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Signatures of Anderson localization in the momentum distribution of a cold atom cloud after a quantum
quench are studied. We consider a quasi-one-dimensional cloud initially prepared in a well-defined
momentum state, and expanding for some time in a disorder speckle potential. Quantum interference
generates a peak in the forward scattering amplitude which, unlike the common weak localization
backscattering peak, is a signature of strong Anderson localization. We present a nonperturbative, and fully
time resolved description of the phenomenon, covering the entire diffusion-to-localization crossover. Our
results should be observable by present day experiments.
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After several decades of research there remains a stark
imbalance between a huge body of theory and scarcely any
controlled experimental observation of Anderson localiza-
tion in generic disordered systems [1]. Here “controlled”
means the option to link experimental signatures directly to
underlying quantum interference processes via a tunable
parameter. Ultracold atoms are likely our best bet to
improve upon this situation, and experiments based on a
quench protocol appear to be particularly promising.
Within the quench paradigm, “time” plays the role of a
control parameter, and Anderson localization would be
monitored in the slow genesis of an observable strongly
affected by disorder generated quantum interference. A
specific proposal going in this direction has recently been
made [2,3] and realized [4,5]. These experiments expose a
cloud of cold atoms with initially well-defined momentum,
ki, to a laser speckle disorder potential. Suspended against
gravity by magnetic levitation, the cloud propagates in the
disorder potential for some time, t, after which all potentials
are turned off and the atomic momentum distribution
ρðkf; tÞ is determined by time-of-flight measurement.
For this setup, theory [3] predicts the presence of a

forward scattering peak (kf ≃ ki), besides the familiar weak
localization backscattering (kf ≃ −ki) peak often observed
in such types of experiment. The remarkable difference
between the two structures is that the forward peak is a
manifestation of strong Anderson localization, i.e., a non-
perturbative accumulation of quantum coherence processes.
First indications to the emergence of a forward peak have
been extracted from an insightful combination of perturba-
tion and scaling theory in Ref. [3]. However, the full
profile of the signal, its height, width, and temporal
development, can only be addressed in terms of the
nonperturbative methods tailored to the description of
strong localization phenomena [6,7]. At any rate, an

observation of the peak formation—which arguably is
in reach of present experimentation—and its successful
comparison to time-resolved analytic results would pro-
vide us with an exceptionally strong testbed for our
understanding of strong localization phenomena.
In this Letter, we present a fully analytic theory of the

forward scattering peak in the quantum quench protocol.
Particular attention is payed to the genesis of the peak at the
time scale characteristic for the buildup of strong localization
phenomena, an analysis made possible thanks to recent
progress [8]. Our theory also describes the structure of the
fully developed peak in momentum space, i.e., its height
relative to the isotropic background, its width, and its
dependence on the experimentally unavoidable initial
momentum spread.
Below we consider a situation where time reversal (T)

invariance is broken by a weak synthetic gauge field. In this
case, the diffusion modes relevant to the formation of the
backscattering peak (“Cooperon modes” in the parlance of
the field) are frozen out, and the signatures of localization
reside entirely in the forward peak. While the absence of
Cooperon modes technically simplifies our analysis, strong
localization is only weakly affected—e.g., the localization
length doubles compared to the T invariant case—and
the features of the forward peak are not expected to be
modified in essential ways.
Model and effective theory.—We consider a cloud of

noninteracting atoms confined to a quasi-one-dimensional
geometry of extensions Ly;z ≪ Lx, and described by the
Hamiltonian Ĥ0 ¼ ðp̂ − aÞ2=2m, where a is a weak T–
breaking synthetic gauge field [9,10]. Assume the cloud to
be initially prepared in a momentum eigenstate jkii;
residual effects due to momentum spread will be discussed
below. At time t ¼ 0 we switch on a random potential,
Ĥ0 → Ĥ ≡ Ĥ0 þ Vðx̂Þ. Assuming V to represent a short
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range laser speckle, we model it as Gaussian white noise,
VðxÞVðx0Þ ¼ ð1=2πντÞδðx − x0Þ, where ν is the density of
states per volume, τ is the elastic scattering time, and ℏ has
been set to unity.
The observable of interest is the time dependent con-

figuration averaged fidelity

Ckikf
ðtÞ ¼ jhkfje−iĤtjkiij2; (1)

between the initial and final state, which is directly
measurable by time of flight absorption measurement. At
times larger than the mean free time, the response function
C splits into a sum of two pieces,

Ckikf
¼t>τN fki

fkf
½C0 þ C1ðqÞ�; (2)

where C0 and C1 are the isotropic background and the
momentum dependent contribution to the correlation func-
tion, resp., where q ¼ ki − kf is the momentum difference,
and the weight function fk ¼ f1þ ½2τðk2=2mÞ − EÞ�2g−1
restricts initial and final momenta to a disorder-broadened
shell of energy, E, and N guarantees the normalizationP

k0Ckk0 ¼ 1.
Classical kinetic theory predicts that at time scales larger

than the elastic scattering time, τ, the momentum distri-
bution will diffusively relax to an isotropic configuration
with C1 ¼ 0 [11]. Quantum coherence introduces the
Heisenberg time tH ¼ 1=Δξ, where Δξ is the single particle
level spacing of a “localization volume.” In our quasi-one-
dimensional setup,Δξ ¼ ð2πνSξÞ−1, where S ¼ LyLz is the
cross section of the system, and ξ ≫ Ly;z the longitudinal
localization length due to disorder. The latter can be
implicitly defined by the equality Δξ ¼ D=ξ2 to the inverse
of the diffusion time through a localization volume as
ξ ¼ 2πνSD, where D is the three-dimensional diffusion
constant on the energy shell. We assume the system to be
strongly localizing in the sense ξ ≪ Lx, at negligibly weak
finite size corrections in ξ=Lx. In the following we will
construct a microscopic theory of the appearance of this
scale and its influence on the evolution of the forward peak.
We start out by Fourier transforming the correlation

function to frequency space, CðtÞ ¼ R ðdη=2πÞCðηÞe−2itηþ ,
where ηþ ¼ ηþ i0. The function CðηÞ then assumes the
standard response form of a product of two single particle
Green functions, which is to be averaged over disorder.
Expressions of this type are tailored to an analysis in terms
of the supersymmetric nonlinear σ model, and a straight-
forward application of the formalism of Ref. [6] yields our
momentum correlation functions as

C0ðηÞ ¼ htr½PþþQð0ÞP−−Qð0Þ�iS0 ; (3)

C1ðq; ηÞ ¼ δ0;q⊥htr½P−þQðqÞPþ−Qð−qÞ�iS0 : (4)

Here Q ¼ fQαα0
ss0 g is a 4 × 4 supermatrix, that obeys the

nonlinear constraint Q2 ¼ 1. Its diagonal 2 × 2 upper- left

and lower-right matrix blocks Qbb and Qff , resp., contain
complex numbers, while the off-diagonal blocks Qbf;fb

contain Grassmann variables. The subscript indices Qss0 ,
s, s0 ¼ � discriminate between “retarded” and “advanced”
components of the matrix field, and the matrices Pss0

project on the s, s0 advanced or retarded block in the
fermion-fermion sector. The correlation function (4) pre-
serves the initial transverse momentum, q⊥ ¼ 0, and is
sensitive to the longitudinal momentum difference
q ¼ kxi − kxf.
Finally, the functional average in Eq. (3) is defined as

h� � �iS0 ¼
R
DQeS0½Q�ð� � �Þ, where S0 is the celebrated

diffusive σ-model action

S0½Q� ¼ πνS
Z

dx str

�
iηQΛþD

4
ð∂xQÞ2

�
; (5)

where Λ ¼ fsδss0 g is the identity matrix in boson-fermion
space but breaks symmetry in advanced-retarded space.
Throughout it will be convenient to think of the coordinate
x in terms of some fictitious “time” and of Q as a multi-
dimensional quantum particle. Equation (5) then acquires
the status of a Feynman path integral, with “kinetic” energy
∼ð∂xQÞ2, and a “potential” ∼ηQΛ. The latter is invariant
under similarity transformations of Q leaving the diagonal
matrix Λ invariant. As with a “radial” potential in quantum
mechanics, this high degree of symmetry will reduce the
effective dimensionality of the problem and make non-
perturbative calculations possible. Furthering upon this
analogy, much of our analysis will rest upon a mapping
of the path integral to a Schrödinger equation, which can be
addressed in analogy to the quantum mechanics of cen-
trosymmetric potentials. However, before turning to this
discussion, we address the short time, or “strong potential”
limit, where η is large enough to confine the particle close
to the origin and a formulation in terms of “Cartesian”
coordinates is appropriate.
Diffusive short time limit τ ≪ t ≪ tH.—The dynamics

on (real) time scales shorter than the Heisenberg time, or
η ≫ Δξ, can be addressed in terms of perturbation theory
around the high-frequency saddle point Q ¼ Λ as
Q¼TΛT−1≃Λð1−2Wþ2W2−…Þ, where T ¼ expðWÞ
and W are fluctuation generators. Individual terms in the
ensuing perturbation series afford an interpretation in terms
of the diffusive “ladder diagrams” [6] shown in Fig. 1. The
leading OðW2Þ, or zero loop order [Fig. 1(a)], contributes
to the isotropic part, C0, where it describes momentum
relaxation at time scales larger than the scattering time τ.
The first contribution to the forward peak arises at OðW4Þ,
or two-loop order [Fig. 1(b)], as C1ðtÞ ∝

ffiffiffiffiffiffiffiffiffi
t=tH

p
. This

increase is fast in comparison to the 2d scaling ∼t=tH
obtained in Ref. [3] (for a time reversal invariant setting
[12]), and reflects the relatively higher phase volume
accessible to diffusive fluctuations in low dimensions.
The appearance of tH as a reference scale indicates that
localization is relevant to the phenomenon.
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Mapping to differential equations.—For larger time
scales t ∼ tH, or “weak potential” η ∼ Δξ, it is advantageous
to switch from the path integral (2) to an equivalent
“Schrödinger equation.” Its Hamilton operator,

Ĥ0 ¼ −
�
∂λ

1 − λ2

λ2−
∂λ þ ∂λ1

λ21 − 1

λ2−
∂λ1

�
−
i
2
ηtHλ−; (6)

couples to the two “radial" coordinates, λ, λ1 of the
quantum particle [6,7] through a kinetic energy and a
potential term, resp., where λ− ¼ λ1 − λ. Central to our
problem is the ground state wave function, Ĥ0Ψ0 ¼ 0,
Ψ0 ¼ Ψ0ðλ; λ1Þ, with boundary condition Ψ0ð1; 1Þ ¼ 1,
and a perturbed wave function obeying

ð2Ĥ0 − iqξÞΨq
1 ¼ λ−Ψ0; (7)

where q is the longitudinal momentum difference.
Applying the formalism of Refs. [6,7] the main observable
of interest, Eq. (4), can then be expressed as

C1ðq; ηÞ ¼ ξ

Z
dλ̄
λ−

½Ψq
1ðλ̄Þ þΨ−q

1 ðλ̄Þ�Ψ0ðλ̄Þ; (8)

where
R
dλ̄ ¼ R∞

1 dλ1
R
1
−1 dλ. The isotropic contribution C0

can be described similarly, but its explicit representationwill
notbeneededhere[13].Thebehaviorof the“wavefunctions”
entering (8) depends on whether we are (i) in the regime of
short times t ≪ tH, (ii) the diffusion–to-localization
crossover regime of intermediate times t≃ tH, or (iii) at
asymptotically long times t ≫ tH. In (i), straightforward
perturbation theory in weak perturbations off the

configuration λ ¼ λ1 ¼ 1 pinned by the strong potential
η ≫ 1=tH recovers the results summarized above [13]. We
now proceed to explore how the short time asymptotic
connects to the perturbatively inaccessible crossover
regime, (ii).
Diffusion-to-localization crossover.—At intermediate

times, the primary goal is a description of the temporal
buildup of the forward peak CfsðtÞ ¼ C1ð0; tÞ. Building on
recent progress by Skvortsov and Ostrovsky (SO) [8] we will
find that the problem possesses a surprisingly simple solution.
The key observation of SO was that upon introduction
of elliptic coordinates, λ ¼ 1

2
ðr − r1Þ, λ1 ¼ 1

2
ðrþ r1Þ,

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ ρ2

p
, and r1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðz − 2Þ2 þ ρ2

p
, Ĥ0 assumes

a form similar to that of a nonrelativistic 3d Coulomb
Hamiltonian,

Ĥ0 ¼ −
r21r
2

�
Δ0 −

2κ

r

�
1

r1
; (9)

where Δ0 ≡ ∂2
z þ 1

ρ ∂ρρ∂ρ is the Laplace operator in
cylinder coordinates (ρ, ϕ, z) acting in the space of
azimuthally symmetric functions, and κ ≡ −iηtH=2.
Following Ref. [8], we can derive the ground state wave
function from the known zero energy Green’s function of
the 3d Coulomb problem [14],

�
Δ0 −

2κ

r

�
G0ðr; r0Þ ¼ δðr − r0Þ; (10)

where r0 ¼ ð0;φ; 2Þ corresponds to the boundary point
ðλ; λ1Þ ¼ ð1; 1Þ↔ðr; r1Þ ¼ ð2; 0Þ. From this function, we
obtain a solution to the ground state problem as,
Ψ0ðr; r1Þ ¼ −4πr1G0ðr; r0Þ, where the role of the r0 inho-
mogeneity in Eq. (10) is to implement the boundary
condition Ψ0ð0; 2Þ ¼ 1. A solution for the Green function
in terms of Bessel functions was obtained long ago [15] as

G0ðr; r0Þ ¼
ð∂u − ∂vÞ

ffiffiffi
u

p
K1ð2

ffiffiffiffiffi
κu

p Þ ffiffiffi
v

p
I1ð2

ffiffiffiffiffi
κv

p Þ
2πjr − r0j ; (11)

where u ¼ rþ r0 þ jr − r0j and v ¼ rþ r0 − jr − r0j.
Thanks to the appearance of the Green function, the
solution to our full problem can now be formulated by
standard methods of quantum mechanics. Specifically, we
observe that the solution for the excited wave function (7) is
obtained by convolution of the Green function (11) and the
source term ð1=rr1ÞΨ0ðr; r1Þ over the three-dimensional
volume element d3r ¼ ðrr1=2Þdrdr1dφ. Substitution of
this result into Eq. (8) then yields

CfsðηÞ ¼ 32πξhr0jĜ0

1

r̂
Ĝ0

1

r̂
Ĝ0jr0i ¼ð10Þ8πξ∂2

κG0ðr0; r0Þ:

To compute the κ derivative, we regularize the Green
function in Eq. (11) as G0ðr0; r0Þ ¼ limr→r0G0ðr; r0Þ.

(a)

(b)

FIG. 1 (color online). Leading, (a), and subleading, (b), con-
tributions to the correlation function (1) in the perturbative limit.
(a) Classical diffusive propagation of a particle-hole pair in real
space (left panel), and the corresponding impurity diagram in
momentum space (right panel), which does not retain memory of
the initial momentum and contributes to the isotropic back-
ground, Eq. (3). (b) Leading contribution to the forward corre-
lation [Eq. (4)]. A particle-hole pair amplitude splits up into two
diffusive loops traversed in opposite order (left panel). The
ensuing quantum interference contribution to the correlation
function (right panel) does not rely on T invariance and is
strongly peaked in the forward direction, q ¼ 0.
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A straightforward Taylor expansion of Bessel functions
then leads to

CfsðηÞ ¼ 8ξ∂κK0ð4
ffiffiffi
κ

p ÞI0ð4
ffiffiffi
κ

p Þjκ¼−iηðtH=2Þ: (12)

Upon Fourier transformation, the time dependence of the
forward-scattering peak contrast is finally obtained as (cf.
Fig. 2)

CfsðtÞ
C∞

¼ θðtÞI0
�
2tH
t

�
e−2tH=t; (13)

where C∞ ¼ Cfsð∞Þ is the long term asymptotic to be
discussed momentarily. The limiting behavior of I0 [16]
implies the long and short time expansions

CfsðtÞ
C∞

¼
1ffiffiffiffi
2π

p
��

t
2tH

�
1=2 þ 1

8

�
t

2tH

�
3=2 þ…

�
; t ≪ tH;

1–2 tH
t þ 3

�
tH
t

�
2 þ…; t ≫ tH;

8>><
>>:

generalizing the previously studied limit.
Long time limit t=tH ≫ 1 and saturation value of

contrast.—For η ≪ t−1H , fluctuations far away from the
origin ðλ; λ1Þ ¼ ð1; 1Þ become energetically affordable.
In this regime, dominant contributions to correlation
functions come from the integration over λ1 ≫ λ ∼ 1. To
leading approximation the dependence of the differential
equations on λ may be ignored [6,7], and the solution for
the dependence on the “noncompact" variable λ1 along the
lines of [6] obtains

C1ðq;ηÞ¼
8iξ
ηtH

Re
Z

∞

0

dx
Z

x

0

dyxK1ðxÞKσqðxÞyK1ðyÞIσqðyÞ;

where σq ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4iqξ

p
, and Kν and Iν are the modified

Bessel functions of order ν. The ∼η−1 scaling of this result

implies a trivial (constant) time dependence C1ðq; tÞ≡
C∞ðqÞ at large times, where the saturation function, C∞ðqÞ,
is determined by the coordinate integrals. The isotropic
component, C0, turns out to be given by the same
expression, at, however, q ¼ 0. In other words, the forward
scattering amplitude and the isotropic component coincide
at large times, Cfsðt ¼ ∞Þ ¼ C0ðt ¼ ∞Þ≡ C∞, which
means that the forward scattering peak asymptotes to a
value twice as large as the isotropic background. The
saturation value C∞ðqÞ as a function of longitudinal
momentum difference is shown in the left inset of
Fig. 2. The amplitude rapidly decreases as a function of
q, half of the peak value C∞ is reached at the characteristic
scale q≃ ξ−1, and for larger values the peak amplitude
decays as ∼q−2. Since the localization length is much larger
than the mean-free path l, this narrow peak should be easily
distinguished from the broadened energy shell in k space.
So far, we have assumed an initial state of sharply

defined momentum. To account for the presence of
momentum spread we convolute our results over a dis-
tribution of initial momenta. For a Lorentzian distribution
of width Δk, we find hCfsð∞Þi ¼ C1ðiΔk;∞Þ ¼ C∞ðiΔkÞ,
where C∞ is the peak function discussed above. The
forward signal, shown in the left inset of Fig. 2, will be
severely suppressed once Δk > ξ−1. Qualitatively similar
behavior is expected for other distributions, which means
that near monochromatic initial configurations are vital for
the observability of the forward peak.
Discussion.—Previous experiments [4,5] have probed the

coherent response of atomic clouds to a speckle potential
quench to two-dimensional disorder. In these systems, a
crossover to effectively three-dimensional dynamics (with
only very weakly developed signatures of quantum inter-
ference) occurred at rather short times t ≪ tH, which means
that a coherent backscattering peak, but no forward peak
could be observed. With this Letter, we propose to repeat the
quench experiment in a quasi-one-dimensional setting with
its parametrically shorter Heisenberg time, and stronger
developed localization which will cause a more rapid
increase of the forward signal. The quasi-one-dimensional
geometry is realized if Ly;z ≪ ξ ≪ Lx, where the localiza-
tion length ξ is of the order Nl, and N is the number of
channels introduced by transverse size quantization.
For this type of system, our theory predicts the power

law increase of a forward signal at short times, the
saturation dynamics at large times, the momentum depend-
ence of the forward signal, and its dependence on the width
of the initial state. In total, this is the first space-time
resolved portrait of a strong localization phenomenon, with
the perspective of observation using current experimental
technology of cold atom physics or photonics [17].

T. M. would like to thank M. Micklitz for fruitful
discussions. Work supported by FAPERJ (Temático
and Infra 2013) and SFB/TR 12 of the Deutsche
Forschungsgemeinschaft.

FIG. 2 (color online). Forward-scattering peak contrast,
Eq. (13), as a function of time t=tH. Insets: Saturation value
as a function of longitudinal momentum difference q (left) and
spread Δk of the initial state (right).
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