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Multilevel quantum description of decoherence in superconducting qubits
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We present a multilevel quantum theory of decoherence for a general circuit realization of a superconducting
qubit. Using electrical network graph theory, we derive a Hamiltonian for the circuit. The dissipative circuit
elements(external impedances, shunt resisfarse described using the Caldeira-Leggett model. The master
equation for the superconducting phases in the Born-Markov approximation is derived and brought into the
Bloch-Redfield form in order to describe multilevel dissipative quantum dynamics of the circuit. The model
takes into account leakage effects, i.e., transitions from the allowed qubit states to higher excited states of the
system. As a special case, we truncate the Hilbert space and derive a tw@leeb) theory with character-
istic relaxation 1) and decoherenceTg) times. We apply our theory to the class of superconducting flux
qubits; however, the formalism can be applied for both superconducting flux and charge qubits.
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[. INTRODUCTION ment. One result of the present work is a quantitative esti-
mate of the effect of errors of typ@ii) by studying the
Since the famous cat paradox was formulated bymultileveldynamics of a superconducting circuit containing
Schradinger? the question of whether the range of validity of dissipative elements. The multilevel dynamics and leakage in
quantum mechanics in principle extends to macroscopic obsuperconducting qubits may be related to the observed lim-
jects has been a long-standing open problem. While macrated visibility of coherent oscillations. Previous theoretical
scopic quantum tunneling was observed in severalorks on the decoherence of superconducting gtfbitd
experiment$;® there is less experimental evidence for mac-have typically relied on the widely used spin-boson model
roscopic quantum coherence. The experimental study dahat postulatesa purely two-level dynamics, therefore ne-
macroscopic superconducting circuits comprising low-glecting leakage effects. Reference 11 includes the dynamics
capacitance Josephson junctions as a physical implementaf an attached measurement device, thus going beyond the
tion of a quantum computdsee Ref. 6 for a reviewepre-  standard spin-boson model while still making taepriori
sents a new test for macroscopic quantum coherence. On tinwo-level assumption.
theory side, the effect of dissipation on macroscopic quan- In this paper, we present a general multilevel quantum
tum tunneling and macroscopic quantum coherence was ptiteory of decoherence in macroscopic superconducting cir-
into a quantitative phenomenological model by Caldeira andtuits and apply it to circuits designed to represent flux qubits,
Leggett’ i.e., in the regimeE;>E.. However, the same formalism
The fundamental building block of a quantum compliter can be applied to charge qubits. Flux qubits have been pro-
is the quantum bitqubi)—a quantum-mechanical two-state posed and studied experimentally by several grdtips.
system that can be initialized, controlled, coupled to othefThe first step in our analysis is the derivation of a Lagrangian
qubits, and read out at the end of a quantum computatiorand Hamiltonian from the classical dynamics of a supercon-
Presently, three prototypes of superconducting qubits areucting circuit; the Hamiltonian is then used as the basis of
studied experimentally. The charggd>E;) and the flux our quantum theory of the superconducting circuit. While
(E;>E¢) qubits are distinguished by their Josephson juncderiving the Lagrangian and Hamiltonian of a dissipation-
tions’ relative magnitude of charging enerBy. and Joseph- free electrical circuit is—at least in principle—rather
son energyE; . A third type, the phase qubitpperates in the straightforward, different possible representations of dissipa-
same regime as the flux qubit, but consists of a single Jaive elementgsuch as resistorsan be found in the litera-
sephson junction. In all of these systems, the quantum statere. One possibility is the representation of resistors as
of the superconducting phase differences across the Josephansmission line&%-??i.e., an infinite set of dissipation-free
son junctions in the circuit contain the quantum information,elements(capacitors and inductorsHere, we use a related
i.e., the state of the qubit. Since the superconducting phase st different approach following Caldeira and Leggett by
a continuous variable similar to, e.g., the position of a parmodeling each resistive element by a bath of harmonic os-
ticle, superconducting qubi{$wo-level systemshave to be cillators that are coupled to the degrees of freedom of the
obtained by truncation of an infinite-dimensional Hilbert circuit”?®%4(see also Refs. 26, 27 for extensive revipws
space. This truncation is only approximate for various rea- We develop a general method for deriving a Hamiltonian
sons:(i) because it may not be possible to prepare the initiafor an electrical circuit containing Josephson junctions using
state with perfect fidelity in the lowest two staté8) be-  network graph theor$? A similar approach, combining net-
cause of erroneous transitions to higher leWédskage ef- work graph theory with the Caldeira-Leggett model for dis-
fect9 due to imperfect gate operations on the system, andipative elements, was proposed by Devéfebn a more
(iii) because of erroneous transitions to higher levels due tmicroscopic level, circuit theory was also used in combina-
the unavoidable interaction of the system with the environtion with Keldysh Green functions in order to obtain the full
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FIG. 1. The IBM qubit. This is an example of a network graph . ‘

with 6 nodes and 15 branches. Each thick line represents a Joseph-

son element, i.e. three branches in parallel, see Fig. 2. Thin lines FIG. 2. A Josephson subgrapthick line) consists of three
represent simple two-terminal elements, such as linear inductorisranches; a Josephson juncti@ross, a shunt capacitorQ®), a
(L,K), external impedance<]}, and current sourcesy). shunt resistorR), and no extra nodes.

counting statistics of electron transport in mesoscopicdosephson junctionisee Fig. 2 A convention for the direc-
systems?® Here, we give explicit general expressions for thetion of all branches has to be chosen—in Figs. 1 and 2, the
Hamiltonian in terms of the network graph parameters of thelirection of branches is represented by an arrow. .
circuit. We apply our theory to Josephson junction networks (2) Find atree of the network graph. A tree of a graph is
that are currently under study as possible candidates for s@ Set of branches connecting all nodes that does not contain
perconducting realizations of quantum bits. By tracing outany loops. Here, we choose the tree such that it contains all
the degrees of freedom of the dissipative eleméats., re- capacitors, as few inductors as possible, and neither resistors
sistorg, we derive a generalized master equation for the sutexternal impedancgsior current sourcegsee Sec. Il B for
perconducting phases. In the Born-Markov approximationthe conditions under which this choice can be madée

the master equation is cast into the particularly useful forniree of Fig. 1 that will be used here is shown in Fig. 3. The
of the Bloch-Redfield equatiorf Since we do not start from branches in the tree are called “tree branches”; all other
a spin-boson model, we can describe multilevel dynamic®ranches are called “chords.” Each chord is associated with
and thus leakage, i.e., transitions from the allowed qubithe one unique loop that is obtained when adding the chord
states to higher excited states of the superconducting syste#®. the tree. The orientation of a loop is determined by the
As a special case, we truncate the Hilbert space and derivedirection of its defining chord. For example, the orientation
two-level (Bloch) theory with characteristic relaxatior{) ~ ©Of the loop pertaining td, (large circle in Fig. 1is anti-

and decoherenceT}) times. clockwise in Fig. 1.

II. OVERVIEW AND RESULTS

Before presenting a formal derivation, we explain the
main results and show how they can be applied to calculate
the relaxation, decoherence, and leakage tifngsT,, and
T, of a superconducting qubit. Our theory is capable of pre-
dicting more than these quantities since it can be used to
model the evolution of the entire density matrix. However,
we concentrate on the relaxation, decoherence, and leakage
time in order to keep the discussion simple. For concrete-
ness, we discuss the IBM quBitwhich is described by the
electrical circuit drawn in Fig. 1. The procedure is as fol-
lows.

(1) Draw and label anetwork graphof the superconduct-
ing circuit, in which each two-terminal eleme@tosephson
junction, capacitor, inductor, external impedance, current FiG. 3. A tree for the circuit shown in Fig. 1. A tree is a sub-
sourcg is represented as a branch connecting two nodes. Igraph containing all nodes and no loop. Here, we choose a tree that
Fig. 1, the IBM qubit is represented as a network graphgontains all capacitorsQ), some inductors K), but no current
where thick lines are used as a shorthand R&-shunted  sources [g) or external impedanceg].
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(3) Find the loop submatriceds; , Fcz, Fcg: FkL» Fkz, 5F T ' T T
andFgg . The loop submatrices have entried, —1, or O,
and hold the information about the important interconnec-
tions in the circuit. The matridyy, determines which tree
branchesX (either capacitorX=C or inductorsX=K) are T [ns]
present in which loop defined by the chordginductorsY
=L, external impedance¥=Z2, or current source¥ =B).
In order to find, e.g., the loop submatri for the IBM

circuit (Figs. 1 and 3 we have to identify all loops obtained (@)

by adding a chord inductoi(. Each column irF¢, corre- : : : : :
sponds to one such loop. In our example, there are two chord 85

inductorsL, andLg; the corresponding loops are the main 8

superconducting looflarge circle and the control loop -

(small circle. Each row inF¢, stands for one capacitds; Ty [ng '7

therefore, in our exampl&, is a 3 by 2matrix. The entries 2 65

in each column ofFc  are 1, —1, or 0, depending on
whether the corresponding capacit@ow) belongs to the
corresponding loogcolumn with the same 1) or oppo- (b)
site (+1) orientation or does not belong to the loop at all
(0). For example, for our examp[see Eq.(157)]

1 0
Fce=| —1 1
0 -1

The first column says that the capacit®y (part of J;) be-
longs to the large loofin the opposite direction, thus 1),
capacitorC, (part of J,) belongs to the large loofin the
same direction, thus-1), while capacitorC; (part of J3) $.—®o/2 [107%]
does not belong to the large loop at all. Similarly, the second
column ofF¢| says which of the capacitors are contained in
the small loop.
(4) Use the inductanceself and mutual

FIG. 4. Relaxation timeT,, decoherence tim&,, and pure
dephasing timd 4 for the current-biased IBM qubit as a function of
the control flux® . around the poin® .= ® /2. The main fluxd is
chosen such that the resulting double-well is always symmetric.
While T, diverges at the pointb,=d,/2 where (0|m-¢|0)
L — L Lk 1) =(1|m- ¢|1), T, has a minimum at that point. The inductances for
LIK L this example aré.;=L,=100 pH (main loop andL,=L3=4 pH
(control loop. The capacitance and critical current of the junctions
and external impedanc@q w) to calculate the matriced g, areC=0.1 pF and .=8.5 uA (L;=d /27 .=39 pH). The exter-

N, rﬁ, S using Egs.(62), (63), (65), and (66); for a single nal impedance is assumed to _E_eO):Z.S k() at zero frequency
external impedance, also use E(g3)—(75) to calculate the 2ndZ(wo) =10 K at the transition frequencyo, ; the tempera-
function K(w), the coupling strength and the unit vector ture of the external impedance is taken to be 30 mK.
m. The block form of the inductance matrlx, originates
from the distinction between tre@) and chord(L) induc-
tors;L is the chord inductance matriincluding chord-chord
mutual inductances as its off-diagonal elemgnts is the i ] ; /
tree inductance matrix, arld, « is the tree-chord mutual in- 2tion time T, and pure dephasing tim&, can be found
ductance matrix. The Hamiltonian, Eq.7)—(82), together ~USiNg EGs.(124) and (125 the decoherence time is then
with the bath spectral densiff{ w)xImK(w), Eq.(93), rep-  9'VEN by
resents the quantum theory of the system including the dis-
sipative environment. The form of this Hamiltonian, in par- R
ticular Egs.(62)—(66) are the first main results of this paper. T, 2T, Ty
The evolution of the density matrix of the superconducting
phases only is determined by the Bloch-Redfield equatioThe leakage rat§[l is given by Eq.(150.
(107) with the Redfield tensor given by Eqd.11) and(114), We have carried out the above program for two cases; for
representing our second main result. the IBM qubit® (Fig. 1) in Sec. VIII and for the Delft

(5) Find the eigenstates and eigenenergies of the systequbit**° (Fig. 6) in Sec. IX. For the IBM qubit, matrix ele-
Hamiltonian (78) and calculate the matrix elements of the ments were calculated numerically; the relaxation and deco-
superconducting phase operate@ssin practice, this task is herence times in the case of a current-biased circuit are plot-

usually done numerically or using some approximation.
Typically, only a finite number of eigenstates is known.
(6) For two given quantum level®) and|1), the relax-
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ted in Fig. 4. For the Delft qubit, a semiclassical approachand the fundamental cutset matrix=(1,... N+P; |
was taken, and earlier results by van der Wakl'* for =1,...B)

a symmetric superconducting quantum interference device

(SQUID) are correctly reproduced. In addition to this, the 1 if bj e C; (same direction as;),

effect of SQUID asymmetries—either in the self-inductance
or in the critical currents of the two junctions—are calculated
in Sec. IX C. It turns out that typical sample-to-sample fluc- 0 ifbjed.
tuations of the critical current of about 10% can lead to
sizable decoherence rate at zero bias current.

Fi(jC): —1 if bje( (direction opposite ta;), (3)

aBy observing that cutsets always intersect loops in as many
ingoing as outgoing branches, one finds

IIl. CLASSICAL NETWORK THEORY F(L)(F(C))T= 0. (4)

The goal of this section is to derive a classical Hamil-
tonian for an electrical circuit containing superconducting
elements, such as Josephson junctions. An electric circu
will be represented by an oriented gréplg=(N,B), see
Fig. 1 for an example.

By labeling the branches of the graghsuch that the first
hJ— P branches belong to the tré&e we obtain

FO=(1p), ®)
whereF is an N+ P) X (B—N—P) matrix. Using Eq.(4),

A. Graph theory we find
An oriented grapft G=(\,B) consists ofN nodes\ L -
={nq, ...,ny} andB branches3={b,, ... bg}. In circuit FH=(=F'). (6)
analysis, a branch; = (n,(;y ,Ny(j)) represents a two-terminal
element (resistor, capacitor, inductor, current, or voltage B. Electric circuits

source, etg, connecting its beginning node,; to its end-
ing nodeny,;, . The degree of a nodes V' is the number of ;
branches containing. A loop in G is a subgraph ofj in gralph caln beh delflr:jed tby ththel t;ranch Clt”f:ent.s

which all nodes have degree 2. The number of disjoint con (l1: - - -.Ig), wherel; denotes the electric current flowing

: - branchb;, and the branch voltageg=(V4, ... ,Vg),
nected subgraphs which, taken together, makg,upill be " ' 1 B
denotedP a%d ?he subgraphs; , eagh having\, nou(ﬁzs and whereV; denotes the voltage drop across the bramchrhe

B, branches =1, . .. P), WhereEiP:lNi:N andEiF’:lBi sign of |; is positive if a positive current flows from node

=B. For each connected subgraph we choose afrege.,  -a() to Ny and _”egii“"e It a positive current flows from

; ; ; nodenyy 10 Nyy; Vi is positive if the electric potential is
a connected subgraph 6f which contains all its nodes and hiah d h d
has no loops. Note thak has exactlyN,— 1 branches. The o c" at noddy;) than at noden, . . .
B.—N.+1 branches that do not belond to the tree are calle The conservation of electrical current, combined with the

o . 9 %ondition that no charge can be accumulated at a node, im-

chords. The tree of the graghis the union of the trees of all plies Kirchhoff's current law
its subgraphs7; containingN— P branches. A tree of the
graph shown in Fig. 1 is shown in Fig. 3. The fundamental FO|=0 )
loops F; of a subgraply; are defined as the set of loopsdn '
which contain exactly one chorfj e G\ 7. We define the |n a lumped circuit, energy conservation implies Kirchhoff's
orientation of a fundamental loop via the orientation of itsyoltage law in the form
chord f;. Each connected subgragh hasF;=B;—N;+1

The state of an electric circuit described by a network

fundamental loops, i.e., the graph hRs=={_,F;=B—N FLv=0. (8)
+P fundamental loopgone for each chond A cutset of a . )
connected graph is a set of a minimum number of branche§Xternal magnetic fluxe@=(®,, ... g _y.p) threading

that, when deleted, divides the graph into two separate suibe Ioops. of t.he circuit_ represent a departure from the strict
graphs. A fundamental cutset of a graph with respect to a trebimped circuit model; if they are present, Faraday's law re-
is a cutset that is made up of one tree bragcand a unique  quIres that

set of chords. We denote the set of fundamental cutsefs of .

with respect to the tre& with C;. Each connected subgraph FOV=a. 9

Pu?’]s dg};eit;llﬂgﬂ?sn;?sn}gl tgtgsneésf'o:heegsﬁo{;;hber ;en;:e P External fluxes have to be distinguished from the fluxes as-
sociated with lumped circuit elements.g., inductors, see

We will use two characteristic matrices of the network below
graph, the fundamental loop matrixi=1,...F; | ’

iy B) We divide the branch currents and voltages into a tree and

a chord part
1 if bj e F; (same direction af),
Fi(jL): —1 if bje F (direction opposite td;), (2)
0 ifbjer V=(Vy V). (1)

IZ(Itrilch)v (10)
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The 2B branch currents and voltages are not independentjonlinear(J) and linear [), shunt resistor¢dR) and other
the Kirchhoff laws Eqgs(7) and (9) together with Eqs(5)  external impedance<}, and bias current sourceB). Ac-
and (6) yield the following B equations relating them: cordingly, we write

Flen= =y, (12 e Fcs Feo Fer Fez Fes

“\Fxs Fku Fkr Fxz Fxs/’

17

FVy=Vey @. (13 | | j

The submatrice&yy will be called loop submatrices. Note

As an example, th&l+ P tree branch voltageg,, combined that since Josephson junctions are always shunted by a ca-
with the B-N-P chord currentd ., completely describe the pacitor as a tree branch, there are never any tree inductors in
state of a network, since all other currents and voltages caparallel with a Josephson junctioRc;=0. As a conse-
be obtained from them via Eg&l2) and (13). However, in  quence, a tree inductor is never in parallel with a shunt re-
the following, we will use a different subset of variables, alsosistor Fxg=0.
making use of theB equations that are derived from the  We then formally define the branch charges and fluxes
current-voltage relations of the individual branch elements. (X=C,K,J,L,R,Z,B),

C. Circuits containing superconducting elements Ix(t)=Qx(1), (18)

For the purpose of analyzing electric circuits containing .
Josephson junctions, we adopt the RSJ model for a Joseph- V(1) =Dx(1). (19

son junction, i'.e., a junction shunted by a (_:apapitor and YUsing the second Josephson relation and (£8), we iden-
resistor, see Fig. 3. We treat the Josephson junctions as nofiy the formal fluxes associated with the Josephson junctions

linear inductors. Aflux controlled nonlinear indu_ctozr8 isa a5 the superconducting phase differengescross the junc-
two-terminal circuit element that follows a relation betweeny;q,o

the time-dependent currehft) flowing through it and the
voltageV(t) across it of the form ®, o
(}T = E, (20)
L(t)=f(D (1)), (14) 0
- ) ) . ) where®,=h/2e is the superconducting flux quantum. It will
where®(t)=V(t) andf is an arbitrary function. For a linear e assumed that at some initial tire(which can be taken
inductor, f(x) =x/L, with L the inductance. o ast,— —), all charges and fluxeéncluding the external
We begin our analysis by choosing a tree containing all Ofﬂuxe9 are zero,Qy=0, ®,=0 (including ¢=0), and®
the capacitors in the network, no resistors or external imped-
ances, no current sources, and as few inductors as possible-l—he current-voltage relations for the various types of
(in particular, no Josephson junctiongve assume here that yanches are
the network does not contain any capacitor-only loops,

which is realistic because in practice any loop has a nonzero I;=1,sine, (21
inductance. A network is called proper if in addition to this,
it is possible to choose a tree without any inductgss., if Qc=CVe¢, (22)

there are no inductor-only cutsgt§ Again, it can be argued
that this is realistic since there always de¢ least small

_] -1 -1 1 1
capacitances between different parts of a network. But we =L bbb P (23
have avoided making the latter assumption here because it — 4T 1
spares us from describing the dynamics of small parasitic k=L Px—Ly Lkl P, (24)
capacitances. We further assume that each Josephson junc-
tion is shunted by a finite capacitance, so that we are able to Vr=RIg, (25
choose a tree without any Josephson junctions. Finally, we
assume for simplicity that the circuit does not contain any Vz(w)=Z(w)l(w), (26)

voltage sources; however, voltage sources could easily be . . .
incorporated into our analysis. where Eq.(21) is the first Josephson relation for the Joseph-

We divide up the tree and chord currents and voltage on junctions(flux-controlled nonlinear inductoys where

further, according to the various branch types he diagonal .matr.|xlc contains the critical currents
lc; of the junctions on its diagonal, andsineg

o=l 1)y Ta=50 kil 08), (15) =(singy,sing,, ... ,singy). Equation (22) describes the
(linean capacitors C is the capacitance matjixEqgs. (23)
Ve=(Ve, Vi), Ver=(V,, VL VeV, Ve), (16) and (24) the linear inductors, see Eq&2) and(33) below.
The junction shunt resistors are described by 2) where
where the tree current and voltage vectors contain a capacit®t is the (diagonal and realshunt resistance matrix. The ex-
(C) and tree inductotK) part, whereas the chord current and ternal impedances are described by the relai&th between
voltage vectors consist of parts for chord inductors, boththe Fourier transforms of the current and voltage, where
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Z(w) is the impedance matrix. The external impedances catime evolution of the charges and fluxes can be expressed as

also defined in the time domain the following set of first-order integrodifferential equations
t * ®o. T ~-1
Vz(t)= _wZ(t—r)lz(r)dTE(Z 12)(1), (27 5-¢=Va=Fc,C ' Qc, (34)

where the convolution is defined as : . 14 —1
Qc=lc=—Fcylcsing—FcpR™ " ®Pr—Fc (L™ "P,

t —
(frg)(t)= f ~ f(t=n)g(ndr. (28 —L L") —Fezl ;™ @z~ Fegls,  (39)
Causality allows the response function to be nonzero only for & =V =FL C 'Qc+Fj P+ Dy, (36)
positive times,Z(t)=0 for t<0. In frequency space, the
replacementw— w+ie with e>0 guarantees convergence dp=Vg=FL.C 1Qc, (37)

of the Fourier transforff

- . - ®,=V,=F{,C Q¢+ Fi, Py, 38
Z(w):f Z(t)elwtdt:f Z(t)e""tdt. (29) pA YA cz QC KZ*'K ( )
© 0

D= —LFq L 1 + LKEKLLilLLKL_Izl(I)K
—LgFrzLlz ™ ®;—LiFyals, (39

In order to obtain Eq(23) for the inductors, we write
L Lokl I} L
- L[K Ly =Lt ' (30) wherel ;(w)=Z(w)/i w, and where the convolution is given

D
(I)K IK I K . .
by Eq. (28). In the equations for the chord variables Egs.

whereL and Ly are the self-inductances of the chord and(34), (36), (37), and (38), we have assumed that only the
tree branch inductors, respectively, off-diagonal elements deoops closed by a chord inductfr) are threaded by an ex-
scribing the mutual inductances among chord inductors angkrnal fluxd=(0,d,,0,0,0). In order to obtain Ed39), we
tree inductors separately, ahgdy is the mutual inductance have first used Eq:30), then Eqs(12) and(26), and finally
matrix between tree and chord inductors. Since the total inEq. (31). We can eliminataPy by solving Eq.(39),
ductance matrix is symmetric and positive, ivdl_v>0 for

all real vectorsy, its inverse exists, and we find Dy = — L (Fe L 2D, +Fysl; ¥ D, + Feglg), (40)
|L> ( L1t —LW L @, with the definitions
I —L iy Lt Lt Dy ~ - — 1
o “ U i L NI R (4D
=L—1< (I)L (31) _
B Fro=Fro— Ly 'Lik- (42

with the definitions Further knowledge of the structure Bf can be derived

from the fact that Josephson junctions are always assumed to
be RC shunted, see Fig. 2. If we label the tree branches such
_ — that the firstN;=<N¢ capacitances are the ones shunting the
Le=Lk—LikL "Lik- (33 Josephson junctions Nc=number of capacitancesN,
=number of Josephson junctigrthen we find

L=L—L L]y, (32)

Note that the matricels andL « , being diagonal submatrices
of a symmetric and positive matrix, are also symmetric and 1

positive and thus their inverses exist. The operdtoandL S N (43)
as defined in Eqs(32) and (33) are invertible since_, ! TR Ongen, )

exists. Moreover, since the inverse of the total inductance

matrix, see Eq(31), is symmetric and positive, its diagonal Qc;
submatrices are symmetric and positive, and thyis>0. ch( Q‘)’ (44)
C
D. Equations of motion whereC denotes the capacitors which are not parallel shunts

In order to derive a Lagrangian for an electric circuit, we ©f @ Josephson junction. In general, the charges of these ad-
have to single out among the charges and fluxes a Comp|eggtional capacitors represent independent degrees.of freedom
set of unconstrained degrees of freedom, such that each as-addition to the shunt capacitor charg@g ;= ®(Ce/27r.
signment of values to those charges and fluxes and their fir&ut from this point onward, we will study the case where
time derivatives represents a possible dynamical state of thibere are no capacitors except the Josephson junction shunt
system. Using Eqg17)—(19), (21)—(26), (30), and(31), the  capacitordNc=N;. However, the resulting equation of mo-
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tion (61) with the definitions(62)—(66) still allows us to

PHYSICAL REVIEW B 69, 064503 (2004

Note that in the limit of large external impedandeg— 0,

describe pure capacitors by treating them as Josephson elge regularity conditions fok,, , Ly, L, , andL; all col-

ments with zero critical currerit, and infinite shunt resis-
tanceR. With this simplification
Fcy=Fcr=1, (45

and theg and ¢ can be chosen as thé\g generalized coor-
dinates and velocities that satisfy the equation of motion

. 2

Co=—L, sing=R 1= g~ (Fo L "d

+Fozl ;™ @2+ Feglp), (46)
where we have used Eq84), (35), and(40), and introduced
Lyt=27l./®,, and (Y=Z,B)

EEl:(lL+ LilLLKL—lzl’I:KEKL)L_il, (47)

Foy=Fcy+Fell "t kL 'Lk Fiy - (48)

The remaining state variables obey the following linear rela-

tions:

Lo L i+ L L dy=a(e), (49)
Lo L i+ Lyl s Dy =ay(g), (50)

where we have introduced
Li=L+Fe DyFye (51)
Lzz=Lz+FrzbiFez, (52)
L z=Fr LkFrz, (53
Lz =FrzlcFi s (54
a(¢)= %F&éowx—FLEKFKBiB, (58)
ay(¢)= ;;FI:Z¢_ Frzl kFals - (56)

Note that in the absence of dissipatidrgl—>0, Egs. (49

and (50) are holonomic constraints for the variabld'BL,
since Eqs(49) and(50) can be integrated. i, , L7, and

(57)

Li=Li—Lizlz7la,

L_z:Lzz_LZLL[LlLLz, (58

are regular matrices, the solution to E¢49) and (50) is
given by

@ =LL, [a (@)L sLr7*a ()], (59)

D=L L, *[a¢)—LyL  a(e)]. (60)

lapse to the condition thdt, | be regular. The latter always
holds in the absence of mutual inductances between tree and
chord inductors, since in this cabg =Fy, and thusL, is
symmetric and positive, so that its inverse exists. Integrating
Egs.(59) and(60) from t, to t, using the initial conditiorall
charges and fluxes equal to zgrand substituting the solu-
tions into Eq.(46), we arrive at the classical equation of
motion for the superconducting phases

Co=—Lj'sing—R o~ Moo~ Mg+

2T b, 2T gy 61
By VPx g Sle: (61)
with

Mo=Fc L LL RS, , (62

N=Fc L Lt (63

Mg(w)=mL;,  (w)mT, (64)
m=Fcz—Feu(LiH) TRk CkFiz (65)
S=Fca—Feu(L ) TR LFke- (66)

Although the expressio(62) for the matrixM g is hot mani-
festly symmetric, we show in Appendix A that it is indeed
symmetric, i.e.Mgz M. This property ofM, allows us to
write the termMye¢ in the equations of motio6l) as the
gradient of a potential, see E¢77) below. The matrices
My(w) andR contain all the dissipative dynamics &f if all
external impedancegshunt resistops are removed, then
L, '—0and thusMy(w)—0 (R~ *—0). A proof of the sym-
metry of the dissipation matrikl ;= Mg, and a derivation of
the representation in Eq$64) and (65 can be found in
Appendix B.

Note that the coupling matri® to an external bias current

Ig can be obtained frorm by replacingZ by B. Physically,

this means that the external impedanZesan be thought of

as fluctuating external currents; in particular, if a bias current
is shunted in parallel to an impedanég,= *Fyxg (X
=C,K) then we findS==m. In deriving the equation of
motion (61), we have assumed that the external magnetic
fluxes and bias currents become time independent after they
have been switched on in the pa®t,—0, iz—0 (t>ty). In

the absence of mutual inductances between the tree and
chord inductorsl ¢, =0, Egs.(62)—(66) become somewhat
simpler,

Mo= FCLL[LIFEL’ (67)
N=Fc L . (68)
m=Fcz—Fe L 'Fr LkFkz, (69)
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S=Fce—FeLL (' Fki LkFks. (70 . 1
o U(p)= _Z L. cosg; + quTMOgo
L =L+Fg LgFe =L/, . (72)
2
T
It should be noted here that from now on, the shunt resis- + (}TO“’ (N®y+Slg), (77)

tors R can be treated as external impedances by selfijg
=Mgy+iwR™1; the only reason for treating the shunt resis-
tors separately is that more is known about the possible ar- 1 @,
rangement of the shunt resistors in the circuit. We will HS=§QEC‘1QC+(2—
mostly concentrate on external impedances in our examples m
and neglect the shunt resistors, because in our exarfples where the canonical momenta corresponding to the flux vari-
>Z. If, in turn, the external impedances are pure resistorsablesd /27 are the capacitor charges
i.e., Z(w) is real and frequency independent, then they can
be described as corrections®y i.e.,R"=R+Z. 2m Ly Dp .

A few important remarks about the form of the mathiy, Do 90 = ZCSD: CVce=Qc.-
are in order.(i) We know thatM(t) is real, causali.e., ¢
My(t)=0 for t<0], and symmetritVl 4=M (Appendix B.

or, equivalently, from the Hamiltonian

2
U(e), (78

A dissipative term in the equations of motion with these IV. CANONICAL QUANTIZATION OF = Hs AND
properties can be modeled using the Caldeira-Leggett SYSTEM-BATH MODEL
formalism! (ii) In the lowest-order Born approximation, i.e., In this section, we quantize the classical theory for a su-

perturbation _t?eory in the equation of motion in the smallperconducting circuit that was derived in the previous sec-
parametersZ; - (see below the contributions tdMy from  tion. The conjugate flux and charge variabieandQc now

different external impedanceS are additive, in the sense thwave to be understood as operators with the commutation
one can calculateVly for each impedanc&; separately, relations

while Z;.;—, and then add the contributions in order to
obtain the full coupling Hamiltoniafsee Eq(82) below]. In

the same manner, the decoherence rates due to different im-
pedances will be additive in the lowest-order Born approxi- ) oL _ )
mation. An exact statemeriindependent of the Born ap- In ord_er to mclu_de the_d|35|pat|ve dynam|cs_of_ the classical
proximation) can be made it_gl can be written as a sum in equation of motior(61) in our quantum description, we fol-

which everv term contains onlv one of the impedanz low Caldeira and Leggeftand introduce a battreservoiy
. . _y N y P F5  of harmonic oscillators describing the degrees of freedom of
since in this cas#l =X, * Mg ; whereN; denotes the num-

the external impedances. We will restrict ourselves to the
ber of external impedances aMj ;(w) describes the effect case of a single external impedance coupled to the circuit
of Z;. From now on, we will study the case of a single (this is sufficient to describe the general case in the lowest-
external impedance, bearing in mind that in lowest-order perorder Born approximation, see Sec)llIFor the Hamiltonian

turbation theory the results obtained in this way can easily bgf the circuit including the external impedance, we write
used to describe the dynamics of a system coupled to several

external impedancesiii ) In the case of a single impedance, H=Hs+Hg+ Hsg, (80
My(w) has the form

P

>, ¢1:Qci =ihé

i - (79

p2
My(@) = uK(w)mmT, (72) Hfg% —a+mawi><i>, (8)
71
Mlor=tz o) 79 Heg=m- 03 Coxot AU(9), 82
p=|m|?, (74)

whereHg is the quantized Hamiltonian E¢78), derived in
i =il Sec. lll, Hg is the Hamiltonian describing a bath of harmonic
m=m/u=m/[m], (79 oscillators with(fictitious) position and momentum operators

where K(t) is a scalar real functionq is the normalized Xa @NdPa With [X,,pg]=i% 5,5, massesn,, and oscillator

— . — frequenciesv,, . Finally, Hsg describes the coupling between
vector parallel tan, and/u is the length of the vectan (u theqsystem and bath )éegrSeBes of freederands P W%erec

is the eigenvalue of the rank 1 matrixm’). is a coupling parameter am is defined in Eqs(65) and

_ The dlss_lpatlon fre_eF@,Z—m, Md=0)_ part of the clas- (75). The termAU(tp)z(m-¢)22ac§/2maw§ compensates
sical equation of motiori61) can be derived from the La- o energy renormalization caused by the system-bath inter-
grangian action (first term.” It ensures that, for a fixed value of

d\2(1.. . ; _
£O=(ﬁ) (E‘OTC‘P_U(@), 76 minU(¢) + Mal{xu)) + Hsdl o (xa)1=Ule), (83

064503-8
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or, equivalently, that for allp

Ti?[HB({Xa})+HSB(¢1{Xa})]:0' (84)

The termAU (¢) will not be relevant for the Redfield theory

to be derived below.

In Eq. (82), we have already anticipated the form of the
system-bath interaction. In order to verify this and to deter-T
mine the spectral density of the batthe masses, frequen-
cies, and coupling constants will only enter through this
guantity, see beloyy we derive the classical equations of
motion from the Hamiltonian Eq@80) in the Fourier repre-
sentation. The equations of motion for the bath variables are

— ®?M X,=—M,w>X,—C,M- . (85)
Solving forx,, we obtain
m- ¢

Xo=Cp————— (86)

a 2 2
ma(w - wa)

The equation of motion fop is

2com du 2\ 8
0 Le= agg (DO m ~ CaXy ( 7)
Using Eq.(86), we find
Ju 2\? c2
T o e
¢ dp | Dg ( go); ma(wz—wi)

(88)
Comparing Eq(88) to the Fourier transform of E¢61), and

using the decomposition Eq&72) we obtain the expression

PHYSICAL REVIEW B 69, 064503 (2004

Comparing the imaginary parts, we have identified the spec-
tral function of the bathup to prefactorswith the imaginary
part of the functiorK () derived in Sec. Il from the theory

of electrical circuits

] R 93
5] MK(w). (93
he real parts of Eq(92) agree due to the Kramers-Kronig
relation forK(w),

Jw)=—pu

2 o o' ImK(w")
ReK(w)z——Pf do'———, (94)
T Jo 0w —w'
which can be derived from the causality relati&ift<<0)

=0, following from Eq.(29).

V. MASTER EQUATION

Starting from the quantum theory for an electrical circuit
containing Josephson junctions and dissipative elements
(78—(82) we derive in this section a generalized master
equation for the dynamics of the Josephson phases only. The
equation of motion for the density matrix of the whole sys-
tem (superconducting phases plus reservoir modes in the ex-
ternal impedancess given by the Liouville equation

p()=—i[H,p(t)]=—iLp(1). (95)

Following from Eq.(80), the Liouville superoperataf is the
sum of the Liouville superoperators corresponding to the
parts Eqs.(78), (81), and (82 of the HamiltonianL= Lg
+Lg+ Lsg, WhereLyp=[Hyx,p] for X=S,B,SB. In order

to study the dynamics of the system without the bath, we
take the partial trace over bath modes

ps(t)=Trgp(t). (96)
From Eq.(95 and with the additional assumption that the

The spectral density of a bath of harmonic oscillators is dejnitjal state of the whole system is factorizable into a system

K(w) 1(% 2 c (89)
w_# by @ ma(wz—wi).
fined ag
2
J0)= 2 S s w,); (90)
2 % myo, “r
combining Eqs(89) and(90), we arrive at
Ko 1/2m szwd o' J(w") o1
(= @) 7o 4 gz Y

We now use the replacemeffw) —K(w+ie€), sinceK(w)
is a function of the external impedanZ¢w), see Eq(29),

1
=lim —=P —imé(ow' —w)
w—w' cow—w tie o—o'
and obtain
K _1[2m\? 2wad 0'J(w) 3
ST A L Mg |

(92

part pg(0) and an equilibrium bath part

pe=Zg exp(— BHg), (97)

with the bath partition functionZz=Trexp(—BHg), B
=1/kgT being the inverse temperature, we obtain (#neac)
Nakajima-Zwanzig equation

. t
pe(t)= —i Leps(t)—i fodt’z(t—t'>ps(t'>, (99

S (t)ps=—i Trg L sge ' Lspps®pg, (99

where we have used that the interaction Liouville superop-
erator has the fornfgg= L 2x® £ S whereL 3gand £ B are
system and bath superoperators, respectively, and that
TrB(EEBpB)=O. The projection superoperatdPsandQ are
defined as

Pp=(Trgp)®ps, (100

Qp=p—Pp. (101

064503-9
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The Nakajima-Zwanzig equatioi®8), with Eq. (99), is a %
formally exact and closed description of the dynamics of theRamki= L dt Trg(n|[Hsg(t),[Hse(0), k(1) ){I(t)| pg]lIm),
state of the systemyg, but it is rather unpractical since it still

. ] X . . (108

essentially involves diagonalizing the complete problem in
order to evaluate the exponential in H§9). However, the using the interaction Hamiltonian and system eigenstates i
problem can be substantially simplified in the case of weakhe interaction picture
coupling, i.e., if| Lsd| <[ Ls+ Lg|. We assume that the cir- i(Hes ot (et et
cuit contains a finite number of external impedances. As we Hsp(t) =e' Vs 7RI ggo™ (TisT 7B, (109

ill see below, the weak coupling condition is satisfied here . -
it i e WERK COTPInG condion 5 SaTE k(1)) = e k) = ¥k, (110

Further evaluation of the commutators in Ej08) yields

o g ogng 2@ kT (102
@ij @ oo @i Ramki= 5Im2 Fg?r)k—’_ﬁnkg NSRS NOTES N
hold for transition energies;; between all possible levels (111

i #], whereJ(w) is given in Eq.(93). If the coupling of the

external impedance is strong~1, then the conditioi102) +) _ |7 g aite 7 oy
requires that the involved impedanceesistance is large Dimni= 0 dte” " “nkTrg Hgp(t)imHse(0)nkos
compared to the quantum of resistance (112
F:§ﬁ¢g- (103 L= fo dte™""“Im Trg Hsg(0)imHse(t) nkPs »

(113

Z R>

In the regime of Eq(102), we can expand Eq99) in orders _ _ _
of the system-bath interactiofisg. Retaining only the terms  With Hsg(t)nm=(n|e""®H sge™""8|m). Note that, using
in first order(Born approximatiohyields the relation {'{}) )*=T'{, ) the Redfield tensor can be ex-
pressed in terms of, e.g., the compléﬁmktensor only. For
S,(t)ps=—i Trg Lgge 'RUs LBl Lo nc@pg, (104  our system-bath interaction Hamiltoniéd2), we obtain

where the projecto® in the exponent can be dropped with- +) _ e~ Aon?
out making any further approximation. Rel' = (M- @) jm(m- ¢)nkJ(|wnk|)—Sinhﬁ|wnk|/21
The master equation E98) in the Born approximation

Eq. (104, although much simpler than the general 2 w0 o)
Nakajima-Zwanzig equation, is still an integrodifferential  Im Ff;%kz—(m-¢)|m(m-¢)nk—Pf do——
equation that is hard to solve in general. Further simplifica- m Jo W™ Wpg
tion is achieved with a Markov approximation B

) X w_wnkCOthT)- (114

ps(t)=—iLsps(t) = Z5(D)ps(t), (105

w VI. TWO-LEVEL APPROXIMATION
Regy ¢ ’ "\ ait’ £
S5(t)= |fo dt’Z (t")e" s, (108 If a system is initially prepared in one of the two lowest

energy eigenstate€) and 2 and all ratesR, for k,l
Markov approximations rely on the assumption that the tem=0,1 andn,m+#0,1 are negligible compared to the rates
poral correlations in the bath are short lived and typicallyR,,, for n,m,k,I=0,1 (a sufficient criterion for this being
lead to exponential decay of the coherence and populatiofow temperatureBw,,> 1), then we can restrict our descrip-
In some situations, e.g., for fLlhoise, the Markov approxi- tion of the system dynamics to the two lowest levels. The
mation is not appropriat®?® Also, note that the Markov ap- 2-by-2 density matrix of the system, being Hermitian and
proximation is not uniqué® having trace equal to 1, can then be written in the form of
The master equation in the Born-Markov approximationthree real variables, the Bloch vector
(105 and (106) can be cast into the form of the Redfield

equation®’ by taking matrix elements in the eigenbalis poit P10
of s (eigenenergies) p=Tr(ap)=| i(Por—p10 |, (115
Poo~ P11

Pam(t)= _'w“mp“m(t)_% Ramwpia(t),  (107) where o= (o, 0y,0,) is the vector composed of the three

Pauli matrices.
where p,,={n|pg M), @pm=w,— oy, and where we have By combining the Redfield equatidf07) with Eq. (115),
introduced the Redfield tensor we obtain the Bloch equation

064503-10
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p=wXp—Rp+po, (116)
with = (0,0w0,) ",
—(Ro111t Roa00
Po= Ro100t Ro111 (117

- ( ROOOO_ Rlll:l)
and the relaxation matrix

! ! " " ! !
Roio1t Ro110  Ro1o1~Ro110 Roio6~ Ro11a

4 4 ! ! " "
- R0101_ R0110 R0101_ R0110 - R0100+ R0111 s

2Rg001 Rooo1 Roooot Ri111
(118

Whereankl ReanklananmkI IM Rpm.-

If wo>R,mki,» We can make the secular approximation,

only retaining termsR,, i) Wwith n—m=k—1I (see, e.g., Ref.
29),

0
0

Roio1  Rotor
—Roi01 Roior (119

0 0

Rse™

! !
Roooot R1111

The off-diagonal ternRg;; can be absorbed into the system

Hamiltonian as a frequency renormalizationg;= wo;
0101 @nd we are left with the relaxation matrix

' 0 o0
R=| 0 T,' o0 |, (120
o o T;?

where the relaxation and decoherence times are given by

T = Roooot Ri11=2 ReT Gt Migdy,  (120)
1 1 1
T, R0101:2_-|—1 +Re(Todgt Tt~ 2T o) = 2T, + T,
(122
1 - (+) (+) (+)
T, =Re(I'o000T I'1141~ 2T 001)- (123
Using Eq.(114), we obtain
x =4[(0 1)|2 hoot 124)
=4|(0lm- ¢|1)[*I(woy) cot 2k T (129
¢—|<O|m ©[0)—(1|m- €0|1>| 2kgT.
w—0
(125

PHYSICAL REVIEW B 69, 064503 (2004

A. Semiclassical approximation

Let us assume that the potenti&({¢) describes a double
well with “left” and “right” minima at ¢, and¢g. Further-
more, for the moment we make a semiclassical approxima-
tion in which the left and right single-well ground stafés
and|R) centered atp_g are localized orbitals, i.e., they do
not overlap each other. Then the two lowest eigenstates can
approximately be written as the symmetric and antisymmet-
ric combinations ofR) and|L):

1 / € / €
1 € €
|1>=E \ll—w—m“-)— \/1+w—01|R)>, (127

wherewo;= VAZ+ €%, A=(L|HgJR) is the tunneling ampli-
tude between the two wells, and=(L|HgL)—(R|HgR)

the asymmetry of the double well. Sin¢e) and |R) are
localized orbitals, we can approximate

(LI¢IR)~0, (LlglL)~¢, (Rlg|R)~¢r.

From Egs.(126)—(128) the eigenstate matrix elements are

(128

(129

€
(0[¢0)~(1l¢|1)~——Ae, (130

01
where Ap=¢, —¢r. Finally, the relaxation and pure
dephasing times for a double-well potential in the semiclas-
sical limit becomes

1_(A 2A 2] heooL 131
T, | ooy |A¢-m[?J(wqy)cot 2k T (131
! ( < 2|A 2@ T a2
—=|— -m|*—— :
T¢ Woz ¢ w w—0 °

In this semiclassical approximation with localized states, the
relaxation and decoherence times both divergkdf can be
made orthogonal tan. For a symmetric double well¢(
=0), T,— for all Ae.

B. Quantum corrections

Quantum corrections to the semiclassical approximation
discussed in Sec. VI A can be estimated by taking into ac-
count the finite spread of the wavefunction about its center,
using a(approximate quadratic Hamiltonian at the potential
minimum

Typically, T, can be made to diverge by changing the exter-

nal fluxes untiO|m- ¢|0)={(1|m- ¢|1). It can be expected,

however, that this divergence will be cut off by effects that

(133

1 _ Do\2
=35 QcC lQCJF(Z) ¢’T|-|inl€0}'

are beyond the present theory, e.g., other noise sources,

higher-order corrections, or non-Markovian effects.

where
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_ __[CoS @ Rii) ~ ~ (1-g)er*+29(g—S
Lunl=|\/|o+dla€< L ) (134 gy LTOe,R200-9¢0 o
i 1-2Sg+g?

Rescalinge and its conjugate momentu@c, and the difference

1 27~

Pi= = T @i s
RS

1+ 7) A =8
(147

whereSis defined in Eq(140). By replacing|L) and|R) by
|L) and|R) in Egs.(126) and(127), we obtain

LoDy~ RlelR=—9 4
¢ AT osgrg? ¥

: (135

2 ~
- -1
o= (DO\/C @,

Qc=VCQc, [Qc:i=VCiQc:] (136

we obtain the Hamiltonian

1 1
H=5(Qcte Qe)=3 Qc+§i: wi(&i¢e) ) (137 <o|¢|1>~§;(1+7 Ag, (148
where the invers&C matrix is defined as )
€ S
Q=(JC HTL 1T, (139 (0l¢l0)—(1lel1)~—| 1+ = |Ae. (149

and we have diagonalized t@ matrix Q&=w/&. The  Note that in this semiclassical approximation using Gaussian
ground-state wave function of the harmonic oscillator Hamil-orbitals, bothT andT,, Egs.(131) and(132), and thus also
tonian(138) is a Gaussian centered at the Igft or right(R) T, are renormalized by a factor ¢15%2)"%, but for the
potential minimum symmetric double well =0), T is still infinite.

@\ N2 Ny Ciw; | M4
W<¢>=<¢|L,R>:(2—7‘j) H(W—‘ﬁ”)

=1

VIl. LEAKAGE

We can go beyond the two-level approximation, e.g., by
looking at the leakage out of the two lowest levels. Within
: the secular approximation, the total rates for transition out of

N
xexp[ -2 wi(z) [£C(e= e R ' .
the allowed qubit statelk) (k=0,1) can be written as

(139

. . . 1 w
The wave function overlap integral between the left and right 5 nlm- @l k3 23(wo)coth—" (150
state is found to be TLk ; [(nlm- o} win) 2kgT (150

As an example, we model leakage by adding two addi-
: tional levels|2) and|3) to the allowed logical qubit states
|0) and|1) and derive the typical rate for transitions from
(140 |0,1) to |2,3 due to the coupling to the environment. In
Note that in the classical limit, where all capacitanCgsire  analogy to Eqs(126) and (127), the excited states originat-
large, the overlap tends to zerd,|R)—0. Introducing the ing from two coupled single-well excited statgls’) and

1/® 2Ny
SE<L|R>=exp[ - 5(2—7‘;) S wi(§CAp)?

=1

orthogonalizedWannie) orbitals |IR") can be written as
~ IL)—gIR) 1 € €
IL)=F——5 (141 2)=—| \J1+—|Ly+\/1- —R")|, (151
J1-2Sgt¢? 2=7 Pl o R sy
~ IR)—glL) 1 € €
IR) = ——s. (142 3 =—( 1- —|L"y=\/1+ —|R’ ) 152
J1-2Sg+¢? 3=7 Pl o R)|: 152
1-J1-S where wy3=VA’?+ €% and (L|L')=(R|R")=0. We model
9= —5 (143 the coupling to the lowest two levels by the perturbation
Hamiltonian
we can derive the matrix elements
o H' =~ 8(|L)(R'|+|RYL'|+H.c) (153
(L|¢lR)=0, (144 o
and denote the energy splitting between the lowest two states
2 _ ILY, |R) and the higher energy statds’) and|R’) with 7.
T JelD) = (1-9%)¢+29(9 5)¢o’ (145  In the regimey>A,5,e>A’, the matrix elements of the
1-2Sg+g? phase coordinate in the coupled statel) are found to be
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Blef®)~—(leD)~ = A1+ SAp (158 S T T
¢ ‘P - \/E n w ¢1 MO:B_ _L3 L1+L3+L4 _Ll_L4 s
0 _L2 _Ll_L4 L1+L2+L4
~ e 16 € 160
<0|¢|2>~<1|¢|3>~ﬁ;\/1—5A¢. (159 (160
Lo+Lg L,
The dominant leakage occurs with the rate N=—| —Ls Li+Ly (167
Bo ’
L4 2| Al 23(m)coth=—" (156 e Thbh
—=4|—] Im- cotng/——.
T, 7 e 2kgT where
Note that(thermally activateflleakage is not relevant it Bo=LL,+LsLa+ LoLa+LoL,+Laly. (162

<7, in spite of a finite rateT[l, because the population of
the excited states in thermal equilibrium is exponentiallyFor the dissipative part, we use H§9) and Eqs(73)—(75),
suppressed. with the result

K(w)=By/B,,,

VIII. THE IBM QUBIT (163

In this section, we use the theory developed in Secswhere B,=LiLoLg+L4LoLs+LqLsls+ Lol (w)
[11-VI to describe decoherence and relaxation in a supercon+ L;LsL,(w) + LoLsl,(w) + LoLyL,(w) + LslsL, (o),
ducting flux qubit design which is currently under experi- which allows us to determine the spectral dendity) of the
mental study by a group at IBM. This superconducting cir- bath using Eq(93), and
cuit resembles a dc SQUID, with one Josephson junction

replaced by another dc SQUID, see Fig. 1. The circuit thus - L2(L3+1L3) +[Laly+ Ly(Lg+Ly)]?

comprises three Josephson junctions in total. This design has n= > , (169
the advantage that it provides a high level of control. There Bo
are three externally adjustable parameters; the external mag-
netic fluxes threading the largémain) loop and the smaller Lals+La(LstLy)
(contro) loop, and the bias curremg . m= Lyl (165
Bovp L
12

A. Current biased circuit

We first study the decoherence due to a current source thafince the bias current in_shunted in parallel to the external
is attached to the circuit, see Fig. 1. It is unavoidable that thémpedance, we find=—m=—um. We can further sim-
external current source will also introduce a coupling to arplify the expressions in the case of symmetric lodps
external impedancg. In our model, this impedance is con- =L, andL;=L,,
nected in parallel with an ideal current source. The imped-

anceZ(w) as a function of frequency can be determined 4L,+1L,
experimentally® Klo)=— : (166
We choose the tree shown in Fig. 3 for the graph repre- 2litLilotall,+LoL,
senting the IBM circuit N=6 nodes andB=15 branches
and obtain the following network graph characteristisse 6L§+4L1L2+ Lg
Sec. IlI), M= (167
(4L4+L>y)
1 0 0
1 1 1 L 2L1+Ly
Fo=| — , Fcz=—Fcp= , (15
CL cz CcB ( 7) m= _ _ Ll ) (168)
0 -1 0 VBLI+4L,L,+L5

-1 1 1
Fre=|_y o) Fre=—Fee=| ] (159

The linear inductances are given by

L, O L, O )
L= L= Lk,=0. (1
O L3 y K 0 L4 ’ KL O ( 59)

Using Egs.(67) and (68) with Egs.(157), (158, (159, we
obtain the parameters for the Hamiltonian

Ly

Moreover, if the control loop inductance is much smaller
than the main loop inductantg>L,, we obtain the asymp-
totics

1 iw

K= o TTwt L2~ Z(w)’

(169

3 170
M~§y ( )
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FIG. 5. The flux-biased IBM qubit. The coil
inductanceK, can either be coupled to the main
loop via a mutual inductance to, or to the con-
trol loop vialLs.

2 and the spectral density and form of coupling of the dissipa-
d th | densi df f li f the dissi
_ 1 1 tive environment. The network graptNE 7 nodes,B=15
m=~ % : (171 branches shown in Fig. 5 has the following characteristics:
1
1 0
The second approximation foK(w) is suitable if w | _ _
<Z(w)/L; which holds for @<w, g~150 GHz for Z Fe={ =1 1], Fez=Fcg=0, (172

~100Q andL,~100 pH. In Fig. 4, the relaxation and de- 0 -1
coherence time3; and T, in this regime are plotted as a
function of the externally applied magnetic fldx,, using a -1 1 0
numerical solution of+s. FKL:( ) FKZ:_FKB:< B ) (73
S 0 0 1

There is an intuitive explanation for the simplified result
(171; both an external bias currehg and the current fluc- The structure of the inductance matrix depends on whether
tuations from the external impedangeare split equally be- the external flux is coupled to the main loop or the control
tween the right and left half of the main lodfhe two halves loop.
having equal inductancesFor this splitting of the current
(fluctuations, the inductance of the control loop is irrelevant, 1. Main flux bias
since it is negligiblle compared to the induqtance o_f the main £ an external coil coupled to the malarged loop, the
loop. The current in the left half of the main loop is further ;. 4 ,ctances are
split equally between the two halves of the control Igbav-

ing equal inductancesThus, the ratio of currenffluctua- 2L, 0 L, O
tions) flowing through each of the Josephson junctions is L:( ) K:( )
2:1:1, which is reflected in the coupling vectorfor current 0 Ls 0 L

fluctuations from the bath to the superconducting phases

pertaining to the Josephson junctions in the right half of the 0 M

main loop, and the right and left halves of the control loop, L= 0 0

and also in the vectd® describing the coupling of an exter-

nal current to the superconducting phases. whereL. denotes the self-inductance of the coil avidthe

mutual inductance between the coil and the main loop.
Since the system without external coupling is the same as

for the current-biased version, the system Hamiltonian, i.e.,
Further control for the system shown in Fig. 1 in additionthe expressions foM,, N, andB, are the same as for the

to a current bias line can is achieved by inductively changingurrent-biased circuit, Eqg160) and (161), with L,=L;.

the magnetic flux through the two loops, see Fig. 5. This typerhe spectral density is obtained via E§3) and the result

of control also potentially introduces decoherence due tX(w)=B,/B, where B,=2L(L,+L3g)(L¢+L,)—LzM?

fluctuations of the external fluxes. Another way of looking at+ | ,[L5(L.+L,)—M?2]. For » andm we find

this effect would be to say that, again, current fluctuations

, (174

B. Flux biased circuit

are caused by an external impedance in the coil producing 2(L2+L,Ly+L2)

the flux; subsequently, these current fluctuations are trans- w=M?2 2 3 , (175
ferred to the superconducting circuit via a “transformer,” [LoLg+2Ly(Lo+Lg)]?

i.e., via the mutual inductance between the coil and the su-

perconducting qubit. As in the case of the external bias cur- —(Ly+Ljy)

rent, the decoherence processes are unavoidable if external m= 1 L (176
control is to be applied. The method introduced above can be L2+ L2+ (L,y+Ly)2 *

used in the same way as before to derive the Hamiltonian L,
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I3
FIG. 6. The graph representation of the Delft
qubit. The “qubit” loop (right) involves three Jo-
Iy @ v J sephson junctiond; (i =1,2,3; thick liney and is
2 inductively coupled to the SQUIDor read-ouk
loop (left) which comprises two junctions and
can be current biased.
L "
We study the following _special cases of this result. If the 216L§+L%—L2L3+L§+4L1(L2+L3)
control loop is symmetricL3=L,, we obtain the simpler w=M > , (183
expressions 2[LoLa+2Ly(Lo+L3)]
4L, +L,
K(w)= ;a7 m= !
ALy(Lc+Ly)+La(LetLy)—2M VAL + L)%+ (4L, +Lg)%+ (Ly—Lj)?
M2 . -2 —Ly+Lj
u=——— m=—| 1 |. (179 x| —(4Ly+L3) |. (184)
(4L1+Lp)? 6
1 aL,+L,

If for a symmetric control loop, the control loop inductance gjnce the bias current is shunted parallel to the external im-
is much smaller than the main loop inductance, i.e.,Lfpr e .
pedance, we fin&= —m= — \/um. For a symmetric control

> L2, we find loop L3=L,, we obtain
K(w) hia] “ (179 oL
w)= ~ , 2
4Ly(Le+Ly)—2M?  Z(w) K(w)= ~ : 18
tre )LL) —M? Z(w) (189
—3M2 (180
p=—. 0
8L1 M2 1
o o _ p=—s, m=-—=|-1]. (186
The second approximation foK(w) is suitable if w 2L5 J2

<Z(w)/L¢,Z(w)L1/M2. The intuitive explanation for the
result (178 is essentially the same as above for ELrl), S . . .

. . . . _The second approximation foK(w) is suitable if o
with the difference that the inductively coupled current fluc <Z(0)/Lo, Z(w)L,/M2.

tua_tlons couple oppositely to the Josephson junction in the The result Eq(186) reflects the fact that in the symmetric
main loop. - .
case,Lz=L,, a control flux bias only affects the supercon-

ducting phases in the control loop. The two phases are af-

_ fected with the same magnitude of fluctuations, but with op-
An external coil coupled to the contr@mall) loop canbe  posite sign.

described by the inductances

2L, O L, —M/2 IX. THE DELFT QUBIT
= 1 K: 7 (181)
0 Ly -M2 L,

2. Control flux bias

As a further application of our theory, we study decoher-
ence in a superconducting circuit studied experimentally as a
0O O candidate for a superconducting flux qubit in Refs. 14, 15.
Lik= 0 M2/ (182 The circuit consists of a ring similar to a dc SQUID but with
three junctions, see Fig. 6. For readout, a dc SQUID is in-
where L. is the self-inductance of the coil and is the ductively coupled to the three-junctiofubit) loop. The
total mutual inductance between the coil and the controteadout SQUID is current biased in order to find its critical
loop. Again, the expressions fdavl,, N, and By are the current. The value of the critical current can then be used to
same as for the current-biased circuit. We fihdw) determine the state of the qubit loop.
=By/B, Wwith B,={—LsM2+8L[Ly(Ls+L,)+Ls(L, This circuit network graph characteristics of the Delft qu-
+L,)—M?]+L,[4Ls(Ls+L,)—M?]}/4, and bit are (N=8 nodesB=20 branches
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-1 0 0 only quantize the light degrees of freedom, viewing the mas-
1 0 0 sive degrees of freedom as part of the environment.
Fe=| —1 0|, Fez=—Fcs=| 0|, (187 A. Linearization of the dc SQUID
0 -1 1 . ..
We start by linearizing the uncoupledi(=0) SQUID.
o 1 0 The equations of motion for the SQUID are
FKL:(O _1), FKZ:_FKB:(]')' (188) C, 1
We use the following assignment for the inductances: S (eL=¢er)=— 2_|_3(Si”‘1"L_Si”‘PR)
L MR ML l (I)’
L:(MR e/ Le=(L1), L= M’)' (189 _F(QDL_(PR_ZWaZ)y (193
whereL andL’=L, +Lg are the self-inductances of the qu-
bit and SQUID loops, respectively, ail=M + Mg is the c 1 20
mutual inductance between the two loops. The self- 7((p|_+ PR)=— T(sincpﬁsin PR+ aIB
inductance of the SQUID loop and the mutual inductance are J 0
divided into partd; and M corresponding to the left half — uK* (oL + @R)(1). (194)

of the SQUID loop and parteg and Mg corresponding to

the right half of the SQ'UID loop. We introduge the following ow we make the expansion
notations and conventions. The Josephson inductances of the
five junctions are given by ;,;=L;,=L; andL;3=L,/8 .
for the three qubit junctions, ant;. r= L} for the two oL r(D) =@, g+ d¢L r(1), (195
SQUID junctions. The superconducting phase differences

across the five junctions are denoted withe  \yhereg,  denotes the steady-state solution of the classical
=(¢1,¢2,¢3,¢L,¢r), and the capacitances of the five junc- gquations of motion(193 and (194. We first find this
tions areC=diag(C,C,C,C',C’). The externally applied steady-state solution in the absence of a bias curignt,
fluxes threading the qubit and SQUID loops are described b)éO, usingL’ <L) and assume/ # d/2, with the result

the vector®,=(d,,d;). In the symmetric casd, =Lg )

=L'/2, M_=Mgr=M/2, we obtain

(D/
L' L' L M M =R =g (196
L’ L’ L -M M
M= 1 L’ L’ L' —M M Next, we allow a finite but small bias curredg<<l/
L —Mm2 MM M L Ll =dy/27L), and withg, g=¢{°k+ 5S¢, g we find
M M M —L ,
SoL=Spp= Hile (197)
(190 PLTOPRT T g cod md /D)
-L" M
—-L' M Starting from the steady-state solution, we can now derive
1 UM the linearized SQUID dynamic8e(t). We assume that the
N= LL —M?2 (191 external impedanc&(w) contains a sizable shunt capaci-
M —L tanceCy>C' and thatw<1/{L'C’' (=~1500 GHz for typi-
-M L cal valuesC’'=1 fF, L'=10 pH). Under these assumptions,
o the effect of the external impedanZe=1/i wCg, is to make
for the Hamiltonian and the coordinatep, + ¢g very “massive,” i.e.,
K() o (192 i0Cqy [t Cen
= T S ! ! she
@ Z(w)+iwl'/4 Klw)~——, fOK(t—t Jo+ ()~ 77 (),

w=1/2, m=(0,0,0,1,1)42, andS= — \um. (199
Instead of quantizing the classical Hamiltonian E80), ) o

with Egs.(190) and(191) we will linearize the dc SQUID in  the “mass” beingC’ + Cy{4~Cg{4. In order to eliminate

order to separate the degrees of freedom that become vefL + ¢r from the classical equations of motion, we introduce

massive under the influence of the external impedance fror+=@L* ¢r and expand Eqs(193 and (194 about the

the other, light degrees of freedom. Subsequently, we wilsteady-state solutiog. = ¢ + ¢,
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I3
Z
3
/ J,
(o 1 c_
c’ . 2Ly L 2L, (&P—(w))
w2
2 c_ Cc, LK op ()
o oL ek
0) 199
- 0 ] ( )

where we have used the steady-state solution to define

!

C.=C0S@p, +COSpRr=2 COSWaX, (200)
0
_ — Lilg M
C_=CO0S¢p —COSpr=—27m——tanm—. (20))
g g

NeglectingC’ <Cg, in the equation of motion fofe, , we
can solve forde, (neglecting higher powers o),

-1
S¢_(w).
(202

Substituting this back into Eq199), we obtain the following
damping term in the equations of motion fép _

S0 (@) iwlL}/2
=—c_|c,t—————
Fe T Z(w)tiwl' /4

c_ 50 (o) iw
— ©0)=— 0
2L} P+ Z(w)

S¢_(w), (203

with  the  effective = SQUID  inductance L,

=L}/4 cosrd,/Py)=L}/2c, and the effective external im-

pedance

i Sl A PR i )
Z(w)——zt(w) —,tan’TTao ) (04)

l Cc

wherel/ is the critical current of the SQUID junctions and
the total impedancéheavy SQUID degree of freedom in

parallel with external impedancé) is defined through

1 1

Zt(w):(. — -
oLy Z(w)+iol'/4

-1
) . (205

PHYSICAL REVIEW B 69, 064503 (2004

FIG. 7. Circuit representation
of the Delft qubit with a linearized
I, SQUID. The analysis is simplified
due to the absence of tree induc-
tors (K).

The effective external impedanieis much larger thamL |

for 1g<<1/ or for sinm®,/Py=~0. Thus, unlikede . , the re-
maining degrees of freedofcluding d¢_) are weakly af-
fected by the effective external impedance and will be de-
scribed as quantum mechanical degrees of freedom.

B. Description of the light degrees of freedom

After having eliminated one degree of freedom from the
SQUID, the remaining four degrees of freedorp
=(¢1,02,93,00_) will are now described by the Hamil-
tonian (80) with the capacitance€=diag(C,C,C,C’'/2),
the Josephson effective inductances L;*
=diag(L;*,L;*,BL;1,0), and

L' L' L -M
1 L' L' L' -M
Mo=Domzl L L L -m
-M -M -M L
0000
10 0 0 0
*Tlo 0 0 of (206)
0001
L M
1 |- M
N=— sl L (207)
M —L

Since the part of the circuit that was coupled to the bias

current is described by, there is no coupling to a bias
current left, S=0. By inspecting Eg.(203, we find m
=(0,0,0,1),u=1, and

i
K(w)==——

S (208

The results Eq9206)—(208) for the reduced system can also
be obtained from the circuit drawn in Fig. 7 wi@,=C'/2
and the inductance matrix
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L M O
L= M L o (209
0 o0 T,
Using Eqgs.(131), (132, (208, and(204), we obtain
1_A2d>0)2 AleZ
T, ooy |27 Im-Ag g, RE t(@o1)
2’7T|B (I)),( 2 w1
X Totaﬂﬂao COthm, (210
L[ )& A¢|?Rez,(0
T, \ ol |27 Im-A¢|” Rez,(0)
2718 ot 22|< T 211
o, tamr(}#o gT. (211

We make the approximation that the SQUID is com-

PHYSICAL REVIEW B59, 064503 (2004

C. Asymmetric SQUID

Up to now we have assumed that the SQUID ring in the
Delft qubit is symmetric in two senses; namely, that both the
self-inductances of the left and right halves of the ring are
identical and the critical currents of the Josephson junctions
in the left and right halves of the SQUID ring are identical.
Both symmetries are certainly broken to some degree in real
physical systems. Below, we study both cases, i.e., the case
where the self-inductances of the left and right halves of the
ring are different(geometrical asymmetyyand the case
where the two critical currents are differgidunction asym-
metry).

1. Geometric asymmetry

We analyze the Delft qubit again with the inductance ma-
trix (189 and the asymmetric inductances

pletely classical; solving the classical equation of motion

(61) for S¢_ using Eq.(206), we obtain the stationary clas-

sical solution forde_ (with L",L<L},L;),

2
5(,0_2—3('\/“‘?‘@;(), (212
0

where we have used thatp;= —27®d/d,, whered is the
flux threading the qubit loop, ani — ®,=LI, wherel is the
current circulating in the qubit loop. The difference between

the two minimae (localized state$0) and|1)) is then @,
is constant

2

o, (213

and, sincd | = —Ig=I,
A 227TMI

Substituting the above result into Eq210 and (211), we
obtain

(214

1 A)ZZ 1 (2771\/”t ¢;)2RZ( )
—=4| — — anmT— eZ(w
T, Wo1 B‘001 ®q @4 nro
wo1
XCOthm, (219
! 4( € )2|2 ! (ZWMlt q);)zR Z,(0)2ksT
—=4| — — anmT — e ,
T¢ o1 Bw01 O3 Dy ! B
(2106

which agrees with earlier resuftsWe also obtain an esti-

mate for the leakage rate from E{.56),

1 (68\%,1(2aMI D, n
T

2
X
7 B; Totan'ﬁgo) ReZt(n)cothm.

(217)

M =1 Mg=|1 218
- +§ 2" R 22" (218
L=|1+5 —, Lg=|1—-% —L, 219

- 2) 2’ R 2) 2’ 219

where M +Mr=M and L +Lg=L". By linearizing the
SQUID, we obtain the result

w2 32[
Z(w)

SR
+a—SinmT——

Zw)=- I @,

[P
(220

This result implies that ifa>1g/1;, the decoherence rates
scale aslg /1. instead of (g/1.)? for a<1g/1.. Therefore,

!

for very asymmetric loopse>1g/l;, moderate bias cur-
rents can already cause large decoherence effects.

2. Junction asymmetry

For asymmetric critical currents, or, equivalently, asym-
metric effective Josephson inductances
L3 r=L3y(1=y/2), (221

we repeat the linearization of the SQUID keeping contribu-
tions of lowest order iny. Settinglg=0, we obtain

(222

1 1 0%
~—| 15| +0(¥?).
Cor LJ< 2) O

The steady state of the SQUID is then determined by the
following equations:

o ®!
ch—goR=—27Tao, (223
1—;1 sing, + 1+% Singr=0. (224)

We make the ansatz
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- Dy

PLRT T g0, (225
0

and obtain the resutj= —tan(7®,/®,)/2 and, finally,

o CD! ’y q)l
QDL,R: + 7T_X_ _tan7T_X
Do

5 > (226)

Comparing this to Eq(197), we see that in order to obtain
the Redfield tensor and the decoherence rates at zero bias

current in the presence of a junction asymmejgrywe sim-
ply have to make the substitution

g D,
— —ySInNmT—.
FEA

(227

PHYSICAL REVIEW B 69, 064503 (2004

VIW-WTV=FF, LY - YD Fy (A7)
where Y=([l)‘1—FKLX. The third and last step of the
proof is to show thatY is symmetric, i.e.Y=Y'. For this,
we rewrite Eqs(41) and(42) as

Cy=(g—LFe X)Ly, (A8)

EKL: FKL_ XTL_ (Ag)
Using these relations, we can show that L, '+ XTLX
which is manifestly symmetric. This concludes the proof that
Mg is symmetric.

APPENDIX B: SYMMETRY OF M p

Typical values for the junction asymmetry due to processing From Eqs.(46), (59), and (60), we obtain Eq(61) with
inaccuracies are fairly large;~10%. The effect of a junc-

tion asymmetry is more severe than the effect of a geometri-
cal asymmetry because for asymmetric junctions, decoher-
ence occurs even for zero bias currégt=0.

My(w)= FCL(EflL_LELlLLz
—L 7 kL CkFro)lz M) Lo LR,

ACKNOWLEDGMENTS +Fezl; H(@)[Féz— Lz L H(w)FE]
We would like to thank Alexandre Blais for valuable dis-
cussions. This work was supported in part by the National
Security Agency, the Advanced Research and Development
Activity through Army Research Office Contract No. _

DAAD19-01-C-0056, and by the DARPA QuIST Program Where we have used the identity Yw)L 7L 77 (w)
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FcL andFez,
APPENDIX A: SYMMETRY OF M, L o
: : o AL;'B AL Y\ [FL,
In this Appendix, we prove that the mati, defined in My=(Fc Fen)| - f ( ; ) (B2)
Eq. (62 is always symmetricM{=M,. This property is L;'B Lyt \Fez

required in order to find a potentidl(¢) generating the
force term—Mge in the equation of motion. We writ# g
=Fc VW ~'F, with

with the definitions

A=—T LMo+ LM kL k2 s

(B3)
V=L, L=1,+XLC«Fg,, (A1) ~ .-
- B=—Ly L =—FrlFa Ll (B4)
W=L =L+Fg CeFyy (A2)  Next, we show thaM4 must be symmetriéM =M, and
. . L -
with the off-diagonal block ot., from Eq. (31), thereforel ;=L andA=B".
The argument for the symmetry M is as follows. We
X=—L"1 Lt (A3)  consider a generalized model in which the external imped-
ance<Z and the linear inductancésandK are treated on an
XT= — Lo T [t (Ad) equal footing. For this purpose, we allow mutual impedances
- K LK ’

(generalized mutual inductangdsetweenZ and K and in-
and show tha¥W ~1 is symmetric, thus proving thal, is cludeZinto L by allowing frequency dependent linear induc-
symmetric. Note that in EqA4) we have used thdt, is tances and writind. () =Z(w)/i w. This leaves us with the
symmetric. As a first step of our proof, we note that thefollowing types of circuit elements; tree elements are either
symmetry of VW "1, capacitors C or linear impedancesK where Ly(w)
=Z(w)/iw, branch elements are Josephson junctios-

(VW™ hHT=whH~tvT=vw1, (A5)  linear inductors J, linear impedancesL where L(w)
is equivalent to the relation =Z, (w)liw, and external bias currens In addition to this,
q there can be frequency-dependent linear mutual impedances
VTW:WTV. (AG) ZLK(C!)), WhereLLK(w)ZZLK(w)/i w, between thd. andK

branches. The equation of motig6l) can now be derived

As a second step, we use Hg2) to show exactly as before, but in the frequency domain, the result
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being Eq.(61) without theM 4(w) term, since there are no try of the matrix. We have shown in Appendix A thit]
Z branches. These new equations include dissipation whicke Mg; this proof also goes through foM/, thus M("
is described by the(now frequency-dependeniMy(w), =M. SinceMg(w)=My+My(w) and bothM, and M
the prime distinguishing it from the “ordinaryM, (see are symmetric, we conclude that alst =M. Introducing
above. The matrixMj is formally identical toMg, up to  m=F¢ +Fc,A=Fc +FczBT, we can now writeM 4 in the

frequency dependencies which are irrelevant for the symmederm given in Eqs.(64) and(65).
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