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We study the coherent transport of heavy holes through a one-dimensional ring in the presence of spin-orbit
coupling. Spin-orbit interaction of holes, cubic in the in-plane components of momentum, gives rise to an
angular momentum-dependent spin texture of the eigenstates and influences transport. We analyze the depen-
dence of the resulting differential conductance of the ring on hole polarization of the leads and the signature of
the textures in the Aharonov-Bohm oscillations when the ring is in a perpendicular magnetic field. We find that
the polarization-resolved conductance reveals whether the dominant spin-orbit coupling is of Dresselhaus or
Rashba type, and that the cubic spin-orbit coupling can be distinguished from the conventional linear coupling
by observing the four-peak structure in the Aharonov-Bohm oscillations.
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I. INTRODUCTION

Conductance of mesoscopic rings threaded by the mag-
netic flux shows Aharonov-Bohm oscillations1 due to the
phase a quantum state acquires when it winds around the
magnetic flux. An analogous effect in rings made of semi-
conductors with spin-orbit coupling occurs due to the spin
precession as an electron orbits the ring, giving rise to the
Aharonov-Casher phase.2 Both the Aharonov-Bohm and the
Aharonov-Casher effects are manifestations of quantum co-
herence in mesoscopic systems, and provide a way to study
the quantum interference in mesoscopic conductors.3–6 They
lead to universal conductance fluctuations7 and persistent
spin and charge currents.8–10 From a more practical point of
view, the conductance that depends on the magnetic flux in
the case of Aharonov-Bohm effect, or on the strength of
spin-orbit coupling in the case of Aharonov-Casher effect,
paves the way for novel applications in mesoscopic elec-
tronic and spintronic devices. For example, the Aharonov-
Casher phase can be modified by applying a backgate volt-
age to the device and changing the Rashba coupling
constant.11 This enables spintronic devices that require nei-
ther any ferromagnetic materials nor the control over mag-
netic field to operate.11–14

Recently, a number of experimental15,16 and theoretical4

studies have investigated transport of heavy holes in rings.
These studies are relevant because of the strong spin-orbit
coupling of heavy holes confined to the ring,15 and long co-
herence length ��3 �m in carbon-doped GaAs�, making the
interference effects in transport observable. The material pa-
rameters of holes allow for spintronic applications.17 In co-
herent spin-orbit coupled systems, the transport shows an
intriguing interplay of Aharonov-Bohm and Aharonov-
Casher effects.18 Apart from showing strong spin-orbit cou-
pling and long coherence lengths, the heavy holes interact
through a novel form of the spin-orbit coupling that is cubic
in the in-plane components of momentum. This form of spin-
orbit coupling influences the interference effects in transport.

In this work, we study the conductance of a ring of heavy
holes tunnel coupled to two external leads. This is in contrast

to previous studies which consider rings that are strongly
coupled to the leads,4 or are in a diffusive regime and can be
described using semiclassical trajectories,19 or described in a
lattice model.20 Studies of the conduction through quantum
dots embedded in an Aharonov-Bohm ring have focused on
the effects of interaction on the transport,21–23 while we study
the interference of many available paths. In these setups, the
interference effects can be traced to the Aharonov-Bohm and
Aharonov-Casher phases accumulated by a spin experienc-
ing a time-dependent field while moving along a trajectory
through the ring. In the adiabatic limit, this approach leads to
geometric phases.24 On the other hand, in our tunneling
setup, the quantum effects in transport arise from the inter-
ference of tunneling paths through the eigenstates of the ring.
The interference is then related to the magnetic field depen-
dence of the eigenstates of a hole confined to the ring, and
not to the phase accumulated by a spin following quasiclas-
sical trajectory.

The states ��hh� of a heavy hole orbiting a ring can be
described in terms of pseudospin textures. At a position �
along the ring, the heavy-hole state is

����hh� = �+����jz = 3/2� + �−����jz = − 3/2� , �1�

and it determines a unique direction n in the pseudospin
space for which �� ��hh� is an eigenstate of pseudospin pro-
jection to the axis n, i.e., ��hh�� ��n=1�. We identify the
�jz= �3 /2� heavy-hole states with pseudospin 1/2 pointing
in �z direction, ��ez

= �1�. The pseudospin texture associ-
ates the direction n with every point � on the ring �Figs. 1
and 2� so that the states in Eq. �1� can be represented in terms
of spin texture as

����hh� = ei	�����n��� = 1� , �2�

with the texture defined by the position-dependent unit vec-
tor n��� and the position-dependent overall phase 	���. The
textures of heavy-hole eigenstates depend on the hole-orbital
momentum 
 so that the holes arrive at the connecting leads
with different pseudospins, causing an interference pattern in
the resulting conductance.
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In the measurement of conductance as a function of flux
through a semiconductor ring, the Aharonov-Casher effect
manifests itself through an additional structure in the
Aharonov-Bohm oscillations due to spin precession in the
arms of the ring.15 In the approximation of spin-orbit cou-
pling that is linear in momentum, the conductance oscilla-
tions reveal a splitting of Aharonov-Bohm peak in the Fou-
rier transform of resistivity as a function of the external
magnetic field.25 However, the spin-orbit coupling of holes in
III-V semiconductors is, in lowest order, cubic in the hole
momentum.26 In this case, the spin texture of the orbiting
carrier depends on the momentum �see below� and pro-
foundly influences the transport. Therefore, for the carriers
with cubic spin-orbit coupling, the Aharonov-Casher phase
can be controlled by changing the momentum of the carriers,
without the need to modify the coupling constant. This point
is especially important in the structures fabricated in sym-
metric quantum wells where the Rashba coupling is absent,
and the Dresselhaus spin-orbit coupling is given by the crys-
talline structure. Even though the coupling constant is fixed,
due to the cubic form of spin-orbit coupling, the Aharonov-
Casher phase can still be indirectly controlled through the
manipulation of the carrier momentum. In addition, the
Dresselhaus and Rashba terms produce different patterns in
conductance as a function of backgate voltage so that the
conductance in phase-coherent rings reveals the dominant
type of spin-orbit coupling.

The remainder of the paper is organized as follows: In
Sec. II, we describe the confinement of heavy holes to a ring

and derive the effective one-dimensional Hamiltonian. In
Sec. III, we solve for the hole eigenstates and eigenenergies.
In Sec. IV, we introduce the tunneling model of hole trans-
port through the ring. In Sec. V, we present the resulting
differential conductance of the ring. We conclude in Sec. VI.

II. HEAVY HOLES IN A ONE-DIMENSIONAL RING

Heavy holes confined to the two-dimensional hole gas
�2DHG� are described with H=H0+HSO+HZ, where H0
=p2 /2mhh is the standard kinetic term, HZ= �1 /2��BB ·g ·�
is the Zeeman coupling to the magnetic field B, �B being the
Bohr magneton, g the gyromagnetic tensor of the confined
holes, and � the vector of the pseudospin Pauli matrices. We
consider a material with large splitting between heavy holes
and light holes bands, and assume that only the heavy holes
band is populated. The spin-orbit interaction of heavy holes
is, in lowest order, cubic in the in-plane components of the
momentum,26

HSO = �i�p−
3 + �p−p+p−��+ + H.c., �3�

where � and � are, respectively, interaction strengths of
Rashba and Dresselhaus spin-orbit coupling, and O�

=Ox� iOy, �O= p ,��. The pseudospin represents the two
heavy-hole states ��z= �1�= �j=3 /2, jz= �3 /2�. This is in
sharp contrast to the electrons in a two-dimensional electron
gas �2DEG�, where the spin-orbit is in the lowest-order linear
in momentum. Effects of spin-orbit coupling in general de-
pend on the confinement, both to the 2DHG and to the ring.
We will treat the spin-orbit coupling strengths � and � as
free parameters and absorb the influence of the electrostatic
potential that confines the holes to two dimensions into their
values. In particular, if the confinement to two dimensions is
caused by a symmetric potential, the Rashba coupling van-
ishes, �=0. We neglect the orbital effects of the magnetic
fields so that p is the kinetic momentum of the hole.

In order to illustrate the spin structure of ring eigenstates,
we will first solve for the eigenvalues and wave functions of
the heavy holes confined to the ring in the absence of mag-
netic field. Later, we take the magnetic field into account and
find that it causes modification of the quantization condition
and the Zeeman coupling.

The two-dimensional hole gas is confined to the ring by a
radial potential V�r� that has a deep minimum in the interval
a−w /2
r
a+w /2, where a is the radius of the ring and w
is its width. States of the hole orbiting the ring in the limit of
strong confinement are products of the ground-state radial
wave function in the potential V�r�, and a function of the
angular coordinate ����. For strong radial confinement, the
motion of the hole in the ring is described by an effective
Hamiltonian that depends only on the angular coordinate
along the ring and all the properties of the radial wave func-
tion enter the problem only through the parameters of the
effective one-dimensional Hamiltonian. The description in
terms of the effective one-dimensional Hamiltonian is valid
when both the energy spacing of the 2DHG confinement and
the energy spacing of the radial confinement are much larger
than the energies associated with the motion along the ring.

We find an effective Hamiltonian for the ring by introduc-
ing the confinement potential V�r� in the radial direction in

FIG. 1. �Color online� Hole pseudospin texture of the
Dresselhaus-only eigenstate.

FIG. 2. �Color online� Hole pseudospin texture of the Rashba-
only eigenstate.
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HSO and reducing it to the subspace of the lowest radial
mode, in analogy with Ref. 27. Typically these results were
obtained by introducing a model potential and explicitly cal-
culating the angular Hamiltonian for the lowest radial mode.
The resulting one-dimensional effective Hamiltonian for the
harmonic radial confinement was found for the case of
linear27 and cubic Rashba19 spin-orbit coupling. We note that
generically the solution to the radial problem in an arbitrary
potential can lead to divergences in the effective Hamil-
tonian. This can be avoided by working directly with the
radial wave function in the form of a harmonic-oscillator
ground state. In this work, we employ a different approach,
and calculate the effective Hamiltonian for a general radial
wave function. The resulting effective one-dimensional
Hamiltonian is

H = −
1

2mhha
2��

2 + �i�e3i��F0 + F1�� + F2��
2 + F3��

3 �

+ �ei��G0 + G1�� + G2��
2 + G3��

3 ���−

+ �− i�e−3i��F0 − F1�� + F2��
2 − F3��

3 �

+ �e−i��G0 − G1�� + G2��
2 − G3��

3 ���+. �4�

where G0= i�R0+R1−R2�, G1=−�R1+R2�, G2= i�R2−2R3�,
and G3=−R3; F0= i�R0−3R1+3R2�, F1=−3R1+9R2−8R3,
F2= i�−3R2+6R3�, and F3=R3. The parameters that depend
on the radial confinement are Rj = �r−j�r

3−j�radial, where the ex-
pectation value is taken in the ground-state radial wave func-
tion. The parameters Rj and j=0, . . . ,3 satisfy consistency
conditions that reduce the number of free parameters to two.
We keep the explicit dependence of the independent expec-
tation values in the radial state. The constraints are R2
=R3 /2 and R0=−3R1 /2. The constraints can be proven using
integration by parts in the radial part of the Schrödinger
equation, under the assumption that the radial part of the
wave function vanishes at the origin together with its deriva-
tives up to order 3. We have checked that this conclusion
holds in the limit of a series of potentials that converge to the
hard wall. Also, note that the relation between R0 and R1 is
satisfied for the radial wave functions of the harmonic con-
finement for which R3 diverges.19 We can take the values R0
and R3 as the free parameters of the ring confinement. For a
ring of radius a and width w, R3�a−3 and R0�a−1w−2.

Before embarking on the solution of the one-dimensional
problem, let us briefly discuss the resulting Hamiltonian. De-
pending on the radius and the width of the ring, different
terms in the spin-orbit interaction become more or less im-
portant. Also, we see an enhancement of the spin-orbit ef-
fects in narrow and small rings. We see that the strength of
the spin-orbit coupling terms depends on the width of the
one-dimensional ring w through the parameter 1 / �aw2�. This
means that the spin-orbit coupling terms can be enhanced in
a very narrow ring. In this limit, however, the spin-orbit cou-
pling is effectively linear. Therefore, the effects of the cubic
spin-orbit coupling presented here will be pronounced in the
rings of intermediate widths, and the strength of radial con-
finement that is strong enough for the approximation of the
single radial mode to hold.

III. SPECTRUM AND EIGENSTATES OF THE ORBITING
HOLES

The effective Hamiltonian �Eq. �4�� describes a ring of
heavy holes in the presence of both Dresselhaus and Rashba
spin-orbit interaction, when ��0 and ��0. Our goal is to
understand the role of cubic spin-orbit coupling in transport,
and contrast its effects to the standard linear spin-orbit cou-
pling, experienced by the electrons in a similar configuration.
We will therefore focus on the two limits that allow for
a simple solution, namely, Dresselhaus-only interaction
��=0�, and Rashba-only interaction ��=0� that was previ-
ously studied in Ref. 19. While restricting the domain of
validity of our results, these approximations emphasize the
physical picture of the eigenstates in terms of holes orbiting
the ring, and the associated texture of the hole pseudospin.
Apart from allowing a simple solution and providing a
simple picture of the eigenstates, these two limits are also, in
principle, realizable in practice. In the semiconductor hetero-
structures that confine holes to the 2DHG, the strength of the
Rashba term is governed by the asymmetry of the confining
potential in the direction perpendicular to the 2DHG plane.
For a highly asymmetric potential the Rashba term is domi-
nant, but it vanishes when the holes are confined by a sym-
metric potential well.

A. Dresselhaus (�=0) case

Eigenstates of the effective Hamiltonian �Eq. �4�� are
specified by two quantum numbers, 
= �2n+1� /2, where n is
an integer, and the texture quantum number �= ⇑ ,⇓, which
takes on two discrete values. The Dresselhaus interaction
eigenstates �d are

�
⇑
d = ei
�	cos

�d�
�
2

e−�i/2���+�/2�

sin
�d�
�

2
e�i/2���+�/2� 
 , �5�

�
⇓
d = ei
�	− sin

�d�
�
2

e−�i/2���+�/2�

cos
�d�
�

2
e�i/2���+�/2� 
 , �6�

where the texture angle �d�
� is

�d�
� = tan−1�2mhh�

R3
2/3 �2

3
R0 + 

2 −

5

4
�R3�� . �7�

The states represent a hole that orbits the ring with angular-
momentum 
 and well-defined spin texture. At the point on
the ring with the angle �, the spin-state ��=�0 ��
⇑

d � corre-
sponds to the spin that is tilted by the angle �d�
� from the
normal to the plane of the ring, and the azimuthal angle is
�=�0+� /2 so that the projection of the spin to the plane of
the ring is always tangential to the ring �see Fig. 1�. The spin
state associated with the other texture, ��=�0 ��
⇓�, corre-
sponds to the spin with the tilt angle �−�d, and the same
azimuthal angle. The crucial difference with respect to the
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eigenstates of the ring with linear spin-orbit coupling is that
the texture of the state depends on the momentum quantum
number 
 even in the absence of magnetic fields. Therefore,
the states of different momentum show different spin tex-
tures.

Energies depend on both momentum and the texture,

E
,⇑�⇓�
d =

1

2mhhR3
2/3

2 +

1

4
�




cos �d�
�� . �8�

The pairs of eigenstates ��
,⇑ ,�−
,⇓� form Kramers dou-
blets, E
⇑

d =E−
⇓
d .

B. Rashba (�=0) case

When the spin-orbit coupling is of the Rashba type, the
momentum 
= �2n+1� /2 for integer n is still a good quan-
tum number, and there are still two textures, �=⇑ and �=⇓
for every value of 
. The eigenstates �r are

�
⇑
r = ei
�	cos

�r�
�
2

e−3i/2�

sin
�r�
�

2
e3i/2� 
 , �9�

�
⇓
r = ei
�	− sin

�r�
�
2

e−3i/2�

cos
�r�
�

2
e3i/2� 
 , �10�

with the Rashba texture angle �r�
�

�r�
� = tan−1�2mhh�

R3
2/3 �2

3
R0 + 
13

12
−

1

3

2�R3�� . �11�

As for the Dresselhaus case, the eigenstates represent a hole
with well-defined pseudospin texture that orbits the ring. The
texture is however quite different. The pseudospin ��
=�0 ��
⇑

r � is tilted away from the normal to the ring plane by
the angle �r�
� that, in contrast to the Dresselhaus case, can
vary in the full range �r� �0,��, while the Dresselhaus spin-
orbit coupling allows only for �d� �0,� /2�, except for 

=1 /2 and unrealistically large R3. The pseudospin projection
to the plane of the ring, that was always tangential in the
Dresselhaus case, now makes three full rotations on each
orbit �see Fig. 2�. The pseudospin of the opposite texture
��=�0 ��
⇓

r � has the tilt angle �=�−�r�
�, and the same
projection to the ring plane.

Energies in the Rashba case again depend on the momen-
tum and texture

E
,⇑�⇓�
r =

1

2mhhR3
2/3

2 +

9

4
�




cos �r�
�� . �12�

The time-reversal symmetry imposes Kramers degeneracy,
and the states in the Kramers doublet ��
⇑

r ,�−
⇓
r � have the

same energy E
⇑
r =E−
⇓

r .

C. Magnetic field

Our preceding calculation of the eigenstates and eigenen-
ergies did not take into account the interaction of holes with

the magnetic field B. In this subsection, we will find the
spectrum and the eigenstates of a heavy hole in the presence
of a magnetic field normal to the ring. This calculation in-
cludes the change in the quantization condition for the orbital
momentum 
 and the Zeeman term HZ, but neglects the
modification of the lowest energy radial wave function due
to the magnetic confinement. This approximation neglects
the modification of the radial confinement, described by R1
and R3 in Eq. �4� due to magnetic field. This approximation
is valid for weak magnetic fields rc�a that give the cyclo-
tron radius rc much larger than the ring-radius a, as well as
for the magnetic fields of arbitrary strength confined to the
interior of the ring.

The requirement that the wave function of an orbiting
hole is single valued, ��=2� ��
��= ��=0 ��
�� gives the
quantization-condition 
= �2n+1� /2, for integer n. In the ab-
sence of Zeeman coupling, the complete spectrum of the ring
is periodic in the flux with the period �0. This perfect peri-
odicity of the spectrum is broken by the Zeeman interaction.

For the magnetic field in z direction, normal to the plane
of the ring, it is possible to account exactly for the effects of
Zeeman term HZ=bSz, where b=gzz�BB is the magnetic field
in with absorbed Bohr magneton �B and the gyromagnetic
tensor component gzz. For 2DHG the g tensor is highly an-
isotropic, and to a good approximation the only nonzero
component is gzz. Therefore, this approximation is valid also
for the magnetic fields with in-plane components, with the
adjustment that B→ �B ·ez�ez, since only the z component
impacts both the Aharonov-Bohm flux and the Zeeman term.

The Zeeman interaction couples the states of the same
orbital momentum 
 and opposite textures. The energies and
eigenstates in the presence of Zeeman interaction are
��
⇑� , �
⇓��→ ��
+� , �
−�� and �E
,⇑ ,E
,⇓�→ �E
,+ ,E
,−�,
where

E
,� =
1

2
�E
,⇑ + E
,⇓� ��1

4
��
�2 + b2 + b cos ��
���
� .

�13�

The eigenstates in the presence of Zeeman interaction keep
the 
 quantum numbers, but the states of opposite textures
get mixed


�
+�
�
−�

� =	 cos
��
�

2
− sin

��
�
2

− sin
��
�

2
cos

��
�
2



�
⇑�
�
⇓�

� , �14�

where the mixing angle ��
� is

��
� = arccos
1
2��
� + b cos ��
�

�1
4��
�2 + b2 + b cos ��
���
�

. �15�

Here ��
�=E
,⇑−E
,⇓ is the energy difference of the two
states with momentum 
 and opposite textures.

IV. TUNNELING MODEL OF CONDUCTION

We consider a system of heavy holes confined to a ring-
shaped geometry and contacted by a pair of leads �Fig. 3�.
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The lead density of states is assumed to be wide and flat. In
order to elucidate the pseudospin structure of the leads, we
allow for an arbitrary pseudospin density-matrix �S�D� in the
source�drain� lead.

The spin textures revealed in the eigenstates of heavy
holes confined to a ring influence the transport properties
when the ring is coupled to electrodes. For example, the hole
of a given pseudospin entering the ring from the source elec-
trode can propagate via different �
� eigenstates, and arrive
at the drain electrode with different pseudospin orientations.
The pseudospin states at the drain electrode will interfere,
and the probability of transmission will depend on the pseu-
dospin orientations. Since the pseudospin orientations at the
drain electrode depend on the hole-momentum 
 through the
texture of the state �
�, we may expect that the transmission
of the ring, and therefore the resulting conductance will also
depend on the momentum of the incoming hole. This mo-
mentum dependence is absent in the electronic systems
where the texture is determined solely by the spin-orbit cou-
pling constant.28 Therefore, we expect new effects of spin
interference in transport of carriers that are subject to the
cubic spin-orbit coupling.

The interference of heavy holes will be observable if their
coherence length 	coh is longer than the ring circumference
	ring. At the same time, the spin-orbit length 	SO that a hole
must transverse in the ring in order to experience an appre-
ciable pseudospin rotation must be at least comparable to
	ring. The resulting set of constraints 	coh�	ring�	SO can be
achieved in the heavy-hole structures based on carbon-doped
GaAs.15,25

In order to find the transmission through the ring, we
introduce a tunneling Hamiltonian model for the ring
coupled to source and drain electrodes. The tunneling Hamil-
tonian description is valid when the overlap of the electrode
states and the ring states is small, ��k��x��
��x���1 for ev-
ery point x within the system, and every pair of states
�
� ,k��.

The tunneling between either electrode and the ring oc-
curs on the length-scale 	tun that is much shorter than the
spin-orbit length, 	tun�	SO. Therefore, unless there are mag-
netic impurities in the boundary region between the ring and
the leads, the tunneling will preserve the true hole spin, re-

sulting in the hole pseudospin conservation in tunneling, and
the pseudospin independence of the tunneling amplitudes.

The tunneling Hamiltonian reads

HT = HS + HD + HR + HT, �16�

where the three noninteracting Hamiltonians

HS = �
k�

�k�
S sk�

† sk�, �17�

HD = �
k�

�k�
D dk�

† dk�, �18�

HR = �

�

�
�r
�
† r
�, �19�

describe decoupled source electrode, drain electrode, and the
ring. The operators sk��dk�� annihilate a hole of momentum k
and pseudospin �= ↑ ,↓ in the source�drain� electrode, while
the operators r
� and �= ⇑ ,⇓ annihilate a hole in the ring
state �
�. The ring energies �
� are given by Eqs. �8� and
�12�. The tunneling term HT describes processes when a hole
hops from an electrode to the ring and back,

Htun = �
k�,
�

�tk�,
�
S sk�

† r
� + tk�,
�
D dk�

† r
� + H.c.� . �20�

The tunneling matrix elements, tk�,
�
S�D� , are determined by the

details of the potential barrier between the electrodes and the
ring. We are interested in the consequences of nontrivial spin
textures in the transport of holes through a ring. The poten-
tial barrier is due to electric fields, and its influence on the
spin and the hole pseudospin can come only from the spin-
orbit coupling. Here we assume that the holes of arbitrary
pseudospin see the same potential. This assumption is valid
for a potential which is nonzero only in a tunneling region of
the linear dimension much smaller than the spin-orbit length.

Under these assumptions, we can model the tunneling ma-
trix elements as

tk�,
�
S�D� = tk,


S�D��k�S�D���S�D����S�D��
�� , �21�

where the spin- and texture-independent matrix elements
tk,

S�D� describe the tunneling in the absence of spin-orbit cou-

pling, and the spin- and texture-dependent factor is propor-
tional to the overlap of the spin and texture part of the wave
function at the position �S�D� of the source �drain� junction.

The resulting tunneling Hamiltonian Htun is a generaliza-
tion of the Fano-Anderson model29 to the many isolated lev-
els in a continuum with different couplings to the continuum
states in the leads. Since the tunneling term HT in Eq. �20� is
bilinear in the operators that describe the uncoupled system,
it is in principle exactly solvable. However, the exact solu-
tion for the eigenstates is simple and transparent only in the
case of a single level.18,30 The exact solution requires inver-
sion of an N�N matrix, where N is the number of relevant
ring states. Instead of solving for the eigenstates, we calcu-
late the current through the ring using the Keldysh
technique.31

The current through a region coupled to the leads via a
tunneling Hamiltonian was considered by Meir and Win-

S R D

tS tD

FIG. 3. �Color online� Geometry of the ring of heavy holes
coupled to a pair of leads. The heavy holes in the ring �R� experi-
ence the spin-orbit coupling. Due to this coupling, the eigenstates of
holes confined to the ring have a spin texture. The ring is coupled to
the source �S� and drain �D� electrodes via tunneling of holes. The
tunneling is assumed to conserve the hole spin.

INTERFERENCE OF HEAVY HOLES IN AN… PHYSICAL REVIEW B 79, 235301 �2009�

235301-5



green in Ref. 32. Quite generally, the current is

I =
e

h
� d��fS��� − fD����Tr�GA�DGR�S���� , �22�

where fS�D� are Fermi distribution functions in the source and
drain electrodes, GR�A� are retarded �advanced� Green func-
tions of the ring coupled to the leads, and �S�D� are the es-
cape rates of the ring states to the source �drain� electrode.
The trace is taken over the ring states 
�. At zero-
temperature T=0, the differential conductance g��� for the
carriers of energy � can be directly read off from Eq. �22�
�for finite temperature T, see below� as g���
=Tr�GA�DGR�S����.

The Green functions in frequency space GR�A���� are ex-
pressed in terms of the self-energy as

GR�A���� =
1

�gR�A�����−1 − �R�A����
. �23�

Here, gR�A� is the retarded�advanced� Green function of the
ring. In our noninteracting case, the self-energy �R�A� is
given exactly as a sum of contributions coming from the
excursion of the hole through the electrodes,

�
1�1,
2�2

R�A� ��� = �
k�,L

�tk�,
1�1

L ��gk�
LR�A����tk�,
2�2

L , �24�

where gk�
LR�A���� are retarded �advanced� Green functions of

decoupled leads, being diagonal in k�.
The escape rates �S/D describe the processes in which a

hole escapes from the ring into a lead and gets replaced by
another hole. They are defined as

�
1�1,
2�2

S/D ��� = 2��
k�

tk�,
1�1

S/D �tk�,
2�2

S/D ����� − �k�
S/D� . �25�

The current through the ring is determined by Eqs.
�22�–�25�, once we incorporate the tunneling matrix ele-
ments Eq. �21�. The current will depend on the pseudospin
states in the leads. The effects of the texture in the ring
eigenstates will be visible in the conductance if the states in
the ring are polarized. We thus consider general pseudospin-
density matrices in the source �drain� electrode

�S�D� =
1

2
�1 + PS�D� · �� , �26�

where the direction of PS�D�, defines the axis of partial polar-
ization �PS�D���1 in the source�drain� lead.

We proceed by calculating the current using Eq. �22�, with
the spin-dependent density of states in the escape rates �Eq.
�25��, and assuming that the bands in the leads are wide and
flat. Our calculation is numerical and includes a finite num-
ber �184� of states in the ring. This approach produces results
that do not change in the range of low values of � with the
addition of new levels. Another reason for truncating the
number of levels is the fact that the dispersion relations for
heavy holes in the ring Eqs. �8� and �12� predict unphysical
states that are bound to the ring by strong spin-orbit cou-
pling.

V. DIFFERENTIAL CONDUCTANCE OF A HEAVY-HOLE
RING

In this section, we discuss the influence of nontrivial
pseudospin textures in the eigenstates of the heavy-hole ring
to its conductance. In the tunneling picture, we can distin-
guish two basic sources of the varying conductance. One
source is the discrete spectrum of the ring that in the limit of
weak tunneling produces a series of peaks in the conductance
when the chemical potential of the leads aligns with the dis-
crete energy levels of the ring. As we increase the tunneling
matrix elements the levels broaden due to the coupling to the
leads, and eventually begin to overlap. Interference of the
transitions from the source lead to the drain lead via ring
eigenstates is the second source of variations in the conduc-
tance.

We illustrate the interplay of these two mechanisms that
modify conductance by studying pseudospin-resolved cur-
rent in the ring. Then, we study the polarization-resolved
conductance and show the qualitative differences between
Dresselhaus- and Rashba-coupled holes, which allow for the
determination of the dominant type of coupling.

Magnetic flux threaded through the ring causes Aharonov-
Bohm oscillations in the conductance that are further modi-
fied by the pseudospin textures. The standard technique for
observing these oscillations is by looking for the peaks in the
Fourier transform of the conductance as a function of mag-
netic field that correspond to the period of one flux quantum.
We show that the structure of Aharonov-Bohm oscillations in
direct space, i.e., before the Fourier transform, offers a sig-
nature of the cubic spin-orbit coupling in the form of easily
recognizable four-peak structure in the oscillations. We trace
the emergence of this split-peak structure to dependence of
the energy spectrum of an orbiting hole on the flux through
the ring, and show that the form of the periodic conductance
is drastically different between the cubic and linear spin-orbit
coupling.

The possibility of experimental observation of the
pseudospin-resolved conductance is determined by the
widths of the ring energy levels compared to their splitting.
In our system, the levels broaden due to tunneling. In experi-
ment, an additional thermal broadening will further smear
the conductance peaks. We study the disappearance of
pseudospin-split conductance with temperature, and suggest
the regime favorable for resolving the pseudospin compo-
nents.

In this section, the energy is measured in units of ER, the
energy of 
=1 orbital state in a ring without spin-orbit cou-
pling, ER=�2 /2mhhR3

−2/3. For a typical ring of radius R3
−2/3

�0.5 �m, ER�1 �eV.

A. Level broadening and interference

The dependence of conductivity on the tunnel coupling
strength and carrier energy is illustrated in Fig. 4 which
shows the conductance between unpolarized leads. In the
limit of zero tunneling, �t�→0, the peaks in the conductance
appear at the energies of an isolated ring. As the tunneling is
increased, the levels become broader, due to the tunneling of
holes between the ring and the lead. Our calculation includes
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contributions of an arbitrary number of such “excursions.”
The calculation is done at zero temperature �for the thermal
broadening see below�. With strong enough tunneling, the
broadening of the ring levels leads to their overlap. The re-
sulting conductance in the overlapping region is not a simple
sum of the conductances of pseudospin components. Since
the tunneling involves many ring levels in a coherent way,
the resulting conductance shows a signature of interference.
In Fig. 5, we show the interference term at a fixed tunneling
strength. The conductance g+0 between the pseudospin-

polarized source lead and the unpolarized drain lead �thick
black line� is not equal to the sum of conductances g++

+g+− between the polarized source and drain leads with par-
allel polarizations g++ and the conductance between polar-
ized source and drain lead with the antiparallel polarization
g+− �thin dark blue line�. The difference g+0− �g+++g+−� is
the contribution of the interference term �thin bright red�
line.

B. In-plane spin textures

The conductance between the leads polarized in the direc-
tion normal to the plane of the ring does not show the full
difference between the Dresselhaus- and Rashba-coupling in-
duced textures. Namely, the most striking difference between
the two textures is in the projection of the pseudospin to the
plane of the ring, see Figs. 1 and 2, which is qualitatively
different for the two forms of the cubic spin-orbit coupling.
The in-plane component of the Dresselhaus-only eigenstate
winds once around the z axis as the ring is transversed, and
always stays tangential to the ring. The in-plane component
of the Rashba state, on the other hand, winds three times as
the ring is transversed.

The winding of in-plane polarization is the same for all
the states in the ring and leaves a signature in the conduc-
tance. We calculate the conductance between the fully polar-
ized leads with the polarization vector P in the plane of the
ring, and with the varying position of the drain lead along the
ring, Figs. 6 and 7. We note that the conductance patterns in
the Rashba case show more islands of conductivity at a fixed
carrier energy as the position of the drain lead is encircling
the ring. The reason for the additional islands is that the lead
pseudospin aligns with the in-plane projection of the pseu-
dospin of ring eigenstates at the position of the junction.
Aligned pseudospins increase the conductivity and create the
islands. The in-plane projection of the Dresselhaus eigenstate
pseudospin texture aligns with lead polarization for one junc-
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FIG. 4. �Color online� Tunneling dependence of differential con-
ductance between unpolarized leads with Dresselhaus spin-orbit
coupling ��=0,�=0.3� in the leads. The differential conductance
g��� in units of the conductance quantum G0=h /e is plotted as a
function of the absolute value of the tunneling matrix element be-
tween the states of uncoupled leads of the ring, and the chemical
potential of the leads. At small tunneling, the conductance shows
peaks when the chemical potential of the ring aligns with the energy
levels of the ring. As the tunneling grows, the peaks become wider
and begin to overlap.
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FIG. 5. �Color online� When the broadening of the ring levels is
strong enough to produce the overlap of the energy levels, the tun-
neling processes through various states in the ring interfere. Pseu-
dospin textures affect this tunneling. The conductance g+0 between
the pseudospin-polarized source lead and the unpolarized drain lead
�thick black line� is not equal to the sum of conductances g++

+g+− between the polarized source and drain leads with parallel
polarizations g++ and the conductance between polarized source and
drain lead with the antiparallel polarization g+− �thin dark �blue�
line�. The difference g+0− �g+++g+−� is the contribution of the in-
terference term �thin bright �red�� line.
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FIG. 6. �Color online� Conductance between the completely in-
plane polarized source and drain leads for Dresselhaus ��=0, �
=0.3� spin-orbit coupled holes. The position of the source lead is
�S=0, while the position of the drain lead �D varies between 0 and
2�. For each drain position, the differential conductance is plotted
as a function of the ring Fermi energy. The radial structure of the
pseudospin textures is seen in the traces of conductance at a fixed
energy.
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tion position, while this alignment occurs for three positions
in the case of Rashba coupling.

C. Modified Aharonov-Bohm oscillations

Conductance measurements between the polarized leads
and with the control over the chemical potential of the ring
are difficult to achieve. Typical experiments measure the
conductance as a function of the magnetic field that threads a
magnetic flux through the ring and introduces the Zeeman
coupling. In our model of tunneling conductance the
Aharonov-Bohm phase can be incorporated in the boundary
conditions for the ring wave function, using the singular
gauge. This leads to a quantization condition for 
−� /�0,
where � is the flux threaded through the ring, and �0 is the
flux quantum. The effect of the flux is thus the shift of all the

 quantum numbers. As a consequence, the energy levels and
the pseudospin textures change. The new texture angles �d/r

and the new energies E
,� are still given by Eqs. �8�, �7�,
�12�, and �11�, but with the shifted values of the orbital quan-
tum number 
→
+� /�0.

The gross features of the Aharonov-Bohm oscillations can
be understood in terms of a simplified picture based on in-
terference of levels that lie close in energy. The spectra of the
ring in zero magnetic field, and in the presence of weak
spin-orbit coupling consists of pairs of closely spaced Kram-
ers doublets ��
,⇑ ,�−
,⇓� and ��
+1,⇓ ,�−
−1,⇑�. The gap be-
tween these doublets scales as �2��2� for weak Dresselhaus
�Rashba� spin-orbit coupling, while all the other states are
separated by larger gaps that originate from the kinetic-
energy terms and persist in the absence of spin-orbit cou-
pling. Therefore, we can approximately describe the conduc-
tance by transition amplitudes

T = 
T+,+ T+,−

T−,+ T−,− � , �27�

where the matrix element Ts1s2 stands for the amplitude for a
hole of pseudospin �1 /2 for s1=� in the source lead to

tunnel into the drain lead with the pseudospin �1 /2 for s2
=�. Taking into account only the tunneling through the four
closely spaced levels and in the absence of the flux through
the ring, the transition amplitudes are

T0 = 2 sin�
��cos
d0

2
�	 cos

s0

2
i sin

s0

2

i sin
s0

2
cos

s0

2

 , �28�

where s0=�d/r�
�+�d/r�
+1� and d0=�d/r�
�−�d/r�
+1� are
the sum and the difference of the texture angles of the in-
volved states. Similar considerations for the case of a ring
threaded by the magnetic-flux �=�0 /2 equal to half the flux
quantum gives

T1/2 = 2 cos�
��cos
d1/2

2
�	 cos

s1/2

2
i sin

s1/2

2

i sin
s1/2

2
cos

s1/2

2

 , �29�

where the relevant sums are now s1/2=�d/r�
+1 /2�+�d/r�

+3 /2� and d1/2=�d/r�
+1 /2�−�d/r�
+3 /2�. The quantum
number 
 is a half of an odd integer and T1/2=0. Therefore,
this simplified description correctly predicts the minima in
conductance when half a flux quantum threads the ring. The
conductance value is zero in this simple model, but it turns
out to be nonzero when the additional levels are included in
the more detailed model. When the additional levels in the
ring are included, the conductance can be nonzero in the ring
threaded by half of flux quantum; see Fig. 8. The currents
transmitted through the ring carry hole polarization, as can
be seen from the figures. The peak in the unpolarized con-
ductance near the energy �=54ER is split, while the polarized
conductance shows a single peak of roughly half the height.
The components of the split peak correspond to pseudospin
components with high polarization up and down, described
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FIG. 7. �Color online� Conductance between the completely in-
plane polarized source and drain leads for Rashba ��=0.3,�=0�
spin-orbit coupled holes. The position of the source lead is �S=0,
while the position of the drain lead �D varies between 0 and 2�.
For each drain position, the differential conductance is plotted as a
function of the ring Fermi energy. Compare with the case of
Dresselhaus spin-orbit coupling.
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FIG. 8. Conductance of the ring threaded by a half of flux quan-
tum. Leads are unpolarized. Note that the conductance is not zero
due to tunneling through off-resonant states. The inset shows the
conductance of the same ring with the same flux, but between po-
larized leads. The peak at �F�55ER shows that the split peak in the
main plot is due to the conductance of the holes of different
polarizations.
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by pseudospin density matrices �Eq. �26�� with P�ez and
P�−ez. This splitting is a clear signature of pseudospin-
dependent transport.

The standard setup for a study of conductance oscillations
as a function of the magnetic field consists of measuring the
conductance at a fixed lead chemical potential and sweeping
the external magnetic field. The conductance then typically
reveals the oscillations with the period TAB=S�0

−1, with S
being the ring surface area and �0 the flux quantum. The
spin-orbit coupling was found to modify these oscillations.15

In our model the conductance is modified due to the presence
of four closely spaced energy levels that correspond to each
peak in the conductance. At zero flux these four levels are the
Kramers doublets ��
,⇑ ,�−
,⇓� and ��
+1,⇓ ,�−�
+1�,⇑�. The
splitting between these pairs in the absence of magnetic field
is of second order in spin-orbit coupling. As the magnetic
flux is threaded through the ring the quartet of levels splits,
with two of the levels with 
�0 gaining energy, and the
levels with 

0 losing it. In addition the Zeeman coupling
splits these levels further. This behavior is in sharp contrast
to the linear spin-orbit coupling case where there are at most
two states of any given energy.

The four-peak structure within the maximum of conduc-
tance in Aharonov-Bohm oscillations represents a signature
of the cubic spin-orbit coupling �see Fig. 9�. The period of
oscillations is equal for both types of coupling, but the shape
of the peaks is drastically different. The four-peak structure

is most visible when the leads are tuned into the vicinity of a
ring energy level. At these energies, in contrast, the linear
spin-orbit coupling produces a single-peak structure.

Fourier spectra of conductance fluctuations were reported
to show the signature of spin-orbit coupling in the diffusive
regime, seen in the splitting of peaks in the Fourier
spectrum.15,16 We have compared the Fourier spectra of our
results in the case of linear and cubic form of spin-orbit
coupling �Fig. 10�. In our tunneling model, the Fourier spec-
tra of the ring with linear spin-orbit coupling differs from the
spectra of the ring with the cubic spin-orbit coupling in the
relative size of the base and higher harmonic. The shape of
the peaks in Fourier spectrum does not show significant dif-
ferences. Therefore, the signature of the cubic spin-orbit cou-
pling is clearly visible in the direct-space Aharonov-Bohm
oscillations, and very hard to discern in the Fourier trans-
form.

D. Thermal broadening

The split peaks in differential conductance as function of
lead chemical potential will be visible is the distance be-
tween the peaks is larger then their width. As an illustration
of the effects of temperature T�0, we will investigate the
broadening of pseudospin-resolved peak at half-flux quan-
tum �=�0 /2 �Fig. 11�. For the parameters we used, the
splitting of the peaks is �3 �eV�30 mK, and requires low
temperatures to resolve. The broadening that impairs resolv-
ing of the split peaks has a temperature-independent contri-
bution due tunneling to the leads, and it is further increased
due to the temperature. We study the thermal broadening of
the conductivity using Eq. �22�, and finding the conductance
g at finite temperatures. We find that the conductance is in-
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FIG. 9. �Color online� Aharonov-Bohm oscillations for different
types of spin-orbit coupling. �a� The conductance of the ring as a
function of the magnetic field shows oscillations with the period
that corresponds to a flux quantum threading the ring for both linear
��red� light� and cubic ��black� dark� spin-orbit coupling, but with
markedly different conductance within a period. �b� and �c� The
four-peak structure �labels 1–4 in �a�� for the cubic spin-orbit inter-
action, and the single-peak structure for the linear spin-orbit cou-
pling can be traced to the magnetic fields at which an energy level
in the ring aligns with the leads �labels 1–4 in �b��. Calculations for
both plots are done for the lead chemical potential of 36ER

�36 �eV, close to an energy level of an isolated ring in the ab-
sence of spin-orbit coupling, Dresselhaus cubic spin-orbit coupling
��=0.3�, and the linear spin-orbit coupling model is derived from
the cubic one by setting R3=0.
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FIG. 10. �Color online� Fourier spectra of the ring conductance
as function of the magnetic field. The upper panel ��black� dark�
shows the conductance spectrum of the ring with cubic spin-orbit
coupling, and the lower panel ��red� light� shows the conductance
spectrum of the ring with linear spin-orbit coupling. The ring radius
is set to R3

−3/2=0.5 �m, and the lead chemical potential is 36ER.
The structure of base frequency and the higher harmonics is the
consequence of the Aharonov-Bohm oscillations. The two cases can
be distinguished by the relative size of the harmonics.
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deed broadened at finite temperatures �Fig. 11�. However, the
visibility of the peaks and the resolution of peaks can be
improved if the peaks are narrower or the splitting is larger.
The peak splitting grows with the absolute value of the mo-
mentum, �
�, and can be observed at higher temperatures if
the momentum of the interfering states is larger. In summary,
the favorable conditions for the observation of pseudospin-
dependent conductance are weak tunneling and low tempera-
tures. Both of these conditions aim at reducing the line width
of the peaks. Another way to resolve the pseudospins is to
perform an experiment with the higher chemical potential in
the leads, and observe the splitting of the higher-energy peak.
These peaks are further separated in energy, due to the cubic
spin-orbit coupling.

VI. CONCLUSIONS

We have investigated the conductance of a mesoscopic
ring of heavy holes tunnel coupled to leads. In the coherent

regime, the transport through the ring is dominated by the
energy spectrum and the pseudospin texture of the orbiting
hole eigenstates. Due to the cubic form of spin-orbit interac-
tion, the pseudospin texture of the hole eigenstates is mo-
mentum dependent, as opposed, e.g., to the electrons with
linear spin-orbit coupling.

The hole transport proceeds through tunneling between
the source and the drain lead via various ring eigenstates,
with the phase of each tunneling path modified due to the
spin texture. The effects of interference between the tunnel-
ing paths are visible in the conductance when the tunnel
broadening is sufficient to make the ring energy levels over-
lap. We have demonstrated that the dominant type of spin-
orbit interaction can be deduced from the pseudospin-
dependent conductance between the polarized leads.

Aharonov-Bohm oscillations appear in the tunneling ap-
proach as a consequence of the evolution the ring spectrum
as the magnetic flux is threaded through the ring. Approxi-
mately periodic evolution of the peaks leads directly to the
approximately periodic conductance oscillations. We have
explained the four-peak shape of the Aharonov-Bohm oscil-
lations in the direct space as a direct consequence of fourfold
near degeneracy of the orbiting hole energy levels. This par-
ticular shape of Aharonov-Bohm oscillations is a signature of
the cubic spin-orbit coupling, but it is not visible in the Fou-
rier transform of the conductance.

The pseudospin splitting of the conductance peaks, caused
by pseudospin textures of the ring eigenstates is clearly vis-
ible at zero temperature and low tunneling, but disappears
when the combined thermal and tunnel broadening becomes
comparable to the size of the splitting.
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FIG. 11. �Color online� Thermal broadening of differential con-
ductance g. Components of the split peak in the differential conduc-
tance �inset in Fig. 8� merge into a single peak as the temperature is
raised. The squares represent the conductance of the ring with stron-
ger tunneling between the leads and the ring, �t�=0.5ER, while the
circles represent the conductivity for weaker tunneling �t�=0.3ER.
Weaker tunnel coupling allows the splitting to be resolved at higher
temperatures.
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