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Physical optimization of quantum error correction circuits
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Quantum error-correcting codes have been developed to protect a quantum computer from decoherence due
to a noisy environment. In this paper, we present two methods for optimizing the physical implementation of
such error correction schemes. First, we discuss an optimal quantum circuit implementation of the smallest
error-correcting code~the three bit code!. Quantum circuits are physically implemented by serial pulses, i.e., by
switching on and off external parameters in the Hamiltonian one after another. In contrast to this, we introduce
a parallel switching method which allows faster gate operation by switching all external parameters simulta-
neously, and which has potential applications for arbitrary quantum computer architectures. We apply both
serial and parallel switching to electron spins in coupled quantum dots subject to a Heisenberg couplingH
5J(t)S1•S2. We provide a list of steps that can be implemented experimentally and used as a test for the
functionality of quantum error correction.@S0163-1829~99!03740-6#
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I. INTRODUCTION

Quantum computers are capable of efficiently solv
problems such as prime factoring1 or simulating other quan
tum systems,2 for which no efficient classical algorithm i
known. A quantum computer is a device that stores and p
cesses information which is physically represented in
quantum state.3 Typically, such a device contains a colle
tion of quantum two-state systems, e.g., spin-1

2 particles. The
state of each two-state system then represents a quantum
or qubit, the smallest indivisible unit of information in
quantum computer. Computations are driven by interacti
between the qubits, generating logic gates operating on th
A quantum gate operating onM qubits can be represented
a 2M32M unitary matrix. Usually, a computation or algo
rithm is split up into a series of elementary gate operati
involving only one or two qubits. In this representation,
gorithms are also called quantum circuits. It has been d
onstrated that there exist elementary two-qubit gatesU
which are universal when complemented with a sufficien
large set of single-qubit gates.4 This means that any quantum
algorithm can be split up into a quantum circuit which co
tains onlyU and single-qubit gates. Quantum circuits are
general not the most efficient way of implementing a qu
tum computation, as we will demonstrate in this paper.

First experimental realizations of quantum computat
using trapped ions,5 optical cavities,6 and NMR,7 involving
two or three qubits, have been reported. Contrary to al
these systems, solid-state implementations have the pote
for a large-scale quantum computer involving hundreds
thousands of qubits. In this paper, we will concentrate o
theoretical proposal to use coupled semiconductor quan
dots in which the spin of the excess electron on each
represents a qubit.8 Apart from electron spins in quantum
dots, a number of other solid-state systems have been
posed for quantum computation: Nuclear spins of donor
oms in silicon,9 Josephson junctions,10 d-wave Josephson
PRB 600163-1829/99/60~16!/11404~13!/$15.00
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junctions,11 and charge degrees of freedom in quantu
dots.12

The physical implementation of quantum computati
hinges upon the ability to find or design systems in wh
quantum phase coherence is maintained over long ti
compared to the duration of the typical controlled coher
operation. The discovery of quantum error-correcting co
has been a landmark in the effort to find methods to pro
a quantum computer from the decohering effects of a no
environment.13 The smallest quantum error-correcting co
for one qubit involving three code qubits has already be
implemented in NMR.14

In this paper, we present theoretical methods for find
an optimal implementation of three-bit error correction. T
optimization is understood here in terms of switching spe
and switching complexity. The former is mainly motivate
by the presence of decoherence which makes fast switc
desirable, while the latter can be necessary if the phys
implementation sets limits to the complexity of the switc
ing. The two optimization goals usually are in conflict wi
each other, i.e., a fast implementation usually require
complex switching mechanism while switching with
simple mechanism is slow. First, we will study the ‘‘simp
and slow’’ switching provided by quantum circuits, and t
to optimize it. Then, we will go on to ‘‘complex and fast’
switching, for which we introduce parallel~as opposed to
serial! pulses for the control parameters of the system, a
show that the parallel pulses allow faster switching than
rial pulses. We also introduce a numerical method for find
such parallel pulses for arbitrary gates and Hamiltonians.
note that in a similar approach, Sanderset al.15 use a genetic
algorithm to find optimized complex pulses to genera
quantum gates using an Ising-type Hamiltonian for optica
driven quantum dots coupled by dipole-dipole interactio
Our approach differs from this work in the underlyin
Hamiltonian ~i.e., the mechanism proposed for quantu
computation!; in addition, the parallel pulses we suggest a
11 404 ©1999 The American Physical Society
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PRB 60 11 405PHYSICAL OPTIMIZATION OF QUANTUM ERROR . . .
general pulses that are discretized in time, whereas the pu
in Ref. 15 are chirped Gaussian pulses.

Three-qubit quantum error correction is able to corr
either one bit flip or one phase flip error~correcting both
types of errors requires a code with at least five co
qubits13!. The operation of the scheme is shown in the qu
tum circuit, Fig. 1. First, all three qubits~represented by
horizontal lines! are initialized to the stateu0&, e.g., by po-
larizing the spins with a strong magnetic field. Then qu
one is rotated into an arbitrary stateuC&5Uu0&5au0&
1bu1&. The purpose of the quantum error correction sche
is to protect this state from external decoherence. In orde
do this, the stateuC& is encoded in the highly entangle
three-qubit state uCL&5E(uC&1u0&2u0&3)5au0&1u0&2u0&3
1bu1&1u1&2u1&3.

The encoded stateuCL& can then be subject to extern
noise causing a~partial! bit flip of one of the spins,uCL&
→exp(iesi

x)uCL&5uCL8&, without the information contained in
the encoded stateuCL& being lost. The stateuCL& is recov-
ered ~decoded! by applying the inverted encoding netwo
E215E†5E which is identical toE sinceE is Hermitian.
Then the qubits 2 and 3 are measured~for physical imple-
mentations of quantum measurements on spins in quan
dots, see Refs. 8 and 16–18!. If both qubits are in stateu1&,
then qubit 1 is flipped, otherwise it is left unchanged. T
restores the stateuC& in qubit 1, which then can be measure
in order to check the functionality of the scheme. It has
emphasized that the three-bit code is by far not the best c
for protecting a quantum computer from decoherence,
since it is the most simple code it seems to be suited for
first experiments which test the functionality of quantum
ror correction.

If we choose to correct phase errors instead of bit err
all three qubits have to be rotated about they axis by p/2
after the action of the encoder gateE, and back again before
the decoding step. These basis changes can be implem
by applying a homogeneous magnetic field6By along they
axis for a durationp\/2gmBBy . The encoded qubit has the
the form uCL&5au2&1u2&2u2&31bu1&1u1&2u1&3, where

FIG. 1. The circuit representation for three-bit quantum er
correction, where time is evolving from the left to the right. Fir
the three qubits~represented by the horizontal lines! are initialized.
The following unitary transformationU on qubit 1 prepares the
state uC&. The encoderE encodes the stateuC& in an entangled
state of all three qubits. In the next step,~simulated! decoherence
partly disrupts the state. After the decoding step~which is identical
to the encoding!, the qubits 2 and 3 are measured. If they are b
one, qubit 1 has to be flipped (C5sx), otherwise qubit 1 is left
unchanged (C51). If no more than one bit flip error occurred, th
resulting state in register 1 is againuC& despite the presence of th
decoherence. The same circuit can also be used to protect the
uC& against phase errors if, after the encoding step, each qub
rotated byp/2 about they axis and rotated back before the deco
ing.
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u6&5(u0&6u1&)/A2. We emphasize that the following con
siderations are applicable to both the bit and phase er
correcting codes.

For a first experiment one would probably want suf
ciently low noise such that the stateuC& is not destroyed by
‘‘natural’’ noise. One would then introduce bit flips ‘‘by
hand’’ by applying a random oscillatory magnetic field in th
x direction and then check whether those artificial errors
be corrected for.

For the sake of concreteness, we will apply our metho
to a system of coupled spinsSi with s5 1

2 ~each representing
a qubit!, subject to isotropic spin-spin interaction and loc
magnetic fields. With this model we capture the physics
electrons in coupled quantum dots.8 We emphasize that a
generalization to other systems with different Hamiltonia
is straightforward and does not require a new method
optimizing the switching process.

Our paper is organized as follows. In Sec. II, we introdu
the formalism that we use to describe the dynamics of e
tron spins in coupled quantum dots and other Heisenb
systems. The methods developed in Secs. III and IV, incl
ing the use of parallel pulses, are not special to the Heis
berg Hamiltonian Eq.~1!. As an example, we give som
results for transversely coupled spins (XY model! in Sec. V,
because they are encountered when electronic spins
coupled using cavity QED.19 The results of Secs. III–V are
independent of the mechanisms that are involved in th
physical implementation—they are derived under the
sumption that the model Hamiltonian Eq.~1! @or Eq.~46!# is
exact. In Sec. VI, we discuss some limitations and neces
conditions for the validity of this approach. Finally, in Se
VII, we give a detailed list of instructions for both serial an
parallel switching which must be followed in order to impl
ment three-qubit quantum error correction in a system
spins subject to Heisenberg interactions in experiment.

II. MODEL

In the system we consider, the qubit is represented by
spin-12 state of the excess electron in a quantum dot, i.e.,
‘‘spin up’’ state u↑& is identified with the logic stateu0&
[u↑& and likewiseu1&[u↓&, where the quantization axis i
chosen along thez axis,szu↑&51u↑& andszu↓&52u↓&.

The excess electron spins in a pair of quantum dots wh
are linked through a tunnel junction can be described by
Heisenberg Hamiltonian8,16

H~J,Bi ,Bj !5JSi•Sj1Bi•Si1Bj•Sj , ~1!

whereSi5s i /2 describes the~excess! spin 1
2 on dot i andJ

denotes the exchange energy, i.e., the energy gap betw
the spin singlet and triplet states.8 This effective Hamiltonian
can be derived from a microscopic model for electrons
coupled quantum dots,16 see also Sec. VI. It is found thatJ
can be changed using a variety of external parameters. T
ing the gate voltage between the coupled dots changes
height of the tunneling barrier and therefore directly altersJ.
Note that J is exponentially sensitive to barrier change
Also, applying a magnetic field perpendicular to the 2DE
within which the quantum dots are defined greatly influen
the exchange couplingJ and can even result in a sign chan
of J for unscreened Coulomb interaction.16 Some coupling of
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11 406 PRB 60BURKARD, LOSS, DiVINCENZO, AND SMOLIN
the spinSi to a local external magnetic fieldBi is also nec-
essary for quantum computation, and has been include
the Hamiltonian Eq.~1!. Note that we have included th
factorgimB in the definition of the magnetic fieldBi , where
gi is theg factor for doti andmB is the Bohr magneton. The
physical realization of the field gradients or inhomogene
g factors required for the local magnetic fields is challengi
but there exist several possibilities for generating them.16,18

From the Hamiltonian Eq.~1! we can generate the follow
ing set of quantum gates:

Ui~f!5exp~ i f•Si !, ~2!

S[S~ i , j ![Uswap
1/2 5e2 ip/8 expS i

p

2
Si•Sj D . ~3!

The single-qubit operationUi(f) for the spinSi is generated
by applying a magnetic field pulseB(t) at the location of the
spinSi such that*0

t dtB(t)5f. Similarly, the ‘‘square-root-
of-swap’’ gate8 ~which we denote byS in the following! is
obtained by switching the interactionJ(t) between the spins
Si andSj such that*0

t dtJ(t)5p/2. We introduce the circuit
notation forS in Fig. 2~a!. Note thatUi(f) is 4p-periodic in
f and 2p-periodic up to a global phase21, which for our
purposes is not important. Equations~2! and ~3! are a uni-
versal set of gates. Other powersUswap

a of the swap gate
Uswap5S25e2 ip/4 exp(ipSi•Sj ): (uab&5ua& i ^ ub& j ),

u00&°u00&, u01&°u10&, u10&°u01&, u11&°u11&, ~4!

can also be generated by the Hamiltonian Eq.~1!, but are not
necessary for universality, onceS5Uswap

1/2 is included.
We can use ‘‘square root of swap’’ to generate the c

trolled phase flip gateUCPF:

u00&°u00&, u01&°u01&, u10&°u10&, u11&°2u11&, ~5!

with the quantum circuit depicted in Fig. 3~time evolving
from the left to the right!, or formally,8

UCPF5e2 i (p/2)ei (p/2)S1
z
e2 i (p/2)S2

z
SeipS1

z
S, ~6!

which in turn is related to the XOR gateUXOR @Fig. 2~b!#:

u00&°u00&, u01&°u01&, u10&°u11&, u11&°u10&, ~7!

by the basis change

UXOR5VUCPFV
†,

~8!

V5exp~2 ipS2
y/2!.

Since XOR with one-bit gates is a universal quantum ga4

this confirms that Eqs.~2! and~3! are a universal set of gate
In what follows, we will use the XOR gate to construct th
gateE that performs the encoding for three-qubit quantu

FIG. 2. Circuit notation of two universal gates:~a! The ‘‘square-
root-of-swap’’ ~S! gate,~b! the XOR gate.
in

s
,

-

,

error correction, as shown in Fig. 1, and can be obtained
two successive XOR gates@Fig. 4~a!#,

E5UXOR~1,3!UXOR~1,2!. ~9!

It has to be noted that the quantum gate which performs
encoding must only be equal toE in the subspace spanned b
the statesu000& and u100&, because it is always guarantee
that the qubits 2 and 3 are initially in stateu0&. However, this
is not true for the decoding gate which must be equal toE on
the entire Hilbert space since it acts on an unknown stat

The very similar quantum gate@Fig. 4~b!#

ET5UXOR~2,3!UXOR~1,2! ~10!

has the nice property that it can be used for implementing
quantum teleportation of one qubit as a quantu
computation.20 It is clear that our analysis of the XOR ga
can also be used for implementing this gate.

III. SERIAL PULSE MODE

In the foregoing discussion we made clear why it is d
sirable to generate certain quantum gates or networks suc
XOR, E, andET , and that it is indeed possible to produc
them using a system of spins that are mutually coupled
the Heisenberg interaction Eq.~1!. In fact, we know that we
can generate every quantum gate using those interact
since Eqs.~6! and~8! explicitly tell us how to produce XOR,
which together with the set of single-qubit operations for
a universal set of gates for quantum logic.4,21We now go one
step further and ask ourselves which is themost efficientway
of implementing a certain quantum gate. More precisely,
are interested in minimizing the switching timets for the
desired quantum gate. This kind of optimization is cruc
because the error probability per gate operation is prop
tional to the switching time,e5ts /tf , wheretf denotes the
dephasing time of the system. Other criteria for optimizat
can be added, if, e.g., one kind of elementary task~say, spin-
spin interactions! is much harder to perform than anoth
~such as single-qubit rotations!, or if the switching of param-
eters turns out to be difficult.

For the purpose of finding an optimal implementation
quantum gates, we first define which set of elementary

FIG. 3. A circuit representation for the conditional phase fl
(CPF), Eq.~5!, as given in Eq.~6!. The single qubit rotations are

F5eipSz
andG5ei (p/2)Sz

. The CPF is related to the XOR gate E
~7! by the basis transformation Eq.~8!.

FIG. 4. The quantum circuits for~a! the three-bit encoderE, cf.
Eq. ~9!, and~b! the teleportation encoderET , cf. Eq. ~10!.
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PRB 60 11 407PHYSICAL OPTIMIZATION OF QUANTUM ERROR . . .
erations we are going to use. We will call this set the se
pulse operations, since they can be achieved by ‘‘switch
on’’ exactly one of the parameterspW 5(J,B1 ,B2) in the
Hamiltonian Eq.~1! for some finite time. Clearly, XOR doe
not belong to this class of gate operations—it takes
whole sequence Eq.~6! to produce it. Note that the definitio
of serial ~and later parallel! pulse operations depends on t
Hamiltonian and on how we parametrize it. The distincti
only makes sense if serial pulse operations correspon
physically switching on and off a part of the device, e.g.,
magnetic field at the location of one of the spins. We will u
the serial pulse operations defined in Eqs.~2! and ~3!.

A. XOR gate

As a first example for our efficiency analysis, we take t
sequence Eq.~6! for XOR. We do not try to optimize the
length of the single-qubit pulses. Instead we investig
whether it really takes two instances ofS or if XOR can be
performed with oneS plus single-qubit operations. This i
most reasonable if coupling two qubits is more costly~e.g.,
due to decoherence! than operating on a single qubit. Thu
our question is whether

S15@u21^ u22#S@u11^ u12# ~11!

is equal toUXOR for some choice of single-qubit gatesunm
5Um(fnm) or not. We will shortly prove that the answer
negative and it indeed takes at least twoS to produce XOR,
but first we introduce the method we developed in order
prove this kind of ‘‘no-go’’ theorem. The idea is that ver
often quantum gates can be distinguished by their ability
produce entanglement. This property of quantum gates
the advantage that it is invariant under concatenation w
arbitrary single-qubit gates.

We denote the product~pure! states in our two-qubit Hil-
bert space H5H 2

^ 2 by P5$uC&PHu uC&5uw&
^ ux&; uw&,ux&PH2%.

22 Here, H2 denotes the single-qub
Hilbert space with basisu0&,u1&. A state uC&¹P is called
entangled. For every quantum gate~unitary matrix! U acting
on H, we define the subsetP(U)5$uC&PPu UuC&
PP%#P of product states which are mapped onto a prod
state byU. The idea is now simply that two quantum gat
U1 and U2 which have differentP sets,P(U1)ÞP(U2),
obviously must be different:U1ÞU2 ~note that this implica-
tion cannot be reversed!. TheP set of XOR is

P~UXOR!5$u0f&,u1f&,uf6&uuf&PH2%, ~12!

where we used the notationu6&5(u0&6u1&)/A2.
In order to findP(S), it is useful to convince oneself tha

the ‘‘square root of swap’’ operates on a product stateufx&
according to the very intuitive formula

Sufx&5
1

11 i
~ ufx&1 i uxf&), ~13!

by first checking it for the basis of products ofu0& and u1&,
and then using that the right-hand side of Eq.~13! is linear in
uf& and ux&. From this rule we conclude that all produ
states become entangled byS unless they are the product o
two equal single-qubit states,
l
g

e

to
e
e

e

e

o

o
as
h

t

P~S!5$uC&PPu'uf&PH2 : uC&5uff&%. ~14!

For any choice of theunm in Eq. ~11!, we can construct the
stateu0& ^ u12

† u11u1& which is in P(UXOR) but not inP(S1)
sinceS1uC& is entangled. Therefore,P(S1)ÞP(UXOR) and
consequentlyS1ÞUXOR for any choice ofunm . Thus, the
sequence given in Eq.~6! is optimal in the sense that bot
‘‘square root of swap’’ operations are really needed. Allo
ing arbitrary powers ofUswapdoes not reduce the number o
two-qubit gates required for XOR either, since oneUswap

a ,
wherea is not an even multiple of12 , cannot act as a perfec
entangler which is required for the XOR gate. For comple
ness, we give here the generalization of Eqs.~13! and ~14!
for arbitrary powers of swap,

Uswap
a ufx&5e2 ipa/2FcosS pa

2 D ufx&1 isinS pa

2 D uxf&G ,
~15!

P~Uswap
a !5HP~S!, aÞ integer,

P, a5 integer.

It is interesting to check whether XOR could be pe
formed with oneSgate only if we know that the target qub
is initially in the stateu0&. If this were the case, one coul
save twoSgates in the encoding step~this is not true for the
decoding step!. However, one finds that even in the subspa
spanned byu00& and u10&, the circuit Eq.~11! cannot repro-
duce an XOR gate, because for any choice of single-q
rotations, u00&PP(UXOR) and/or u10&PP(UXOR) become
entangled byS1.

B. Three-bit encoderE

Regarding the three-bit encoderE, Eq. ~9!, our result tells
us that the straightforward implementation ofE requires
‘‘square root of swap’’ four times, i.e., twice for every XOR
This does not mean that there cannot be a more effic
implementation ofE than given in Eq.~9!. We can try to
implementE using the serial pulse gate set instead of XOR
It turns out that this is impossible with fewer than fourS
gates. The analysis still relies on the previously introduceP
set but is slightly more complicated than the one for XO
since in the case of three qubits each gateScan be applied to
one of three possible pairs of qubits.

It is clear that just one use ofS~plus arbitrary single-qubit
operations! cannot produceE,

U15@u21^ u22^ u23#S~ i , j !@u11^ u12^ u13#ÞE, ~16!

for any choice ofunm for the simple reason thatE is able to
entangle the qubit 1 with 2, and also 1 with 3, whereasS( i , j )
can only entangle the qubitsi and j with each other~at most
one pair!.

It is less obvious that none of the sequences

U25U (3)S~k,l !U (2)S~ i , j !U (1) ~17!

with U (n)5un1^ un2^ un3 can reproduceE. The idea of the
following argument is the same as for the one for XOR: W
are seeking a stateuC& that becomes entangled when act
on with the operatorU2 given in Eq.~17! but remains unen-
tangled under the operationE, i.e., uC&PP(E)\P(U2). This
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11 408 PRB 60BURKARD, LOSS, DiVINCENZO, AND SMOLIN
is the case ifuC& is entangled byS( i , j ) and not disentangled
by S(k,l ). We can exclude the case where (k,l )5( i , j ) or
(k,l )5( j ,i ), using the same argument as forU1, defined in
Eq. ~16!. In the remaining cases it is clear that ifuC&
PP(E) is chosen such that it is entangled byS( i , j ), then it
will not be disentangled again byS(k,l ), and we are done
Since Eq.~17! is invariant wheni and j ~or k and l ) are
interchanged, we can always arrange thati, j, andk are mu-
tually different, andl 5 i . In the case wherej Þ1, the state
uC&5u0& i ^ u1 j

† u1i u1& j ^ u0&kPP(E) is not in P(U2), be-
cause the entanglement between qubitj and the qubitsi and
k created byS( i , j ) cannot be undone byS( i ,k). For j 51 we
choose the stateuC&5u1i

† u1 j u1& i ^ u0& j ^ u0&kPP(E) with
the same property. This concludes our proof that there is
circuit U2 of the form Eq.~17! which is equal toE. Note that
this conclusion is independent of the choice of single-qu
operations inU2, hence the inequality we proved concer
all circuits of the typeU2.

As an example, consider the circuit

U25U (3)S~2,3!U (2)S~1,3!U (1), ~18!

for which i 53, j 51, andk52. By rewritingU2 in the form
shown in Fig. 5,

U25@v ^ V~2,3!#S~1,3!U (1), ~19!

with v5u31u21 and V(2,3)5(1^ u32^ u33)S(2,3)(1^ u22
^ u23), and using Eq.~13!, we observe that the product sta
uC&5u0&1^ u0&2^ u13

† u11u1&3PP(E) is mapped to

U2uC&5
1

11 i
~vua&1^ Vud&231 ivub&1^ Vug&23).

~20!

The unitarity ofu11 implies thatua&5u11u0& is orthogonal to
ub&5u11u1&, and ug&5u12u0& ^ ua& is orthogonal to ud&
5u12u0& ^ ub&. The gatesv andV are also unitary, thusvua&
is orthogonal tovub& andVug& is orthogonal toVud&, which
implies thatU2uC&, Eq. ~20!, is an entangled state betwee
qubuts 1 and the pair of quibits 2 and 3. From this we c
clude that uC&PP(E) is not in P(U2), and thereforeE
ÞU2.

Next, we develop a proof that even with the use of threS
gates,E cannot be implemented. Since eachScan couple one
of three possible pairsi k , j k51, . . . ,3, i kÞ j k , of qubits,
there are 33527 sequences including three ‘‘square-root-
swap’’ ~S! gates, having the form

U35U (4)S~ i 3 , j 3!U (3)S~ i 2 , j 2!U (2)S~ i 1 , j 1!U (1), ~21!

FIG. 5. Quantum circuits of the type described in Eq.~18!.
Dashed lines represent the grouping in Eq.~19!.
o

it

-

-

with arbitrary single-qubit gatesU (n)5un1^ un2^ un3. First
we observe that if (i 2 , j 2)5( i 3 , j 3) or (i 2 , j 2)5( j 3 ,i 3), then
we can apply the same argument as for circuits of the t
U2 with ( i , j )5( i 1 , j 1) and (k,l )5( i 2 , j 3). In the case where
the first twoS gates~but not the third one! act on the same
pair of qubits, (i 1 , j 1)5( i 2 , j 2) or (i 1 , j 1)5( j 2 ,i 2), we note
that either u0& i 1

u0& j 1
u0&kPP(E) or u0& i 1

u0& j 1
u1&kPP(E),

where kÞ i 1 , j 1, becomes entangled byU3. Therefore,U3
ÞE if the first two or the last twoS gates operate on th
same pair of qubits. In all other cases, we can label the th
qubits with three distinct numbersa, b, andc between 1 and
3 such that S( i 1 , j 1)5S(a,b), S( i 2 , j 2)5S(a,c), and
S( i 3 , j 3)5S(b,x), with x5a or x5c. The stateuC&, de-
fined as

u0&a^ u1b
† u1au0&b^ u1c

† u2c
† u2au1au1&c ~ if a51!,

u1a
† u1bu0&a^ u0&b^ u1c

† u2c
† u2au1bu1&c ~ if b51!, ~22!

u1a
† u2a

† u2cu1cu0&a^ u1b
† u2a

† u2cu1cu0&b^ u1&c ~ if c51!,

is chosen such thatuC&PP(E) and has the property tha
S(a,b)U (1)uC& is unentangled, but in
S(a,c)U (2)S(a,b)U (1)uC& there is entanglement betwee
the qubitsa and c. Finally, theS(b,x) gate cannot remove
the entanglement; in the final stateU3uC&, either the qubita
~if x5c) or the qubitc ~if x5a) is entangled with the othe
two qubits, thusuC&¹P(U3). SinceuC&PP(E), this con-
cludes our proof of the statementU3ÞE. In order to illus-
trate our proof, we apply it to the specific example (a52,
b51, c53, x5c53)

U35U (4)S~1,3!U (3)S~2,3!U (2)S~1,2!U (1), ~23!

which can be written in the form~shown in Fig. 6!

WS~2,3!U (2)S~1,2!U (1), ~24!

whereW is a gate that does not couple qubit 2 with any oth
qubit. Applying this operator to the stateuC&5u0&1

^ u12
† u11u0&2^ u13

† u23
† u22u11u1&3 proves thatU3ÞE for any

choice of the U (n), because U3uC& is entangled,
uC&¹P(U3).

Strictly speaking, the gate which is used for encoding
qubit has to be equal toE only in the subspace spanned b
u000& and u100&, since it is guaranteed that the qubits 2 a
3 are prepared in theu0& state initially ~note that this is not
the case for the decoding step since the error syndrom
unknown when the state is decoded!. This could in principle
allow a more optimal implementation of the encoder circ

FIG. 6. Quantum circuits of the type described in Eq.~23!.
Dashed lines represent the grouping in Eq.~24!.
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than the one which we have described above. However
find that u000&PP(E) and/or u100&PP(E) become en-
tangled by any~nontrivial! circuit with three or fewerS
gates. This statement is proven by exhausting all poss
cases. It implies that even the encoding step requires at
four S gates.

C. Teleportation encoderET

Now we consider the teleportation encoder gateET , Eq.
~10!, which is shown in Fig. 4~b!. The gateET consists of
two XOR gates, but in contrast toE these two XORs are
arranged in a less symmetric way. As a consequence,P(ET)
is only a subset of~and not equal to! P(E), since, e.g.,u0
10& is in P(E) but not in P(ET). Again, we can ask
whether it is feasible to assembleET using fewer than the
four Sgates that are used when we simply combine Eqs.~6!,
~8!, and~10!. The answer is again negative. The proof of th
statement is similar to the one given forE. It is again clear
that a circuit involving oneScannot entangle any pair of th
three qubits, as it should in order to reproduceET .

A circuit of the formU2, Eq. ~17!, involving two S gates
cannot be equal toET either. We first note that ifS( i , j )
5S(k,l ), thenU2 cannot produce entanglement between
third qubit mÞ i , j and i or j, and thusU2ÞET , becauseET
can entangle any pair of qubits. IfS( i , j )ÞS(k,l ), we find
that eitheruC&5u0& i u0& j u0&kPP(ET) or uC&5u1& i u0& j u0&k
PP(ET), where kÞ i , j , is entangled by the gateS( i , j ).
Since this entanglement cannot be undone byS(k,l )
ÞS( i , j ), the stateU2uC& is entangled. Thus, we have foun
a state which is inP(ET) and not inP(U2) and therefore
U2ÞET .

We finally explore whether a circuitU3 containing threeS
gates as in Eq.~21! can reproduceET . For S( i 2 , j 2)
5S( i 3 , j 3) we can see that this is not the case by apply
the same argument as above for a circuit with twoS. In the
opposite case, S( i 2 , j 2)ÞS( i 3 , j 3), either the state
u0& i 1

u0& j 1
u0&kPP(ET) or the stateu0& i 1

u0& j 1
u1&kPP(ET),

with kÞ i 1 , j 1, is entangled byS( i 2 , j 2) or S( i 3 , j 3). Because
S( i 3 , j 3)ÞS( i 2 , j 2), entanglement produced byS( i 2 , j 2) is
not undone byS( i 3 , j 3) and therefore we have found a sta
in P(ET) which is not inP(U3), completing the proof for
U3ÞET for the case of threeS gates. This finally implies
that, like E, the teleportation encoderET cannot be con-
structed using fewer than fourS gates.

D. Numerical search

The method that was presented for proving inequali
between two gatesU1 andU2 involving the setsP(U1) and
P(U2) has the advantage that it yields rigorous results
though we do not know the details about the involved sing
qubit operations. Sometimes, however, proofs beco
lengthy and rather unsystematic, so we would like to hav
better tool for the complex cases. Unfortunately, we do
have such a tool which is capable of giving rigorous pro
for inequalities, like theP-set method. However, we hav
developed a computer algorithm that searches for theM qu-
bit gateUg in the set

U$U (n)%5U (N11)XNU (N)
•••X2U (2)X1U (1), ~25!
e

le
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e
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s

l-
-
e
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t
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where theXn are arbitrary but fixed 2,3, . . . ,M qubit gates
and U (n)5un1^ •••^ unM are arbitrary and variable prod
ucts of single-qubit gates~severalunk can be unity!. A result
of a numerical search is a list$unk% of single-qubit gates,
which satisfy the equationU$U (n)%5Ug . The computer al-
gorithm can therefore~in the case of a successful run!
‘‘prove’’ equalities, but one or several unsuccessful runs
not constitute a proof that the gateUg cannot be constructed
with a given sequenceXn , n51, . . . ,N. Note that the situ-
ation is thus exactly opposite to theP-set method. The op-
eration of the computer algorithm consists of minimizing t
function

f ~$unk%,a!5ieiaU$unk%2Ugi2 ~26!

numerically in the space of all possible combinations
single-qubit gatesunk , where the matrix norm is given by
iAi25Tr(A†A). The single-qubit gatesunk are parametrized
by the three angleswnk , unk , andcnk according to the pre-
scription

unk5S cos~unk! 2ei (wnk1cnk) sin~unk!

eiwnk sin~unk! eicnk cos~unk!
D . ~27!

Including the global phasea, we count 3M (N11)11 real
parameters. If the numerical search yields a minimum

f ~$unk%,a!50, ~28!

then the corresponding sequence Eq.~25! is identical toUg .
The numerical results forUg5UXOR and Xn5S support

the analytical result, i.e., there is no circuit forN51.
For N52, we find a vast number of circuits other than E
~6! combined with Eq.~8!. For Ug5E,ET , we do not find
a solution forN,4, as guaranteed by the result of our pr
vious analysis. As previously remarked, the gate for the
coding must be equal toE only in the subspace spanned b
u000& and u100& ~the gate for decoding has to be equal toE
on the entire three-qubit Hilbert space!. A numerical search
with this relaxed constraint was performed by minimizin
the function f̃ ($unk ,a%)5uu(eiaU$unk%2E)Puu2, where P
5u000&^000u1u100&^100u denotes the projector onto the re
evant subspace. The numerical analysis confirmed our ea
formal result thatUPÞEP if U involves fewer than fourS
gates.

The impossibility of reducing the number ofS gates re-
quired for E led us to the idea that it might be useful
replaceSby a three-qubit gate which is directly generated
the three-qubit HamiltonianH35J(S1•S21S2•S31S3•S1),
describing three simultaneously interacting spins with eq
coupling constantJ. We find that the analog ofS for three
spins is the gate

S35e2 ip/3 expS i
4p

9

H3

J D , ~29!

which is obtained when the interactionJ is switched on for
time t54\p/9J. In analogy to Eq.~13!, we can express the
action ofS3 on product states as
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S3ua1a2a3&52eip/3ua1a2a3&1
eip/6

2A3
(

sPS3

uas1as2as3&,

~30!

where the second term is the symmetrization of the in
state (S3 denotes the permutation group of three objec!.
WhereasS451, we find thatS3

3521. In exact analogy to the
‘‘square-root-of-swap’’ gate,P(S3) consists of states tha
have the formua& ^ ua& ^ ua&, ua&PH2. We can show thatE
is not equal to any gate involving only one or twoS3. The
case of threeS3 was studied numerically, but no circuit rep
resentation forE was found.

IV. PARALLEL PULSE MODE

Operating a system described by the HamiltonianH(pW )
with parameterspW 5(J,B1 ,B2) given in Eq.~1! as a quantum
gate in the serial pulse mode is not optimal in the followi
sense: If several or all parameterspW can be changed simul
taneously, we expect that a given quantum gate, say X
can be performed faster than by changing only one param
at a time as in the serial pulse mode. Generally, all par
eters pW are arbitrary functions of time such that the tim
evolution operator after timet is a functional inpW given by
the time-ordered exponential

Ut@pW ~t!#5T expS i

\E0

t

H„pW ~t!… dt D . ~31!

Given some quantum gateUg , we would now like to solve
the integral equationUt@pW (t)#5Ug for the functionspW (t).
For unrestricted timet and unbounded functionspW (t) we
immediately know how to construct such a solution by us
the known universal set of gates Eqs.~2! and~3! in the serial
pulse mode. In general, this is not the optimal solution
Ut@pW (t)#5Ug . An optimal solution is given by a set o
bounded functionsupi(t)u,Mi requiring minimal timet for
a fixed set of boundsMi . Since it is not feasible to find an
optimal solution among all such bounded functions, we w
restrict ourselves to piecewise-constant functions. Splitt
up the time intervalt into N>1 parts, we write

UN~pW (1), . . . ,pW (N);f!

5eifUN~pW (N)!•••U2~pW (2)!U1~pW (1)!,

~32!

Uk~pW (k)!5exp$2p iH ~pW (k)!%.

For every time ‘‘slice,’’ we have the freedom to choose
new set of parameterspW (k)5(J(k),B1

(k) ,B2
(k)). Note that we

allow for an arbitrary total phasef. By discretizing the
problem in this way we have reduced the free parameter
the problem from theP functionspi(t) to PN real param-
eterspi

(k) , i 51, . . . ,P, k51, . . . ,N, whereP denotes the

number of parameterspW @in the case of the Heisenber
Hamiltonian Eq.~1!, P57]. The functionspi(t) are related
to the discrete parameterspi

(k) through the relation
t

R,
ter
-

g

f

l
g

in

pi~ t !5
2p\

tk
pi

(k) , tk21<t,tk , ~33!

wheretk5tk2tk21 and t050, tN5t; the time steptk has
been absorbed into the dimensionless parameterspi

(k) . Once
the problem is discretized, it becomes suitable for numer
treatment using the minimizer algorithm presented in S
III, minimizing the function iUg2UN$pi

(k) ;f%i2 with re-
spect to thePN11 parameterspi

(k) andf. We try to find a
solution to UN$pi

(k) ;f%5Ug starting fromN51 and then
increasingN in unit steps. In practice,N is limited by the
available computational resources.

One approach to the problem would then be to fixN and
t i ~e.g., use time steps of equal size,tk5t5t/N). Then, the
constraintupi(t)u,Mi implies upi

(k)u,tkM i /2p\. In the fol-
lowing, however, we solveUN$pi

(k) ;f%5Ug with fixed N
~chosen as small as possible! without any constraint forpi

(k)

and then calculatet for given boundsMi using the formula
@cf. Eq. ~33!#

t5 (
k51

N

tk5 (
k51

N

max
i

S 2p\

Mi
upi

(k)u D . ~34!

The parameterpi
(k) with the largestpi

(k)/Mi ratio determines
the switching time for thekth step.

A. XOR gate

We now want to use this method for finding a pulse s
quencepW (k) that generates the quantum XOR gate, Eq.~7!.
Since XOR is the same as the conditional phase flip (CP
up to the basis change Eq.~8!, we will first try to generate
CPF. In the Sz basis, the Heisenberg Hamiltonia
H(J,B1 ,B2), Eq. ~1!, can be written in the following matrix
form:

1

2 S B1
z1B2

z B2
x2 iB2

y B1
x2 iB1

y 0

B2
x1 iB2

y B1
z2B2

z2J J B1
x2 iB1

y

B1
x1 iB1

y J B2
z2B1

z2J B2
x2 iB2

y

0 B1
x1 iB1

y B2
x1 iB2

y 2B1
z2B2

z

D ,

~35!

where an irrelevant constant energy contribution is omitt
We find analytically that CPF can be obtained in one tim
step (N51), i.e. for constant parameterspW ,

UCPF5exp@2p iH ~J,B1 ,B2!#,

J5k2n22m2 1
2 ,

B15 1
2 ~0,0,n1 1

2 1Ak22J2!, ~36!

B25 1
2 ~0,0,n1 1

2 2Ak22J2!,

f52p~n1 1
2 !,

where n and m are arbitrary integers andk is an integer
satisfying 2uku>un12m1 1

2 u. This solution is obtained by
setting Bi

x5Bi
z50 and diagonalizing the resulting Hami

tonian matrix
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H5
1

2 S A 0 0 0

0 2J1B J 0

0 J 2J2B 0

0 0 0 2A

D , ~37!

whereA5B1
z1B2

z and B5B1
z2B2

z . The conditional phase
flip CPF is invariant under the basis change that diagonal
Eq. ~37!, and we can then solve the equatio
exp(if)exp(2piH)5UCPFin the basis where bothH andUCPF
are diagonal. This yields the four equationsep iA5e2p il1

5e2p il252e2p iA5e2 if, where l65(2J6AJ21B2)/2
and 6A/2 are the eigenvalues ofH. From these four equa
tions we obtain the result Eq.~36! for f, A5B1

z1B2
z , B

5B1
z2B2

z , andJ. Applying the basis changeV from Eq. ~8!
to these solutions, we can build XOR with a total ofN53
steps. The integersk, m, andn can be chosen such that th
switching time Eq.~34! is minimal for a given set of con
straintsMJ , MB1

, MB2
. In the specific case where all con

straints are equal toM, we find that the solution fork51,
m5n50,

J5 1
2 , B1

z5 1
4 ~11A3!, B2

z5 1
4 ~12A3!, ~38!

has the shortest switching time,

tCPF,p5
2p\

4M
~11A3!50.683

2p\

M
, ~39!

less than half the time which is used for the serial pu
quantum circuit Eq.~6!, tCPF,s51.532p\/M . Note that
since the coupling is isotropic, the same gate~in a rotated
basis! can be achieved with a magnetic field along any
sired direction. In order to obtain the XOR gate, we m
spend in addition twice the time 0.2532p\/M for the basis
changeV, Eq. ~8!. The total switching time is then

tXOR,p5
2p\

4M
~31A3!51.183

2p\

M
, ~40!

about 59% of the time required for the serial pulse quant
circuit, Eq. ~6!, including the change of basis Eq.~8!,
tXOR,s5232p\/M . Of course, the basis change appli
here is again a ‘‘serial pulse’’ action and therefore not op
mal. We therefore study Eq.~32! directly for the XOR gate,
without using the CPF gate. It turns out that no soluti
exists forN51. ForN52 our optimizer algorithm finds the
numerical solution

UXOR5eif exp@2p iH ~pW (2)!#exp@2p iH ~pW (1)!#, ~41!

with the parameter values23

k J(k) B1x
(k) B2x

(k) B1y
(k) B2y

(k) B1z
(k) B2z

(k)

1 0.187 20.025 0.464 0.205 0.195 20.420 0.395
2 0.617 20.220 0.345 20.384 0.244 0.353 0.108

~42!

and the global phasef520.8481p. The total switching
time for equal bounds is in this casetXOR,p5(0.4643
10.6170)2p\/M51.081332p\/M , compared totXOR,s
5232p\/M for the serial switching. The numbers in bold
face in Eq.~42! indicate which parameter limits the switch
es

e

-
t

-

ing time in each step. The solution Eq.~42! appears to be a
unique optimum for the caseN52.

B. Three-bit encoderE

We can further parallelize the three-bit encoderE, Eq.~9!.
Instead of concatenating two XOR gates~which may or may
not be produced using parallel pulses!, we now try to find a
more efficient parallel pulse sequence forE, given a system
of three qubits which exhibit pairwise couplings among ea
other that can all be switched on simultaneously. The Ham
tonian for this three-spin system can be written as

H5 (
1< i , j <3

Ji j Si•Sj1(
i 51

3

Bi•Si . ~43!

We find that there is a representation of the three-bit e
correction encoderE which consists of three parallel pulse
only, instead of the four which it takes to perform two s
quential XOR gates. The following parallel pulse sequen
producesE up to a global phasef5p/2:

k J12
(k) J23

(k) J13
(k) B1x

(k) B2x
(k) B3x

(k)

1 0.0000 8.2500 0.0000 1.1153 6.1737 6.173
2 20.9256 25.3608 0.7863 5.7603 5.2422 1.7475
3 0.0000 21.7500 0.0000 0.43453.5255 3.5255
k B1y

(k) B2y
(k) B3y

(k) B1z
(k) B2z

(k) B3z
(k)

1 21.6737 20.2263 0.2262 1.1153 1.464921.4649
2 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
3 2.1709 1.4118 1.4118 0.4345 1.2560 1.25

~44!

For equal bounds the total switching time oftE,p517.54
32p\/M is much larger than the four-pulse time 2tXOR,p
52.16332p\/M . Note that a better three-pulse solutio
was not found, but cannot be excluded.

V. ANISOTROPIC SYSTEMS

Systems where the spin-spin coupling is anisotropic
not described by the Heisenberg Hamiltonian Eq.~1! that we
studied as a generator for quantum gates in the previous
tions. In the two most notable cases, the Ising and theXY
systems, it is known that universal quantum computation
possible. In the case of a system described by the Is
HamiltonianHI5JS1

zS2
z and a homogeneous magnetic fie

in thez direction, there is a particularly simple realization
the CPF gate with constant parameters, namelyUCPF

5exp@ip(122S1
z22S2

z14S1
zS2

z)/4#.8 One might be tempted by
this to ‘‘transform’’ the Heisenberg interaction Eq.~1! into
an Ising interaction by adding time-dependent fieldsH0(t)
5B1(t)•S11B2(t)•S2 to the coupling HamiltonianV(t)
5J(t)S1•S2 such that the coupling in the interaction pictur
VI(t)5U(t)V(t)U(t)†, with U(t)5T exp„i *0

t H0(t)dt…,
would be identical to the Ising couplingVI(t)5HI , or even
to switch the coupling off and on using this method, i.
VI(t)50 for a certain choice ofH0(t). It turns out that this
is impossible, since the ‘‘transformed’’ coupling must ha
the form

VI~ t !5J~ t !S1•@R~ t !S2#, ~45!
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whereR(t) is a time-dependent rotation matrix. ForJÞ0,
this clearly excludes the complete ‘‘switching off’’ of th
interaction. Furthermore, the coupling Eq.~45! is still isotro-
pic at every instantt.

In spite of the impossibility of using a Heisenberg syste
as an effectiveXY ~or Ising! system by adding time
dependent fields, there areXY systems in nature which hav
been proposed for quantum computation.19 In the case of
Ising systems we have seen above that there is a very si
prescription for generating the XOR gate. We devote the
of this section to demonstrating that XOR can also be
tained withXY coupling. For two spins withs5 1

2 , the XY
Hamiltonian is given by

HXY5J~S1
xS2

x1S1
yS2

y!5
J

2 S 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

D , ~46!

where for the matrix representation we chose theSz basis.
The corresponding time evolution operator is

UXY~f5Jt!5exp~ i tH XY!5S 1

eifSx

1
D . ~47!

There is a qualitative difference between two qubits coup
via anXY and those coupled by a Heisenberg interaction
is impossible to generate powersUswap

a (0,a,1) of the
swap gate Eq.~4! with only one use ofUXY(f) together with
single-qubit operations. In particular, this is impossible
the ‘‘square-root-of-swap’’ gateUswap

1/2 . In spite of this, we
found that the CPF gate can be produced by the serial-p
sequence

UCPF5eip/4e2ipn1•S1/3e2ipn2•S2/3

3UXY~p/2!eipS1
y
UXY~p/2!e2 ipS1

x/2e2 ipS2
x/2,

~48!

where n15(1,21,1)/A3 and n25(1,1,21)/A3. This is
proof thatXY systems with single-qubit interactions are
principle capable of universal quantum computation.

We now consider parallel switching with theXY dynam-
ics,

HXY,B5HXY1B1•S11B2•S2 , ~49!

UXY,B~ t !5exp~ i tH XY,B!. ~50!

As in the case of Heisenberg interactions, we first cons
the CPF gate which can be used to assemble the XOR ga
shown in Eq.~8!. We have not found a possibility to genera
the CPF gate Eq.~5! with the XY Hamiltonian with applied
magnetic fields with constant parameters (N51) using a nu-
merical search.24 If the switching is performed in two step
(N52), we find numerically that there are several possib
ties to generateUCPF in the form

UCPF5eif U2U1 , ~51!
ple
st
-

d
it

r

se

er
as

-

whereUk5exp@2piHXY,B(J(k),Bx
(k) ,Bz

(k))#, k51,2. Note that all
magnetic fields can be chosen homogeneous (B1

(k)5B2
(k)

[B(k)) and perpendicular to they axis (By50). Here we
give one possible realization which is found numerica
(f523p/4):

k J(k) Bx
(k) Bz

(k)

1 0.7500 0.7906 0.5728
2 0.5000 0.0000 0.2500

~52!

The total switching time for CPF, assuming equal boun
MJ5MB[M for J andB, is tCPF,p

XY 51.29132p\/M , com-
pared to tCPF,s

XY 52.16732p\/M for the serial-pulse se
quence defined in Eq.~48!.

In order to produce the XOR gate Eq.~7! we can imple-
ment the basis change Eq.~8! using the single-qubit rotation
V. This procedure requires a total of four steps for the XO
gate. Another way of achieving XOR is the following s
quence which we found numerically and which takes o
three steps:

UXOR5exp~3ip/4!U3U2U1 , ~53!

with the following parameters:

k J(k) B1x
(k) B2x

(k) B1y
(k) B2y

(k) B1z
(k) B2z

(k)

1 1.802 0.615 2.045 0.020 0.316 0.794 0.130
2 3.344 0.348 0.718 0.259 0.493 1.583 1.06
3 1.903 1.193 0.705 0.413 20.305 0.589 0.604

~54!

The total switching time oftXOR,p
XY 57.2932p\/M ~com-

pared to 2.6732p\/M using CPF and a basis change! indi-
cates that Eq.~54! is not an optimal solution.

VI. REQUIREMENTS FOR PARALLEL SWITCHING

The parallel switching mechanism presented in the Se
IV and V relies on the following essential assumptions.

~a! Each of the parameters in the Hamiltonian can be v
ied independently. That is, the coupling can be varied in
pendent of the magnetic fields in the Hamiltonian Eq.~1!.

~b! We know the exact relation between the externa
controlled parameters~such as the electric and magnetic fie
or a gate voltage! and the parameters in the Hamiltonian.

~c! The switching is synchronous, with all parameterspi

varying with the same time profilepi(t)5 p̃i f (t). The
change of parameters does not have to be steplike, but ca
chosen to have some smooth pulse form. Also, any pu
magnitudesp̃i are allowed.

Whether the above requirements can be fulfilled depe
on the underlying microscopic mechanisms which are
sponsible for the effective Hamiltonian, such as the Heis
berg Hamiltonian, Eq.~1!. In our previous work16 we have
used the model Hamiltonian
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H5
1

2m (
i 51,2

F S pi2
e

c
A~r i ! D 2

1exiE

1
mv0

2

2 S 1

4a2
~xi

22a2!21yi
2D G1

e2

kur12r2u
, ~55!

with A(r )5B(2y,x,0)/2 to describe the orbital dynamics o
electrons in coupled quantum dots. Here,r i andpi denote the
location and momentum of the electroni which is moving in
two dimensions in a double-well potentialV with character-
istic energy\v0 and a magnetic fieldB perpendicular to the
2D electron system and an electric fieldE parallel to the
coupling axis of the two wells. The distance between
quantum dots is denoted by 2a, the effective mass and th
charge of the electron bym ande, and the dielectric constan
of the material byk. As we pointed out earlier,16 the spin-
orbit interactionHso5(v0

2/2m0c2)S•L is very small for an
electron in a parabolically confined quantum dot. Note, ho
ever, that this expression for the spin-orbit coupling conta
the bare electron massm0, instead ofm, the effective elec-
tron mass,25 and therefore the spin-orbit coupling in GaAs
about m0 /m.15 times smaller than estimated in Ref. 1
For a quantum dot with confining energy\v053 meV, we
obtainHso/\v0'1028.

Concerning condition~a!, we have found that the spin
spin coupling J can be controlled by several extern
‘‘knobs.’’ The gate voltageV applied between the couple
quantum dots controls the height of the barrier for tunnel
of an electron from one dot into the other and theref
strongly influences the exchange couplingJ between the
electronic spins. In a similar manner,J depends on the inter
dot distance 2a. We have also found16 that an external mag
netic field B perpendicular to the 2DEG causes a stro
change~even a sign reversal! of J. Not surprisingly, an elec-
tric field E applied along the coupling direction of the do
also changes the exchange coupling, which can be un
stood as an effect of level detuning. When switching on
magnetic field, the effect of the field onJ could be compen-
sated by changing another independent control param
e.g., the electric field. In practice, one has to know the fu
tional dependenceJ(V,a,B,E) in the range where it is used
see also~b!.

While a magnetic field perpendicular to the 2DE
strongly influences the exchangeJ, we can argue that suffi
ciently weak in-plane magnetic fields have little influence
J. Classically, the motion of a particle in a plane is not
fected by a magnetic field in the plane, since the Lore
force is orthogonal to the plane. Quantum mechanically,
can describe a particle in a magnetic field confined to a pl
by the Hamiltonian

H5
1

2m S p2
e

c
AD 2

1
mv2

2
z2, ~56!

where the vector potentialA5B(0,2z,0) corresponds to a
magnetic field of magnitudeB along thex axis and the con-
finement in thez direction is modeled by a harmonic pote
tial with frequencyv. In this gauge, the Hamiltonian can b
rewritten in the form
e

-
s

.

g
e

g

er-
a

er,
-

-
z
e
e

H5
px

21pz
2

2m
1

py
2

2m̄
1

mv̄2

2
~z2z0!2, ~57!

with the renormalized effective mass in they direction, m̄

5m(114vL
2/v2), the renormalized confining energy\v̄

5\vA114vL
2/v2, and a shift in the confining potentialz0

52pyvL /mv̄2 which depends on the momentumpy in they
direction and the Larmor frequencyvL5eB/2mc. Note that
the corrections due to the magnetic field in the resulting
Hamiltonian

H2D5
px

2

2m
1

py
2

2m̄
~58!

are of the ordervL
2/v2 or (az / l B)4, wherel B5A\c/eB de-

notes the magnetic length andaz5A\/mv the confinement
length. Usually, we are interested in the case of strong c
finement and moderate magnetic fields whereaz! l B , there-
fore m̄'m up to small corrections. In this case, an in-pla
magnetic field does not affect the orbital degrees of freed
of the 2D electrons.

The condition~b! can be fulfilled in two ways. Either we
have a theoretical description of the dependence of
Hamiltonian parameters (J,Bi) on the control parameter
(V, a, B, E) or this relation is first mapped out in experime
and the obtained data are used later for the control of
device. A good approximate description is possible in
case of adiabatic switching. In order to demonstrate this,
cast the microscopic Hamiltonian into the formH(t)5H0
1V(t). Then we find the instantaneous eigenstatesun(t)&
and the corresponding instantaneous eigenvaluesen(t) by
solving the time-independent Schro¨dinger equation for fixed
time t. The instantaneous eigenstateun(t)& is a good approxi-
mation for the time evolution of the initial stateun(0)&, pro-
vided the adiabaticity criterion

U^mu] tVun&
em2en

U! 1

ts
~59!

is met, wherets denotes the switching time. Equation~59!
means that the change of the external control parameters
ing the switching time should be much smaller than the le
spacing in the microscopic Hamiltonian. In the case
coupled quantum dots in the adiabatic regime,J(t)5e t(t)
2es(t) is the level spacing between the instantaneous sin
and triplet energies.

Note also that ifV(t) respects some symmetry, there c
be selection rules that make Eq.~59! less stringent. In the
case of two coupled quantum dots with an applied homo
neous magnetic field, the total spin is conserved byV(t) and
therefore only transitions to higher orbital levels of the qua
tum dots are relevant. Therefore, the less stringent condi
1/ts'uV̇/Vu!Dē/\ is sufficient for adiabatic switching.16

Here,Dē denotes the orbital level distance averaged over
switching time. Since in this case the Zeeman energy is
dependent of the space coordinates, it commutes with
orbital Hamiltonian and does not affect adiabaticity. T
case of inhomogeneous magnetic fields is more intricate.
lack of a selection rule enforces the more stringent adia
ticity condition16 1/ts'uV̇/Vu! J̄/\!Dē/\, where J̄ de-
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notes the average exchange coupling during the switching
addition to this, the Zeeman term does not commute with
orbital Hamiltonian in the case of inhomogeneous fields a
therefore also influencesJ. Due to these difficulties, we pres
ently do not know how to calculate the parameterJ in Eq. ~1!
in the presence of an inhomogeneous field,B1ÞB2.

The condition of synchronous switching~c! is mainly a
technical issue. We would like to stress that the choice of
pulse form has a decisive influence on whether the adia
ticity condition Eq.~59! can be satisfied or not. It is quit
easy to see that a rectangular pulse is unsuitable becau
has infinite derivatives. Both Gaussian@exp(2t2/Dt2)# and
exponential@exp(2utu/Dt)# pulses are far better than a recta
gular pulse. The exponential pulse has the advantage
uV̇/Vu is independent oft compared to the Gaussian pul
whereuV̇/Vu}t. However, the exponential pulse has the d
advantage that it has a cusp att50 which causes algebra
ically decaying tails in its Fourier spectrum. We can comb
the advantages of both pulses by using the sech pu
sech(t/Dt)51/cosh(t/Dt). Since all the pulses have to b
cut off at some finite time6ts/2, we choose the width of the
pulseDt smaller than the actual switching timets , i.e., we
choosea5ts /Dt.1. By substituting the sech pulse into th
adiabaticity condition Eq.~59!, we obtain the conditionts

@a\/Dē in the case where the spin is conserved~homoge-
neous magnetic field! andts@a\/ J̄ otherwise.

VII. APPLICATIONS

We will now give a detailed description of how a syste
of three coupled quantum dots could be controlled in orde
test the functionality of three-bit quantum error correction
that system. We denote the maximal coupling and magn
field that can be applied byJmax andBmax. If only one of the
parametersJi j , Bi can be made nonzero at a given insta
q

a
p

In
e
d

e
a-

e it

at

-

e
e,

o

tic

,

then the following serial-pulse sequence has to be applie

step duration parameter value

1 tB/4 By
2 Bmax

2 tJ/4 J12 Jmax
3 tB/2 Bz

1 Bmax
4 tJ/4 J12 Jmax
5 tB/4 Bz

1 Bmax
6 tB/4 Bz

2 2Bmax
7 tB/4 By

2 2Bmax
8 tB/4 By

3 Bmax
9 tJ/4 J13 Jmax
10 tB/2 Bz

1 Bmax
11 tJ/4 J13 Jmax
12 tB/4 Bz

1 Bmax
13 tB/4 Bz

3 2Bmax
14 tB/4 By

3 2Bmax

15 tn Bx random

16–29 repeat 1–14 ~60!

wheretJ52p\/Jmax and tB52p\/gmBBmax. Step 15 de-
scribes the artificial introduction of noise into the system
applying a random magnetic field in thex direction, causing
random spin flips in a timetn&p/gmBB̄x , whereB̄x denotes
the mean amplitude of the randomB field. After step 29 is
completed, qubits 2 and 3 are measured and qubit 1 is flip
~by applyingBx

15Bmax for time tB/2) if both measurements
yield 1 ~spin down!. The total switching time for steps 1 t
29 then amounts tots56tB12tJ1tn .

In a device where parallel pulses are possible, i.e., wh
the conditions~a!–~c! from Sec. VI are fulfilled, the follow-
ing pulse sequence can be applied with the same effect:
i t i J12 B1x B2x B1y B2y B1z B2z

1 0.464t 0.402 20.054 1 0.442 0.419 20.905 0.851
2 0.617t 1 20.356 0.559 20.622 0.396 0.572 0.176

J13 B1x B3x B1y B3y B1z B3z

3 0.464t 0.402 20.054 1 0.442 0.419 20.905 0.851
4 0.617t 1 20.356 0.559 20.622 0.396 0.572 0.176

B1x B2x B3x

5 tn rnd rnd rnd
6 1
u 2.162t repeat u
9 4

~61!
ame

r-
We have assumed that the maximal Zeeman energy is e
to the maximal coupling,gmBBmax5Jmax[M, and defined
t[tB5tJ . All parameters are given in units ofM. The pa-
rameters in every step can be multiplied by any pulse sh
f (t) with *0

t i f (t)dt51, wheret i denotes the duration of ste
ual

pe

i. Note that in every step, the pulse shape has to be the s
for all parameters. Parameters that are omitted in Eq.~61! are
set to zero. The total switching time in this parallelized ve
sion amounts totp54.3252t1tn , compared tots58t
1tn in the case of serial switching.
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VIII. CONCLUSION

We have studied the minimal requirements for the imp
mentation of the XOR gate, the conditional phase flip (CP
gate, the encoding circuitE used for three-bit error correc
tion, and the teleportation encoderET , all for Heisenberg-
coupled spins withs5 1

2 . In addition to this, we have also
considered anisotropic spin-spin coupling as described in
XY model. Two different methods for generating quantu
gates with a time-dependent Hamiltonian have been
cussed and compared, the ‘‘conventional’’ serial pu
method and a new method involving parallel pulses.

The main results of our work are the parallel pulses
the conditional phase flip@Eq. ~38!# and XOR @Eq. ~42!#
using Heisenberg dynamics, and the corresponding res
@Eq. ~52! and Eq.~54!# for XY dynamics. The direct parallel
pulse sequence Eq.~44! for the three-bit encoderE was
found; however, it is possible that a faster pulse sequence
this gate can be found with more numerical effort.

The following results for serial switching have bee
found: There is an analog of the known circuit Eq.~6! for
CPF ~cf. Fig. 3! for systems withXY coupling, which is
given in Eq.~48!. For Heisenberg coupling, we have prove
that the known circuit Eq.~6! is optimal in the sense tha
CPF cannot be obtained with one ‘‘square-root-of-swa
gate. For the proof we invoked the setP(U) of all product
states that are mapped onto product states by a quantum
U; P(U) helps to distinguish quantum gates modulo conc
enation of single-qubit gates. The same tool was also use
prove that the encoderE for quantum error correction canno
be generated with serial switching with fewer than fo
‘‘square-root-of-swap’’ gates. The same is true for the e
coderET for the teleportation of one qubit.

The results for the parallel-pulse XOR for isotrop
Heisenberg interactions and the results for CPF and XOR
XY interactions, Eqs.~42!, ~52!, and~54!, and for the three-
bit encoder Eq.~44! were all found using the computer algo
rithm described in Sec. IV. This algorithm searches for
h
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lts

or
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ate
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a

~parallel! pulse sequence for an arbitrary quantum gate op
ating on any number of qubits. The number of qubits and
complexity of the pulse sequence that can be studied are
limited by the available computational resources.

Quantum computations are very often presented in
form of quantum circuits, i.e., as a sequence of gates belo
ing to a small set of universal gates. Our examples
parallel-pulse gates illustrate that such quantum circuits
in general not the most efficient way of performing a qua
tum computation. The reason for this is that standard qu
tum circuits only allow the use of a small fraction of th
possible time evolutions that can be generated by the un
lying Hamiltonian. While for the two- and three-qubit gate
we have studied here we could optimize the switching ti
by typically a factor of about 2 by using parallel pulses,
can be speculated that for gates operating on many qubi
whole quantum computations, switching times could be
duced by a much larger amount. Note also that the para
pulses we have studied here represent only a small subs
the possible time evolutions themselves, since we have b
restricted to very simple discretized pulses of up to th
time steps.

While quantum circuits are very intuitive and provide a
excellent framework for the theoretical study of quantum
gorithms and their connection to classical algorithms,
representation of quantum gates or whole computations
parallel pulse sequences may turn out to be more efficien
a number of physical implementations.
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