®) and(3) in the serial '
pulsﬁe mode. In general, this is not the optimal solution of BZ+BZ BX—iBY BX—iBY 0
Udp(7)]=Ug. An optimal solution is given by a set of X, nY o of. X_ oY
bounded function$p;(7)|<M; requiring minimal timet for 1 Bz 1B Bi-B2-J J B ~1By
a fixed set of boundM; . Since it is not feasible to find an 2| Bi+iB) J B;—Bi—-J B3—iB}
optimal solution among all such bounded functions, we will

. - . . - Bi+iBY B5+iBY -Bi-B;%
restrict ourselves to piecewise-constant functions. Splitting 0 11y 27152 rome (35
up the time intervat into N=1 parts, we write
where an irrelevant constant energy contribution is omitted.
Unp®, ... ,5(N);¢) We find analytically that CPF can be obtained in one time
‘ . . . step N=1), i.e. for constant parameteps
=eUp(p ™). Ux(p@)Uy(p D),
UCP'-:eXn:ZWiH(JIBlVBZ)]y
(32)
- - = —_ —_ —_ l
Ui(p ¥) = expf2aiH (5 )}, I=k=n-2m=z,
For every time “slice,” we have the freedom to choose a By=3(0,0n+3+k?-3?), (36)
new set of parameteps® = (3, B, B,(). Note that we ) )
allow for an arbitrary total phase. By discretizing the B>=2(0,0n+z2— k™= J,
problem in this way we have reduced the free parameters in B 1
the problem from theP functionsp;(t) to PN real param- ¢=—m(n+3z),
etersp, i=1,... P, k=1,... N, whereP denotes the \heren and m are arbitrary integers anil is an integer

number of parameterp [in the case of the Heisenberg satisfying 4k|=|n+2m+%|. This solution is obtained by
Hamiltonian Eq.(1), P=7]. The functionsp;(t) are related setting Bf=B/=0 and diagonalizing the resulting Hamil-
to the discrete parametep$® through the relation tonian matrix



PRB 60 PHYSICAL OPTIMIZATION OF QUANTUM ERR(R.. .. 11411

A 0 0 0 ing time in each step. The solution E@2) appears to be a
1lo —3+B 3 0 unigue optimum for the casd=2.
"= 2|0 J -J-B 0 |’ &7 B. Three-bit encoderE
0 0 0 -A We can further parallelize the three-bit encoBeEq. (9).

where A=BZ+B2 and B=B%—B%. The conditional phase Instead of concatenating two XOR gategich may or may

flip CPF is invariant under the basis change that diagonalize&0t Pe produced using parallel pulsese now try to find a

Eq. (37, and we can then solve the equation more efficient parallel pulse sequence Ergiven a system
expB)exp(27iH)=Ucprin the basis where botH andU cpr of three qubits which exhibit pairwise couplings among each
are diagonal. This yields the four equatioa&A= g2+ other that can all be switched on simultaneously. The Hamil-

—e2mi = g mA_ g i¢  \where No=(—d% \/32+_Bz)/2 tonian for this three-spin system can be written as

and = A/2 are the eigenvalues &f. From these four equa- 3
tions we obtain the result Eq36) for ¢, A=B]+B5, B H= > JijS.Sj+2 Bi-S. (43)
=B]—B3, andJ. Applying the basis changé from Eq. (8) I=i<j=3 =1

to these solutions, we can build XOR with a total&3  \ye find that there is a representation of the three-bit error
steps. The integers m, andn can be chosen such that the correction encodeE which consists of three parallel pulses
switching time Eq.(34) is minimal for a given set of con- gnly, instead of the four which it takes to perform two se-
straintsM;, Mg , Mg,. In the specific case where all con- guential XOR gates. The following parallel pulse sequence
straints are equal t¥, we find that the solution fok=1, producesE up to a global phase= 7/2:

m=n=0,

30 R I

J=1, BZ=1(1+.3), B2=1(1-V3), (39 = =B = =
A 1 00000 8.2500 0.0000 1.1153 6.1737 6.1739
has the shortest switching time, 2 —0.9256 —5.3608 0.78635.7603 52422  1.7475
onh o 3 0.0000 —1.7500 0.0000 0434535255  3.5255

teprp= g1 (1F \/§)=0.683V, (39 K BYY BY BY BY BY BY

less than half the time which is used for the serial pulsel —1.6737 —0.2263 0.2262 1.1153 1.4649-1.4649
quantum circuit Eq.(6), tcprs=1.5X27A/M. Note that 2  0.0000 0.0000 0.0000 0.0000 0.0000  0.0000
since the coupling is isotropic, the same gétea rotated 3  2.1709 1.4118 1.4118 0.4345 1.2560 1.2560
basig can be achieved with a magnetic field along any de- (44)
sired direction. In order to obtain the XOR gate, we mustFor equal bounds the total switching time @f ;=17.54
spend in addition twice the time 0.22##/M for the basis X 27#//M is much larger than the four-pulse timéy2g ,
changeV, Eq. (8). The total switching time is then =2.163x27A/M. Note that a better three-pulse solution
was not found, but cannot be excluded.
2T 54 B)=1.185 " 40
trorp =7y (3FV3)=1.183 G, 40 V. ANISOTROPIC SYSTEMS
about 59% of the time required for the serial pulse quantum Systems where the spin-spin coupling is anisotropic are
circuit, Eq. (6), including the change of basis E@8), not described by the Heisenberg Hamiltonian g that we
txors=2X27h/M. Of course, the basis change appliedstudied as a generator for quantum gates in the previous sec-
here is again a “serial pulse” action and therefore not opti-tions. In the two most notable cases, the Ising andXive
mal. We therefore study E¢32) directly for the XOR gate, systems, it is known that universal quantum computation is
without using the CPF gate. It turns out that no solutionpossible. In the case of a system described by the Ising
exists _forN=1._ForN=2 our optimizer algorithm finds the  HamiltonianH,=JSS5 and a homogeneous magnetic field
numerical solution in the z direction, there is a particularly simple realization of
. - - the CPF gate with constant parameters, nam®lypr
Uxor=€'? exf 2miH (p ®)Jexd 2iH (p )], (41) =exdin(1-2S—2S+4S,S5)/4].2 One might be tempted by

with the parameter valu&s this to “transform” the Heisenberg interaction E() into
an Ising interaction by adding time-dependent fieltig(t)
Kk J® BW  BY B(ll;) B(2ky) BW  BY =By(t)-S;+By(t)-S, to the coupling HamiltonianV(t)

=J(1)S;- S, such that the coupling in the interaction picture,

1 0.187 —0.025 0.464 0.205 0.195 —0.420 0.395 Vv (t)=U(t)V(HU(t)T, with U(t)=Texpi[;Ho(7)d7),

2 0.617 —0.220 0.345 —0.384 0.244 0.353 0.1308 would be identical to the Ising coupling,(t)=H,, or even
(42 to switch the coupling off and on using this method, i.e.,

and the global phase¢y=—0.848%r. The total switching v (t)=0 for a certain choice ofiy(t). It turns out that this

time for equal bounds is in this casBorp=(0.4643 s impossible, since the “transformed” coupling must have
+0.6170) 272 /M =1.0813< 272/M, compared totyors  the form

=2X2mhI/M for the serial switching. The numbers in bold-
face in EQ.(42) indicate which parameter limits the switch- V() =J(1)S;-[R(1)S,], (45)
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whereR(t) is a time-dependent rotation matrix. Fd#0,  whereU,=exd27iHxyg(J®,B¥ ,B¥)], k=1,2. Note that all
this clearly excludes the complete “switching off” of the magnetic fields can be chosen homogeneoB{ ¢ BY
interaction. Furthermore, the coupling Eg5) is still isotro- =B®) and perpendicular to thg axis (B,=0). Here we

pic at every instant. give one possible realization which is found numerically
In spite of the impossibility of using a Heisenberg system( 4= —37/4):

as an effectiveXY (or Ising system by adding time-

dependent fields, there ax¥ey systems in nature which have g JH Bk Bk
been proposed for quantum computattdrin the case of - :
Ising systems we have seen above that there is a very simple 0.7500 0.7906 0.5728
prescription for generating the XOR gate. We devote the res? 0.5000 0.0000 0.2500

of this section to demonstrating that XOR can also be ob-
tained withXY coupling. For two spins witls=3%, the XY
Hamiltonian is given by

(52

The total switching time for CPF, assuming equal bounds
M;=Mg=M for J andB, is t&ye,=1.291X 274/M, com-
pared 1o tgpes=2.167x27A/M for the serial-pulse se-
(46) ~ Quence defined in Ed48).
In order to produce the XOR gate E) we can imple-
00 0 0O ment the basis change E®) using the single-qubit rotation
V. This procedure requires a total of four steps for the XOR
where for the matrix representation we chose dbasis. gate. Another way of achieving XOR is the following se-
The corresponding time evolution operator is guence which we found numerically and which takes only
three steps:

o O O

0 0 O
HX\(:J(SXS)2(+SyS%):i >0
1 1 2 1 00

1

Uyy(p=Jt)=exp(itHyxy)= gl ¢S . (47 Uyor=exp(3im/4)UzU,U,, (53
1

. I . . ith the following parameters:
There is a qualitative difference between two qubits coupletyv gp

via anXY and those coupled by a Heisenberg interaction: itk 3k B(K Bk B(K Bk BK B(K
is impossible to generate powett, ., (0<a<1) of the 1x 2 Ly 2y 1z z
swap gate Eq4) with only one use obUUyy(¢) together with 1 1.802 0.615 2.045 0.020 0.316 0.794 0.130

single-qubit operations. In particular, this is impossible for2 3.344 0.348 0.718 0.259 0.493 1583 1.062

the “square-root-of-swap” gat&JLz . In spite of this, we 3 1903 1.193 0.705 0.413 —0.305 0.589 0.604
found that the CPF gate can be produced by the serial-pulse

sequence (54)
U epp= €1 g2 - Sif3g2imy- Syi3 The total switching time oftXl ,=7.29x27#A/M (com-
pared to 2.6X 27#/M using CPF and a basis changedi-
X U yy(712)€ ™S1U o (7/2) e~ I TS12e 17512 cates that Eq(54) is not an optimal solution.
(48)
where n,=(1,—1,1)A3 and n,=(1,1-1)/\3. This is VI. REQUIREMENTS FOR PARALLEL SWITCHING
proof thatXY systems with single-qubit interactions are in  The parallel switching mechanism presented in the Secs.
principle capable of universal quantum computation. IV and V relies on the following essential assumptions.
~ We now consider parallel switching with th€Y dynam- (a) Each of the parameters in the Hamiltonian can be var-
ICS, ied independently. That is, the coupling can be varied inde-
pendent of the magnetic fields in the Hamiltonian EQ.
Hxvg=Hxy+B1-S+B2 S, (49 (b) We know the exact relation between the externally
) controlled parametersuch as the electric and magnetic field
Uxy,s(t)=explitHxyp). (50 or a gate voltageand the parameters in the Hamiltonian.

As in the case of Heisenberg interactions, we first consider (¢} The switching is synchronous, with all parametprs

the CPF gate which can be used to assemble the XOR gate ¥8rYing with the same time profile;(t)=p;f(t). The
shown in Eq(8). We have not found a possibility to generate change of parameters does not have to be steplike, but can be
the CPF gate Eq5) with the XY Hamiltonian with applied ~ chosen to have some smooth pulse form. Also, any pulse
magnetic fields with constant parametels<(1) using a nu- magnitudes; are allowed.
merical search?* If the switching is performed in two steps ~ Whether the above requirements can be fulfilled depends
(N=2), we find numerically that there are several possibili-on the underlying microscopic mechanisms which are re-
ties to generaté) cpr in the form sponsible for the effective Hamiltonian, such as the Heisen-

_ berg Hamiltonian, Eq(1). In our previous work we have

Ucpe=€e?U,Uy, (51)  used the model Hamiltonian



PRB 60 PHYSICAL OPTIMIZATION OF QUANTUM ERR(R.. .. 11413

2 2 -2

1 e PitP; Py Mo
H=3m i_Lz{(p. cAr)| +exE H= ==+ 2m+ 5> (2-20)%, (57)
mw? ([ 1 e? with the renormalized effective mass in tiedirection, m
+—2 —(x2—a?®)2+y?| [+ ——, (55 2 ; e —
2 4az(xi a’)™+yi K[r =1y’ (59 =m(1+4w{/w?), the renormalized confining energyw

=ﬁw\/1+4w2|_/a)2, and a shift in the confining potentiaj)

with A(r)=B(—y,x,0)/2 to describe the orbital dynamics of =2Py@./me? which depends on the momentyppin they
electrons in coupled quantum dots. Heteandp; denote the direction and the Larmor frequeney =eB/2mc. Note that
location and momentum of the electrowhich is moving in ~ the corrections due to the magnetic field in the resulting 2D
two dimensions in a double-well potentidlwith character- Hamiltonian
istic energyf wg and a magnetic fiel@® perpendicular to the

2D electron system and an electric fidid parallel to the

coupling axis of the two wells. The distance between the

guantum dots is denoted bya?2the effective mass and the 2, 2 4 =

charge of the electron iy ande, and the dielectric constant are of the ordem,_(w or (a,/lg)”, wherelg= ﬁc/gB de-

of the material byx. As we pointed out earligf the spin-  Notes the magnetic length amd= J%/ma the confinement
length. Usually, we are interested in the case of strong con-

orbit interactioanoz(wé/ZmOCZ)S L is very small for an o
electron in a parabolically confined quantum dot. Note, how finément and moderate magnetic fields wheyelg, there-

ever, that this expression for the spin-orbit coupling containdore m~m up to small corrections. In this case, an in-plane
the bare electron mass,, instead ofm, the effective elec- Magnetic field does not affect the orbital degrees of freedom
tron mas€?” and therefore the spin-orbit coupling in GaAs is of the 2D electrons. o _
aboutm,/m=15 times smaller than estimated in Ref. 16.  The condition(b) can be fulfilled in two ways. Either we
For a quantum dot with confining enerdyv,=3 meV, we have a theoretical description of the dependence of the
obtainH /i wy~10"8. Hamiltonian parametersJ(B;) on the control parameters

Concerning conditiona), we have found that the spin- (V. & B, E) or this relation is first mapped out in experiment
Spin Coup"ng J can be controlled by several external and the obtained data are used later for the control of the
“knobs.” The gate voltageV applied between the coupled device. A good approximate description is possible in the
quantum dots controls the height of the barrier for tunnelingc@se of adiabatic switching. In order to demonstrate this, we
of an electron from one dot into the other and thereforecast the microscopic Hamiltonian into the for(t)=H,
strongly influences the exchange couplidgbetween the +V(t). Then we find the instantaneous eigenstdtes))
electronic spins. In a similar mannerdepends on the inter- and the corresponding instantaneous eigenvati€y by
dot distance a. We have also fourl§ that an external mag- solving the time-independent Schitoger equation for fixed
netic field B perpendicular to the 2DEG causes a stronglimet. The instantaneous eigenstatét) ) is a good approxi-
change(even a sign reversabf J. Not surprisingly, an elec- mation for the time evolution of the initial state(0)), pro-
tric field E applied along the coupling direction of the dots Vided the adiabaticity criterion
also changes the exchange coupling, which can be under-
stood as an effect of level detuning. When switching on a M
magnetic field, the effect of the field ahcould be compen- €m~ €n
sated by changing another independent control parametgg met, wherer, denotes the switching time. Equati¢ho)

e.g., the electric field. In practice, one has to know the funcmeans that the change of the external control parameters dur-
tional dependencé(V,a,B,E) in the range where it is used, ing the switching time should be much smaller than the level

oL Py

Hzo:ﬁ om (58

1
< — (59

Ts

see alsdb). o _ spacing in the microscopic Hamiltonian. In the case of
Whlle_ a magnetic field perpendicular to the 2DI_EG coupled quantum dots in the adiabatic regimd€) = e(t)
strongly influences the exchandewe can argue that suffi- _ ¢ (1) is the level spacing between the instantaneous singlet

ciently weak in-plane magnetic fields have little influence ongpnq triplet energies.

J. Classically, the motion of a particle in a plane is not af-  Note also that ifv(t) respects some symmetry, there can
fected by a magnetic field in the plane, since the Lorentze selection rules that make EG9) less stringent. In the
force is orthogonal to the plane. Quantum mechanically, W& ase of two coupled quantum dots with an applied homoge-
can describe a particle in a magnetic field confined to a planggqys magnetic field, the total spin is conserved/b) and

by the Hamiltonian therefore only transitions to higher orbital levels of the quan-
tum dots are relevant. Therefore, the less stringent condition
1/rs~|VIV|<Ae€lf is sufficient for adiabatic switchintf.
Here,A e denotes the orbital level distance averaged over the
switching time. Since in this case the Zeeman energy is in-
where the vector potentigh=B(0,—z,0) corresponds to a dependent of the space coordinates, it commutes with the
magne[ic field of magnitudB a|ong thex axis and the con- orbital Hamiltonian and does not affect adiabaticity. The
finement in thez direction is modeled by a harmonic poten- case of inhomogeneous magnetic fields is more intricate. The
tial with frequencyw. In this gauge, the Hamiltonian can be 1ack of a selection rule enforces the more stringent adiaba-
rewritten in the form ticity condition'® 1/rg~|V/V|<J/fi<Aelt, whereJ de-

2 mwz
+Tzz, (56)

H= ! eA
“am|P e
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notes the average exchange coupling during the switching. Ithen the following serial-pulse sequence has to be applied:
addition to this, the Zeeman term does not commute with the

orbital Hamiltonian in the case of inhomogeneous fields andtep duration parameter value
therefore also influencek Due to these difficulties, we pres- 2
ently do not know how to calculate the parametar Eq. (1) 1 78/4 By Bmax
in the presence of an inhomogeneous fi@lg: B,. 2 5l4 J12 Jmax
The condition of synchronous switchir(g) is mainly a 3 Tgl2 Bl Bmax
technical issue. We would like to stress that the choice of the 75/4 NEP) JImax
pulse form has a decisive influence on whether the adiabas Tl B% Bmax
ticity condition Eq.(59) can be satisfied or not. It is quite g 5l4 B2 ~ Brmax
easy to see that a rectangular pulse is unsuitable because7it " BE B
has infinite derivatives. Both Gaussifexp(—t/At?)] and B ¥ max
8 ’TB/4 By Bmax

exponential exp(—|t|/At)] pulses are far better than a rectan-
gular pulse. The exponential pulse has the advantage th&t Til4 Jis Jmax

. 1
|[V/IV| is independent of compared to the Gaussian pulse 10 7g/2 B Bmax

where|V/V|et. However, the exponential pulse has the dis-11 Tyl4 3113 JImax
advantage that it has a cusptatO which causes algebra- 12 7pl4 B, Bmax
ically decaying tails in its Fourier spectrum. We can combinel3 al4 B’ —Bmax
the advantages of both pulses by using the sech pulsé4 Tgl4 Bf; —Bmax
sech(/At)=1/cosh{/At). Since all the pulses have to be

cut off at some finite time= /2, we choose the width of the +° n By random
pulseAt smaller than the actual switching timg, i.e., we 15_29 repeat 1-14

choosex= 74/At>1. By substituting the sech pulse into the (60)

adiabaticity condition Eq(59), we obtain the conditiors  where 7;=277%/J;0 and 75=277/gugBmax. Step 15 de-
> afil A€ in the case where the spin is consergedmoge-  scribes the artificial introduction of noise into the system by

neous magnetic fiejdand 7> afi/J otherwise. applying a random magnetic field in thedirection, causing
random spin flips in a time,, < 7w/gugB,, whereB, denotes
VIl. APPLICATIONS the mean amplitude of the randoBnfield. After step 29 is

completed, qubits 2 and 3 are measured and qubit 1 is flipped
We will now give a detailed description of how a system (by applyingB.= B, for time 75/2) if both measurements
of three coupled quantum dots could be controlled in order tield 1 (spin dowr). The total switching time for steps 1 to
test the functionality of three-bit quantum error correction in29 then amounts te,=67g+27;+ 7.
that system. We denote the maximal coupling and magnetic In a device where parallel pulses are possible, i.e., where
field that can be applied h¥;,.xandB .- If only one of the  the conditionga)—(c) from Sec. VI are fulfilled, the follow-
parameters);;, B; can be made nonzero at a given instant,ing pulse sequence can be applied with the same effect:

i T Jio Bix Box Bly BZy B, B,,
1 0.464r 0.402 —0.054 1 0.442 0.419 —0.905 0.851
2 0.6177 1 —0.356 0.559 —0.622 0.396 0.572 0.176
Jl3 le B3x Bly B3y Blz B3Z
3 0.464r 0.402 —0.054 1 0.442 0.419 —0.905 0.851
4 0.6177 1 —0.356 0.559 —0.622 0.396 0.572 0.176
le BZx B3X
5 Th rnd rnd rnd
6 1
| 2.1627 repeat |
9 4
(61)

We have assumed that the maximal Zeeman energy is equialNote that in every step, the pulse shape has to be the same
to the maximal couplinggugBmax—=Jmax=M, and defined for all parameters. Parameters that are omitted in(&H.are
t=7g= 7. All parameters are given in units ™. The pa- set to zero. The total switching time in this parallelized ver-
rameters in every step can be multiplied by any pulse shapsion amounts tor,=4.32527+ 7,, compared tors=8r1

f(t) with ['f(t)dt=1, wherer; denotes the duration of step + 7, in the case of serial switching.
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VIll. CONCLUSION (paralle) pulse sequence for an arbitrary quantum gate oper-
. - . . ating on any number of qubits. The number of qubits and the
We have studied the minimal reqmrements for the imple complexity of the pulse sequence that can be studied are only
mentation of the_ XOR gate, the conditional phase flip (CPF)Iimited by the available computational resources.

gate, the encoding circulE used for three-bit error correc- Quantum computations are very often presented in the

tion, and the telt_eportalltlon encq(_jErr, all for Heisenberg- form of quantum circuits, i.e., as a sequence of gates belong-
coupled spins witls=3. In addition to this, we have also ing to a small set of universal gates. Our examples of

;%‘S'dedre;j ?nISO(tjr.(f)prC s?ln-si)r:n dcon:pllng as d?SCFIbed Itn th5ara||el-pu|se gates illustrate that such quantum circuits are
model. 1wo difierent methods Tor generating quantum, general not the most efficient way of performing a quan-

gates dW'th da tlme-depgzn(iﬁnt ‘|‘-|am|Itortl_|an P,ave _b?en ld'st'um computation. The reason for this is that standard quan-
cus?‘ed and compareth, d € Icqnven 'Oﬂal slerla PUS&um circuits only allow the use of a small fraction of the
method and a new method involving parallel pulses. possible time evolutions that can be generated by the under-

The main results of our work are the parallel pulses forI ; e - -
g . ying Hamiltonian. While for the two- and three-qubit gates
the conditional phase flipEq. (38)] and XOR[Eq. (42)] we have studied here we could optimize the switching time

using Heisenberg dynamics, and the corresponding resul typi - .
. i ypically a factor of about 2 by using parallel pulses, it
[Eq. (52) and Eq.(54)] for XY dynamics. The direct parallel- can be speculated that for gates operating on many qubits or

pulse'sequence.E_c{44) f(.)r the three-bit encodeE was whole quantum computations, switching times could be re-

fo_und, however, it is poss_lble that a faste_r pulse sequence fcHuced by a much larger amount. Note also that the parallel

thlsﬂg];atef ?Ian _be foundl W'tp more_nlume_rmﬁ! effohrt. b pulses we have studied here represent only a small subset of
e following results for serial switching have been o possible time evolutions themselves, since we have been

found: There is an analog of the known circuit B@) for  oqyicted to very simple discretized pulses of up to three
CPF (cf. Fig. 3 for systems withXY coupling, which is 4o steps. Y P P P

given in Eq.(48). For Heisenberg coupling, we have proved "y e quantum circuits are very intuitive and provide an

that the known circui; EQ(G).irS] Optim“:’“ in the sens;a that”excellent framework for the theoretical study of quantum al-
CPF cannot be obtained with one “square-root-of-swap” g ithms and their connection to classical algorithms, the

gate. For the proof we invoked the se(U) of all product o resentation of quantum gates or whole computations as
states that are mapped onto product states by a quantum 9afg,je| pulse sequences may turn out to be more efficient for
U; P(U) helps to distinguish quantum gates modulo concats, , mber of physical implementations.
enation of single-qubit gates. The same tool was also used to
prove that the encodét for quantum error correction cannot
be generated with serial switching with fewer than four
“square-root-of-swap” gates. The same is true for the en- We would like to thank C.H. Bennett, A. Imamiog B.M.
coderE+ for the teleportation of one qubit. Terhal, and A.V. Thapliyal for interesting discussions. This

The results for the parallel-pulse XOR for isotropic work was supported by the Swiss National Science Founda-
Heisenberg interactions and the results for CPF and XOR fotion. D.P.D. acknowledges the funding under Grant No.
XY interactions, Eqsi42), (52), and(54), and for the three- ARO DAAG55-98-C-0041. G.B. acknowledges the hospital-
bit encoder Eq(44) were all found using the computer algo- ity and financial support from the IBM T.J. Watson Research
rithm described in Sec. IV. This algorithm searches for aCenter, where much of this work was completed.
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