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We propose schemes for generating spatially separated spin entanglement in systems of two quantum dots
with onsite Coulomb repulsion weakly coupled to a joint electron reservoir. An enhanced probability for the
formation of spin entanglement is found in nonequilibrium situations with one extra electron on each dot,
either in the transient state after rapid changes of the gate voltage or in the steady state with applied bias
voltage. In both cases, so-called Werner states with spin-singlet fidelity exceeding 1/2 are generated, which
indicates entanglement.
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I. INTRODUCTION

The entanglement of quantum states is one of the corner-
stones of quantum information processing.1 Entangled pho-
tons have been used in experiments in quantum communica-
tion and cryptography.2 For electrons in a solid-state
environment, recent progress has been linked to advances in
fabrication technology for nanoscale devices.3,4 The avail-
ability of an electron spin entangler in a solid-state environ-
ment would allow the implementation of quantum commu-
nication schemes with electron spins.5,6 Several schemes
have been suggested for the production of spatially separated
entangled electrons in solid-state systems. Many of them rely
on extracting the entangled electrons of a Cooper pair from a
superconductor and separate them into two normal leads,7

Luttinger liquids,8 or to two leads through two quantum
dots.9 Others are based on separating the electrons forming a
spin singlet on a double-quantum dot,10 using interference
effects in a quantum dot in the cotunneling regime,11 sepa-
rating a pair of entangled electrons from a singlet state by a
triple quantum dot,12 or scattering off magnetic impurities.13

In this paper, we show that a pair of entangled electrons
can be created by driving out of equilibrium a system of two
quantum dots with onsite Coulomb repulsion and weak cou-
pling to a joint electron reservoir. Specifically, we consider
the two setups depicted in Fig. 1. Electrons enter the dots
from the reservoirs, and we consider the nonequilibrium state
with one electron on each dot. In setup �a�, we study the
transient behavior after quickly pushing the dot levels from
above to below the Fermi energy of the lead and find an
enhanced probability for the singlet state as compared to a
triplet. In setup �b�, we drive the system out of equilibrium
by applying a bias voltage between left and right leads. De-
pending on the polarity of the applied bias, we find in the
steady state an enhanced probability of either the singlet or
the triplet states. The mixed states with two electrons in the
two dots represent so-called Werner states.14 In the case
where the electrons entered from the common �left� reser-
voir, we find regimes where the Werner fidelity is larger than
1/2, which implies a high probability for the formation of a
singlet state.

II. MODEL

The Hamiltonian of the system is

H = Hdots + Hleads + Htunnel. �1�

The two quantum dots, i=u ,d �up and down�, described by

Hdots = �
i
��

�

�ici�
† ci� + Uci↑

† ci↓
† ci↓ci↑� , �2�

contain each a single, spin-degenerate energy level �i. In
general, the dot levels are detuned by ��=�u−�d. We as-
sume strong Coulomb repulsion within each dot, U
�kBT ,eV ,�, which suppresses double occupancy of each
dot. �Our analysis can be generalized to finite interdot charg-
ing energy, which does not change the conclusions qualita-
tively.� The leads

Hleads = �
r

�
k�

�rkark�
† ark�, �3�

with r=L ,Ru ,Rd, serve as equilibrium reservoirs with elec-
trochemical potentials �r. The tunneling between leads and
dots is modeled by

Htunnel = �
r

�
k�i

�trici�
† ark� + H.c.� . �4�

The tunneling strength of quantum dot i to reservoir r is
parametrized by �ri=2�tri

2 Nr, where Nr denotes the reservoir
density of states, and we chose a gauge in which all the

FIG. 1. The setups: �a� Two quantum dots �u and d� are coupled
to a joint electron reservoir �L�. �b� In addition to �a�, the quantum
dots are coupled to two independent reservoirs �Ru and Rd� on the
right.
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tunnel amplitudes tri are real. We further define �r
��i�ri /2. For setup �a�, we have �Ru

=�Rd
=0.

Our proposal is based on the observation that the states in
the common left lead are only coupled to a certain linear
combination of the two quantum-dot states. If Coulomb in-
teractions were absent, U=0, filling the double dot with two
electrons with opposite spin from the common reservoir
would lead to the product state �tLu

cu�
† + tLd

cd�
† ��tLu

cu�̄
†

+ tLd
cd�̄

† ��0�= tLu

2 ���̄ ,0�+ tLu
tLd

��� , �̄�− ��̄ ,���+ tLd

2 �0,��̄�. For
strong Coulomb repulsion, however, the parts that involve
double occupancy of either dot are projected out, and the
final state is, �� , �̄�− ��̄ ,��, no product state but a spin sin-
glet. No triplet component, although energetically degenerate
to the singlet, is generated.

In realistic situations, various mechanisms will relax the
imbalance between the population of spin-singlet and triplet
states, e.g., tunnel coupling to the right reservoirs shown in
Fig. 1�b� or a finite detuning ��. Furthermore, a coupling to
an external bath which mediates spin-flip processes or cre-
ates a phase difference between the dot states causes an
equilibration between singlet and triplet. In this paper, we
study in detail nonequilibrium scenarios characterized by the
competition between the creation of singlet and triplet states
and the relaxation.

III. KINETIC EQUATIONS

For this purpose, we employ the real-time diagrammatic
technique developed for single quantum dots15 and extended
to multidot systems.16,17 In this technique, the electronic de-
grees of freedom of the leads are integrated out, which re-
sults in an effective description in terms of the degrees of
freedom of the dot subsystem only. The dynamics of the
latter is then described by a reduced density matrix with

elements p�
���	���	����, where � and �� label the double-dot

states and 	¯� denotes quantum statistical expectation val-
ues. In the present case, the Hilbert space of the quantum-dot
degrees of freedom is spanned by nine basis states ��u ,�d�,
with �i� 
0, ↑ , ↓ � denoting the occupation of dot i.

The time evolution of the reduced density matrix in the
Markovian limit is governed by the kinetic equations15

d

dt
p�

�� + i�E�� − E��p�
�� = �

����

W���
����p��

��. �5�

The energy difference E��−E� between states �� and � leads
to a time-dependent phase of the off-diagonal matrix ele-
ments. Transitions due to the tunnel coupling to the leads are

described by the kernels W���
����, the general forms of which

are given in Refs. 15 and 16. In the following, we restrict our
attention to the limit of weak coupling and small detuning
��, where it is sufficient to evaluate the kernels in first order
in the tunneling strength �ri and to zeroth order in ��.

To proceed, it is convenient to switch to a basis 
����
which reflects the symmetries of the problem. One of the
basis states is the empty-dot state �0���0,0�. For two elec-
trons, one in each dot, the natural basis states are the spin
singlet �S����↑ , ↓ �− �↓ , ↑ �� /�2 and triplet states �T+�
��↑ , ↑ �, �T0����↑ , ↓ �+ �↓ , ↑ �� /�2, and �T−���↓ , ↓ �. The

states with one electron in the double dot can be character-
ized by the physical spin � of the electron as well as by
an isospin defined in the two-dimensional Hilbert space
spanned by the two orbital dot levels. One natural quantiza-
tion axis n for the isospin operator I� is the one in which the
eigenstates of I� ·n are �+ �I�·n��� ,0� and �−�I�·n��0,��,
corresponding to the electron in dots u and d, respectively.
This is motivated by the observation that both the Coulomb
interaction and the detuning �� in the Hamiltonian is diag-
onal in this isospin basis. An alternative choice is the axis
m defined by �+ �I�·m��tLu

�� ,0�+ tLd
�0,��� /�tLu

2 + tLd

2 and

�−�I�·m��tLd
�� ,0�− tLu

�0,��� /�tLu

2 + tLd

2 . This reflects the fact
that filling the double dot by tunneling with one electron
from the left lead generates the isospin component �+ �I�·m

only.18 In this sense, the left lead can, in analogy to mag-
netism, be viewed as a fully isospin-polarized lead with only
	 isospin-electron states available. The right reservoirs in
setup �b�, on the other hand, correspond to an isospin-
unpolarized lead. In general, the two axes n and m are not
orthogonal, except for the symmetric case when the tunnel-
ing strengths to dots u and d are equal, as can be seen from
n ·m= ��Lu

−�Ld
� / ��Lu

+�Ld
�.

The total Hamiltonian is invariant under rotations in spin
space, i.e., spin is a conserved quantum number. Spin sym-
metry implies 	I↑�= 	I↓��I /2 as well as pT−

= pT0
= pT+

� pT /3, which reduces the number of independent density
matrix elements. Those are the isospin I and p
= �p0 , p1 , pS , pT�, where p1��i�pi� is the probability for
single occupation. In this representation, the kinetic equa-
tions read

d

dt
p = �

r=L,R
�r


− 4fr 1 − fr 0 0

4fr − 1 − fr 2 − 2fr 2 − 2fr

0 fr/2 − 2 + 2fr 0

0 3fr/2 0 − 2 + 2fr

�p

+ �L

2 − 2fL

− 2 + 4fL

fL

− 3fL

��I · m� + 2�LfL

0

1

− 1

0
��I · n��m · n� ,

d

dt
I = �L�2fLp0 + � fL −

1

2
�p1 + �1 − fL�pS − �1 − fL�pT�m

+ �L� fL

2
p1 − 2�1 − fL�pS�n�m · n�

− �
r=L,R

�r�1 + fr�I + ��̃�n 
 I� , �6�

where fr= �1+exp����−�r���−1 is the Fermi distribution of
the electrons in lead r. Here, we introduced, apart from
the detuning ��, also the average �= ��u+�d� /2 of the dot
energies. The level detuning is renormalized by the tunneling

and given by ��̃=��−
�Lu

−�Ld

2� � ln� �D
2� �−Re � � 1

2 + i
���−�L�

2� ��,
where D is a high-energy cutoff provided by either the Cou-
lomb interaction U or the bandwidth of the leads.
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IV. RESULTS

A. Spin entanglement in transient states

Inspection of Eqs. �6� reveals how an imbalance of singlet
and triplet states can occur. When filling the empty double
dot with one electron, a finite isospin along m is generated.
This in turn blocks the generation of triplet states as opposed
to singlet states when filling the double dot with a second
electron. This mechanism becomes most transparent for
�Lu

=�Ld
, �Ru

=�Rd
=0, and ��=0. In this case, the two equa-

tions,

d

dt
pT = 3�LfL� p1

2
− I · m� − 2�L�1 − fL�pT, �7�

d

dt
� p1

2
− I · m� = − 3�LfL� p1

2
− I · m� + 2�L�1 − fL�pT,

�8�

decouple from the rest. This motivates proposal �a� for gen-
erating spatially separated spin entanglement. If we prepare
the system in an empty state �by tuning the dot levels well
above the Fermi energy of the lead� and then suddenly push
the dot levels well below the Fermi energy of the left lead,
−��kBT ,�L, the double dot will be charged with two elec-
trons that form a spin singlet, while no triplet component
appears. The time dependence of the singlet generation is
illustrated in Fig. 2.

Coupling to an external bath, which flips the spin of an
electron or generates a relative phase between the �↑,↓� and
�↓,↑� states, induces relaxation from the singlet to the triplet
state. To model these processes, we introduce phenomeno-
logic relaxation rates �S→T0

, �S→T±
, �T0→S, �T±→S, �T0→T±

,

and �T±→T0
. To be specific, we choose all of them to be

equal, such that we get an effective transition rate �S→T
=�T→S /3 which conserves the symmetry between the trip-
lets, pT±

= pT0
. �A different choice of these parameters does

not change the conclusions qualitatively.� Furthermore, a fi-
nite detuning ��̃ and/or finite asymmetry of the tunnel cou-
plings, �Lu

��Ld
, leads to a mixture of singlet and triplet

states, producing a Werner state14 described by the density
matrix

W�F� = F�S�	S� + �1 − F�
14 − �S�	S�

3
. �9�

The parameter F defines the Werner fidelity. Werner states
play a crucial role in entanglement purification protocols,19,20

and the Werner fidelity gives a convenient measure for the
possibility to extract entangled states from a set of Werner
states by such protocols. It has been further shown that for
Werner fidelity 1 /2
F�1, there exist purification protocols
to extract states with arbitrary large entanglement, whereas
for F�1/2, the Werner state has to be considered as unen-
tangled.

Solving the kinetic equations for the reduced density ma-
trix for system �a�, we see that Werner states with fidelity
F= pS / �pS+ pT��1/2 are accessible also for asymmetric tun-
neling, detuning and finite spin-flip relaxation, see Fig. 2. For
weak detuning ��, the probability to generate a triplet scales
with pT���� /2�L�2.

To create and detect an enhanced spin-singlet fidelity and
to measure the relaxation time between singlet and triplet,
we propose the following scheme that is similar to the ex-
periment performed in Ref. 3. �i� Prepare the system in an
empty state. �ii� Push quickly �i.e., on a time scale faster than
both the relaxation times for the isospin-polarized state and
for the singlet-triplet transitions� the dot levels down well
below the Fermi level. As explained above, the double dot
will preferably fill up with two electrons forming a spin sin-
glet. �iii� Wait some given time T. As a function of T, the
imbalance between singlet and triplet decays exponentially
on the time scale given by the relaxation rate, and the Werner
fidelity is reduced, see Fig. 2.

To prove that the obtained state, indeed, has an enhanced
Werner fidelity, we analyze how the double dot is depleted.
Depending on whether the initial state is a singlet or triplet,
it is possible or impossible to extract the two electrons by
tunneling to the common left lead. This can be seen by
realizing that �tLu

cu�+ tLd
cd���tLu

cu�̄+ tLd
cd�̄���� , �̄�� ��̄ ,���

= �1±1�tLu
tLd

�0� is finite for the singlet but vanishes for the
triplet state, i.e., only one of the two electrons forming the
triplet can leave. As a consequence, the proposed protocol
continues in the following way. �iv� Push the dot levels up
well above the Fermi level quickly �again faster than the
relaxation rate for the isospin-polarized state�. �v� Wait some
time larger than 1/�L but shorter than the relaxation time of
the isospin-polarized state. �vi� Measure the total charge on
the double dot. If the charge is zero, then the doubly-
occupied state was a spin singlet, whereas if the measured
charge is 1, it was a triplet. To illustrate this, we show in Fig.
3 the total double-dot charge as a function of time for the two
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FIG. 2. Upper panels: time evolution of the probabilities for a
singlet and a triplet state. Lower panel: the corresponding Werner
fidelity. For the perfectly symmetric setup, ��=0, �Lu

=�Ld
, in the

absence of spin relaxation, �S→T=0, curve �i�, we find F�1. The
Werner fidelity is reduced for either �ii� nondegenerate dot energy
levels, ��=�L, �iii� asymmetric coupling �Ld

=0.1�Lu
, and �iv� a

finite spin relaxation rate �S→T=0.2�L. The high-energy cutoff is
set to D=100 kBT.
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cases that the double dot initially accommodated a singlet or
a triplet, respectively. The measurement of the total charge
on the double dot could be performed by a close-by
quantum-point contact. This does not introduce an additional
relaxation mechanism for either the isospin or the singlet and
triplet states as the quantum-point contact is only sensitive to
the total charge.

B. Spin entanglement for finite bias voltage

Spatially separated spin entanglement is found also in a
steady-state situation in setup �b� of Fig. 1. Here, we con-
sider the system to be driven out of equilibrium by a bias
voltage between the left and the right side. To keep the dis-
cussion transparent, we assume in the following symmetric
couplings, �Lu

=�Ld
��L and �Ru

=�Rd
��R, equal electro-

chemical potentials in the right leads �Ru
=�Rd

and vanishing
detuning of the dot levels ��=0. The leads on the right hand
side couple to all isospin components in the same way. In a
magnetic analog, such a situation corresponds to a dot
coupled to one ferromagnetic and one nonmagnetic lead for
which, at large bias voltage, spin accumulation occurs. Simi-
larly, in the present model, a finite isospin is accumulated in
the double dot in the stationary limit. This, again, leads to an
imbalance of singlet and triplet state probabilities. The polar-
ity of the bias voltage determines whether the Werner fidelity
is larger or smaller than 1/4 �Fig. 4�. If the bias voltage is
applied such that the double dot is charged from the left and
decharged to the right lead, the isospin polarization is in the
	 direction, and singlets are preferred. In this regime the
Werner fidelity saturates at F= �3�L+2�R� / �6�L+2�R�,
which goes from 1/2 for �L��R to 1 for �L��R. We have
to remark that the fidelity approaches 1 only linearly for
�L��R, whereas the overall probability to find the double-
dot system doubly occupied vanishes quadratically pS+ pT
�2��L /�R�2 at the same time. If the bias voltage is applied
in the opposite direction, triplets are more likely.

V. CONCLUSIONS

For an experimental realization of our proposal, one needs
to coherently couple two quantum dots to a joint reservoir, as

has been demonstrated, e.g., in Ref. 21. The spatial separa-
tion of the two dots is only limited by the phase-coherence
length, which can be several micrometers in typical semicon-
ductor structures. The formation of an enhanced spin-singlet
fidelity requires tunneling rates larger than the spin decoher-
ence time. Reported values3,22 of T2

* of the order of 10 ns
correspond to a lower limit of � of the order of �eV. For
tunnel couplings � larger than kBT, higher-order processes
such as cotunneling and Kondo-assisted tunneling become
important. These are neglected in our quantitative analysis
but they do not change our prediction qualitatively. In fact,
for symmetric tunnel couplings, the Hamiltonian acquires a
block structure and the Hilbert subspace containing the trip-
let states decouples completely from the one for the empty
double dot. In conclusion, the experimental realization of our
proposal should be feasible by nowadays technology.

In summary, we proposed two schemes for the generation
of spin entanglement between two spatially separated elec-
trons in a double-dot system driven out of equilibrium. The
underlying mechanism is fundamentally different from those
that rely on a singlet-triplet energy splitting, where entangle-
ment is generated by a relaxation of the system to the spin-
entangled ground state. In contrast, we suggest two schemes
in which entanglement is a consequence of a coherent cou-
pling of two quantum dots to one common lead in combina-
tion with a strong onsite Coulomb interaction to prevent
double occupancy of each individual dot. We emphasize that
our proposal does not require a finite singlet-triplet splitting.
The quick formation of the entangled state on a time scale
given by the tunneling instead of a singlet-triplet relaxation
rate may be an advantage in the context of quantum infor-
mation processing.
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