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Quantum limit for nuclear spin polarization in semiconductor quantum dots
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A recent experiment [E. A. Chekhovich et al., Phys. Rev. Lett. 104, 066804 (2010)] has demonstrated that high
nuclear spin polarization can be achieved in self-assembled quantum dots by exploiting an optically forbidden
transition between a heavy hole and a trion state. However, a fully polarized state is not achieved as expected
from a classical rate equation. Here, we theoretically investigate this problem with the help of a quantum master
equation and we demonstrate that a fully polarized state cannot be achieved due to formation of a nuclear dark state.
Moreover, we show that the maximal degree of polarization depends on structural properties of the quantum dot.
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I. INTRODUCTION

Initialization [1], coherent manipulation [2–6], and readout
of a single spin confined in a quantum dot have become a
common routine. However, and in spite of all remarkable
developed strategies [7], a scalable quantum computer based
on spin qubits [8] still faces serious challenges. The main dif-
ficulty that has been encountered comes from the unavoidable
coupling between the qubit and the surrounding environment.
The time evolution of the qubit becomes correlated with the
dynamics of the environment degrees of freedom. This would
not be a problem in itself if one knew how to control the
environment, but in general this cannot be done, and thus the
random character (mixed state) of the environment results in
the decoherence of the qubit [9].

In quantum dots made out of III-V materials, the hyperfine
interaction of a single electron with a large number of nuclear
spins (104–106) is the main source of decoherence [2,3,10–12].
However, through an extensive effort aiming at prolonging the
spin coherence in quantum dots, several approaches have been
put forward to minimize or even cancel the effects due to
nuclear-spin-induced dynamics. Dynamical decoupling tech-
niques, such as Hahn echo [13] or Carr-Purcell [14], allow a
refocusing of the qubit phase by eliminating the low-frequency
components of the nuclear spin bath fluctuations. These
methods have demonstrated that it is possible to extend the
inhomogeneous dephasing time T ∗

2 ∼ 10 ns [2,3,15–17] up to
the dephasing time T2 ∼ 3 μs [2,3,18–20], which corresponds
to the limit imposed by nuclear spin diffusion [15,21]. A more
recent experiment in gate defined double quantum dots has
even revealed T2 � 200 μs [22].

Another possible route consists in polarizing the nuclear
spins. However, a substantial degree of polarization (close
to 100%) is needed [15] to increase coherence times. Highly
polarized nuclear states are also desirable for other useful tasks
in quantum information. Ultimately, they can be used as a
quantum memory to store the coherent state of the electron
spin [23,24]. Nuclear spins represent an attractive system for
this purpose since the nuclear polarization can persist for
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minutes in the dark [25,26] (in absence of an electron in
the dot). Despite huge breakthroughs in coherent control of
nuclear spin polarization [27–29], switching its direction [30],
observing reversal behavior [31], and controlling only certain
group of nuclear spins [32], a close to 100% polarized nuclear
state has yet to be reported.

A new experimental method relying on spin-forbidden
transitions between heavy holes and trions (positively charged
excitons consisting of two heavy holes in a singlet state and
an electron) was believed to be capable of fully polarizing
the nuclear spin bath. This expectation was based on a
rate equation describing the pumping mechanism which was
predicting a fully polarized nuclear state [33]. Although the
reached polarization was one of the highest until now reported,
∼ 65% [33], it is still below the threshold required for reliable
quantum information processing.

The inability to reach a maximally polarized nuclear state
shows that our understanding of the hyperfine mediated
dynamics is still incomplete. In this paper, we develop a model
of optical nuclear spin polarization, as studied experimentally
in Ref. [33]. Our theory goes beyond the commonly used
description of the nuclear spins as a stochastic magnetic
field [11,16]. We take into account the quantum nature of
the nuclear spins and use a fully quantum mechanical master
equation describing the joint time evolution of the electronic
and nuclear degrees of freedom. In particular, we show that the
pumping saturation is a consequence of the collective nuclear
spin dynamics. By studying both cases of homogeneous
and inhomogeneous hyperfine coupling constants, we show
that the simpler case of homogeneous coupling qualitatively
describes all physical phenomena. The inhomogeneous case,
since more close to experimental conditions, provides quan-
titative agreement with the experiment. We also investigate
in more detail the variation in the degree of maximal possible
polarization depending on the distribution of the electron wave
function inside of the quantum dot relative to the lattice using
a shell model [34].

II. SYSTEM HAMILTONIAN

We start with the following Hamiltonian:

H (t) = H0 + HL(t) + HHF, (1)
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FIG. 1. (Color online) (a) Level scheme for electronic and nu-
clear states. The hyperfine sublevels are denoted with their total
nuclear spin quantum numbers j and m. The trion state |t↓〉 with
angular momentum (along z) M = − 1

2 is pumped by the laser light
with Rabi frequency � from the heavy-hole state |h↓〉 with M = − 3

2 .
The hyperfine interaction couples the trion state |t↓〉 and |t↑〉 (M = 1

2 )
and changes the m quantum number of the nuclear system. The
trion states can relax by spontaneous emission with the rate �sp.
(b) Reduced level scheme with mechanisms for nuclear polarization
in the trion–heavy-hole system by spin-forbidden relaxation with rate
�χχ ′ from |t↓〉, or by spin-forbidden optical transitions between |h↓〉
and |t↑〉.

where H0 describes the electronic system, HL(t) its interaction
with the laser field, and HHF the effective hyperfine interaction
with the nuclear spins.

The electronic system consists of four levels: heavy hole
with spin up (hole up, | 3

2 , 3
2 〉 ≡ |h↑〉), heavy hole with spin

down (hole down, | 3
2 , − 3

2 〉 ≡ |h↓〉), trion with electron spin
up (trion up, | 1

2 , 1
2 〉 ≡ |t↑〉), and trion with electron spin down

(trion down, | 1
2 , − 1

2 〉 ≡ |t↓〉) [cf. Fig. 1(a)]. The Hamiltonian
H0 of these four states in the presence of an external
homogeneous magnetic field is given by

H0 = Etτe + ωe
ZSe

z + ωh
ZSh

z . (2)

Here, Et is the energy needed to excite a heavy hole to a trion
and τe represents the projection operator onto the trion spin
states, τe = |t↓〉〈t↓| + |t↑〉〈t↑|. The trion (heavy-hole) Zeeman
splitting is given by ωe

Z = geμBBz (ωh
Z = ghμBBz), where

ge (gh) is the electron (heavy-hole) Landé g factor, μB is the
Bohr magneton, and Bz is the external magnetic field chosen
along the growth axis of the quantum dot. We use Bz = 2.5 T
and ge = 1.5 (measured in Ref. [33]). Se

z is the trion spin
operator and Sh

z is the pseudospin operator for heavy-hole spin
states along the direction of the magnetic field.

The laser Hamiltonian HL(t) describes the left circularly
polarized laser field that pumps the transition between heavy-
hole-down |h↓〉 and trion-down |t↓〉 (M = − 1

2 ) states

HL(t) = �� (e−iωLt |t↓〉〈h↓| + eiωLt |h↓〉〈t↓|). (3)

Here, ωL is the laser frequency and � is the Rabi frequency. In
our calculations, we use � = 20 GHz. In principle, the Rabi
frequency is a function of time. However, since the pumping
time is much larger than the characteristic time needed to
switch the laser on and off, tpump � τon/off , we assume a
constant intensity of the laser light during the whole pumping
cycle.

The hyperfine Hamiltonian includes the contributions from
both the electron and the heavy hole. It is described by the
effective Hamiltonian

HHF =
N∑

k=1

[
1

2
Ae

k

(
2Se

zI
k
z + Se

+I k
− + Se

−I k
+
) + Ah

kS
h
z I

k
z

]
, (4)

where the coupling to the hole states is strongly
anisotropic [35]. Here, the sum runs over all N nuclei within
the quantum dot. The operator I k

z describes the z component
of the kth nuclear spin. In Eq. (4), we have introduced the spin
ladder operators defined as Se

± = Se
x ± iSe

y and I k
± = I k

x ± iI k
y .

The hyperfine coupling constants with the kth nucleus are
given by Ae

k = ve
kν0|ψe(rk)|2 and Ah

k = vh
kν0|ψh(rk)|2, where

v
e(h)
k is the hyperfine coupling strength of the electron spin

(heavy hole), ν0 the volume of a unit cell, and ψe(h)(rk) is the
envelope wave function of the electron (heavy hole).

The homogeneous approximation of the Hamiltonian (4)
is performed by replacing the position-dependent coupling
constant by Ae/N , where Ae is the average hyperfine coupling
constant (for InP quantum dots, Ae = 110 μeV [33]). The
interaction strength between a heavy hole and the kth nuclear
spin is given by Ah

k . It differs from the electron hyperfine
constant due to a different type of wave function. It was
found theoretically and confirmed experimentally that Ah ≈
−0.11Ae [35–37].

We omit the transverse terms of the effective heavy-hole
hyperfine interaction, which can contribute to nuclear spin po-
larization [35]. The coupling constants for the longitudinal and
transverse hyperfine terms of the heavy hole are different due
to the anisotropic character of the interaction. This leads to a
transverse hyperfine coupling constant which is approximately
two orders of magnitude smaller than the longitudinal one
|Ah

⊥| < 0.06|Ah
z | [35]. In addition, the large Zeeman energy

(B = 2.5 T) renders hyperfine assisted relaxation of heavy
holes small compared to other physical mechanisms playing a
role in the polarization of nuclear spins [38].

In the following, we split the hyperfine Hamiltonian into
longitudinal and transverse contributions. The longitudinal
term

Hz
HF =

N∑
k=1

(
Ae

kS
e
zI

k
z + Ah

kS
h
z I

k
z

)
(5)
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only produces a spin-dependent energy shift (Overhauser shift)
of the electronic states, while the transverse part

H⊥
HF = 1

2

N∑
k=1

Ae
k

(
Se

+I k
− + Se

−I k
+
)

(6)

provides the mechanism for polarizing the nuclear spins by
transferring magnetic moment from the electron spin to the
nuclear spin ensemble.

The time dependence of Hamiltonian (1) can be removed
by performing a canonical transformation

H→H ′ = eiξ t/�(H − ξ )e−iξ t/�. (7)

For our problem, we have

ξ =
(

Et − �

2
ωe

Z − �


2

)
τe − �

(
ωh

Z + 

)
τh, (8)

where τh = |h↓〉〈h↓| + |h↑〉〈h↑| is the projection operator
onto the heavy-hole spin states. The detuning of the laser
frequency from the heavy hole up to trion down |h↑〉→|t↓〉
transition energy is given by 
 = Et/� + 1

2 (ωh
Z − ωe

Z) − ωL.
The transformation only acts nontrivially on H0 [Eq. (2)] and
HL(t) [Eq. (3)]. We find

H0→H ′
0 = �ωe

Z|t↑〉〈t↑| + �


2
τe + �ωh

Z|h↑〉〈h↑| − �


2
τh

(9)

and

HL(t)→H ′
L = ��(|t↓〉〈h↓| + |h↓〉〈t↓|), (10)

after performing the rotating-wave approximation on H ′
L.

The Hamiltonian defined in Eq. (1) becomes then

H ′ = H ′
0 + H ′

L + Hz
HF + H⊥

HF. (11)

We further eliminate the hyperfine spin-flip terms
from Eq. (11) by applying a Schrieffer-Wolff transforma-
tion [30,39,40]

H ′→H̃ = eSH ′e−S =
∞∑

j=0

[S,H ′](j )

j !
, (12)

where we have used the recursive definition

[S,H ′](0) = H ′,

[S,H ′](1) = [S,H ′],

[S,H ′](j ) = [S,[S,H ′](j−1)].

(13)

By applying the Schrieffer-Wolf transformation as defined
in Eq. (12) with

S =
N∑

k=1

Ae
k

2ωe
Z

(I k
−|t↑〉〈t↓| − I k

+|t↓〉〈t↑|), (14)

we obtain an effective Hamiltonian with hyperfine interaction
assisted spin-forbidden optical transitions:

H̃ = H ′
0 + H ′

L + Hz
HF +

N∑
k=1

�Ae
k�

2ωe
Z

(I k
−|t↑〉〈h↓| + I k

+|h↓〉〈t↑|).

(15)

In the Hamiltonian (15), we only include terms of the
Schrieffer-Wolff transformation up to the first order in Ae

k .
Higher-order terms describe, e.g., second order processes
such as extrinsic nuclear-nuclear spin interactions assisted
by two virtual electron spin flips [41–43], which are of little
interest here.

The effective Hamiltonian defined in Eq. (15) gives an
intuitive picture of the optical pumping mechanism from heavy
hole down to trion up [cf. Fig. 1(b)]. When the laser frequency
is on resonance with the transition |h↓〉→|t↑〉, i.e., 
 = −ωe

Z ,
simultaneous absorption of a photon and transfer of angular
momentum from the electron spin to the nuclear spin bath takes
place. However, the coherent dynamics alone cannot explain
the buildup of nuclear polarization. To correctly describe
the pumping cycles, we need to include the spontaneous
emission of the trion state. In this scenario, the quantum dot
is initialized in the state |h↓〉, optically pumped to the state
|t↑〉, simultaneously transferring the angular momentum of
the electron spin to the nuclear bath, and the trion-up state
decays by spontaneous emission to the state |h↑〉 faster than
it can be optically pumped back to |h↓〉. The heavy hole up
relaxes then via spin orbit to the initial heavy hole down [44]
and another pumping cycle can start again. To describe the
evolution of the system in presence of dissipation, we rely on
the Lindblad master equation [45,46].

III. LINDBLAD MASTER EQUATION

The Lindblad master equation for the density matrix ρ of
the combined electronic and nuclear spin system is given by

ρ̇ = − i

�
[H̃ ,ρ] + 1

2

d2−1∑
j=1

([Ljρ,L
†
j ] + [Lj ,ρL

†
j ]), (16)

where the Lindblad operators Lj describe different dissipation
processes [45,46], and d is the dimension of the Hilbert
space. Here, we only describe dissipative processes in the
low-dimensional electronic system and therefore get by with
a small number of Lindblad operators.

As mentioned earlier, a key dissipation process to explain
the polarization dynamics is the spontaneous emission. Here,
we take into account the spontaneous emission of a photon
from the trion-down state to the corresponding hole state.
This process is described by L1 = √

�sp|h↓〉〈t↓|, with �sp =
6 GHz. In principle, there is a similar process for the other
trion and hole states and a process that describes the relaxation
of the heavy hole up to heavy hole down [cf. Fig. 1(a)].
However, since the heavy hole up does not play any major
role in the polarization dynamics, we are going to consider a
direct decay mechanism from the trion up to the heavy hole
down, L2 = √

�sp|h↓〉〈t↑|. This is justified if the relaxation
from heavy hole up to heavy hole down is not the bottleneck of
the pumping cycle, i.e., the hole relaxation rate is considerably
higher than the nuclear spin pumping rate. The latter has
been demonstrated by Checkhovich et al. in Ref. [33].
Thus, we assume a heavy-hole relaxation rate that fulfills
1/�sp + 1/�h↑→h↓ ≈ 1/�sp. Finally, we note that heavy-hole
relaxation rates as short as 10 ps were reported in Ref. [44].
This allows us to reduce the dimension of the electronic Hilbert
subspace by omitting the heavy hole up.
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In addition to these two relaxation mechanisms, we include
an additional process to describe the experimentally observed
nuclear polarization when the laser frequency is on resonance
with the transition |h↓〉→|t↓〉, i.e., 
 = 0. The mechanism
leading to polarization in this case is substantially different
from what happens when 
 = −ωe

Z . The heavy hole down
is optically excited to the trion-down state. At this point,
there are two different relaxation paths: the trion down
can either relax back to the heavy hole down by both
spontaneous or stimulated emission or it can relax to the heavy
hole up by transferring angular momentum to the nuclear
bath. We describe the latter mechanisms with the Lindblad
operators Lχχ ′ = √

�χχ ′ |h↑ χ〉〈t↓ χ ′| + √
�h↑→h↓ |h↓χ〉〈h↑χ |,

where χ = j1m1 . . . jnmn labels collective angular momentum
states of nuclear spins, which have been arranged into n groups
according to their hyperfine coupling strength Ae

i with the elec-
tronic spin. Since �h↑→h↓ � �sp and �χχ ′ ∝ �sp, we can ap-
proximate Lχχ ′ to Lχχ ′ � √

�χχ ′ |h↓ χ〉〈t↓ χ ′|. The rates �χχ ′

are calculated in the following with help of Fermi’s golden rule.

A. Forbidden relaxation rate

We describe the interaction of the trion–heavy-hole system
with the radiation field with Hamiltonian Hrad. We have in the
dipole approximation [47]

Hrad = −d · E, (17)

where d is the dipole operator of the quantum dot states and
E is the quantized electric field

E =
∑
k, λ

√
�ωk

2ε0V
ek, λ(a†

k, λ + ak, λ), (18)

with ε0 the vacuum permittivity. We have decomposed the
field confined in a box of volume V into Fourier modes
with periodic boundary conditions. Each mode is associated
with a wave vector k, two transverse polarization vectors
ek, λ, and frequency ωk . Furthermore, we have introduced the
annihilation and creation operators ak, λ and a

†
k, λ of a photon

with wave vector k and polarization ek, λ.
We will use Hrad as a perturbation and apply Fermi’s golden

rule to compute the rate �χχ ′ . In order to do so, we first need
to find the eigenstates of H0 + Hz

HF + H⊥
HF. This becomes

particularly arduous due to the hyperfine interaction. To ease
our task, we can instead use approximate eigenstates found
with perturbation theory. This is possible thanks to the large
Zeeman splitting of the electronic states.

We use H0 + Hz
HF as unperturbed Hamiltonian and H⊥

HF as
perturbation. The eigenstates of the unperturbed Hamiltonian
can be written as |ψ (0)

e χ 〉 = |e χ〉, where |e〉 labels trion and
heavy-hole states. Using first-order perturbation theory, we
find the corrections for the states |h↑ χ〉 and |t↓ χ〉, which,
respectively, read as ∣∣ψ (1)

h↑ χ

〉 = 0; (19)

∣∣ψ (1)
t↓ χ

〉 = 1

2

∑
k

Ae
k

√
jk(jk + 1) − mk(mk − 1)

E
(0)
t↓ χ − E

(0)
t↑ χk

|t↑ χk〉, (20)

with χk = j1m1 . . . jkmk − 1 . . . jnmn. Here, E
(0)
t↓ χ = Et −

ωe
Z/2 − ∑

i A
e
i mi/2 and E

(0)
t↑ χk

= Et + ωe
Z/2 + ∑

i A
e
i mi/2 −

Ae
k/2. The first-order correction to the energy is identically

zero for all states E(1)
e χ = 0.

The transition rate �χχ ′ is then given by

�χχ ′ = 2π

�
|〈f|Hrad|i〉|2 ρ(Ei − Ef), (21)

with |f〉 = |ψh↑ χ ′ , 1〉 and |i〉 = |ψt↓ χ , 0〉. We denote the state
of the radiation field by |0〉 (no photon) and |1〉 (one photon
emitted). The energies of the initial and final states are Ei =
Et − ωe

Z/2 and Ef = ωh
Z/2 + ωγ , where ωγ is the energy of

the emitted photon.
The evaluation of Eq. (21) yields

�χχ ′ = �sp

4

∣∣∣∣∣
∑

k

Ae
k

√
jk(jk + 1) − mk(mk − 1)

ωe
Z + ∑

l A
e
l ml − Ae

k

2

∣∣∣∣∣
2

δχ,χ ′
k
, (22)

where we have used [46,47]

�sp = 2π

�

∣∣〈h↑ 1|Hrad|t↑ 0〉∣∣2
ρ(Ei − Ef), (23)

with �sp the spontaneous emission rate of the trion state.
We assume the spontaneous relaxation rate of the trion-up

and -down states to be the same. The spontaneous emission
follows a cubic dependence on the energy difference between
the initial and final states �sp ∝ ω3

fi. Having this in mind
and noticing that both Zeeman splittings are four orders of
magnitude smaller than the required energy to create a trion,
�ω

e(h)
Z /Et � 10−4, it is perfectly reasonable to assume that

both spontaneous emission rates are nearly identical.
Another process that could lead to nuclear spin polarization

is hyperfine-mediated phonon spin flips. However, from the ex-
perimental data presented in Ref. [33], there is no evidence that
such processes play an important role in the dynamics. Both
the absence of polaronic sidebands in the photoluminescence
spectra of the quantum dot and the absence of side peaks
in the measurement of the nuclear spin polarization seem
to indicate very weak phonon coupling. One would indeed
expect to see polarization side peaks (both sides of the main
peak) if the emission or absorption of a phonon would assist
the allowed (forbidden) transition when the laser frequency is
detuned off resonance.

B. Solutions of the master equation

Since the Hamiltonian H̃ [Eq. (15)] is time independent, the
master equation (16) is a system of homogeneous differential
equations of first order. Using a superoperator formalism, we
can rewrite Eq. (16) as

ρ̇(t) = Lρ(t). (24)

Interpreting the above equation as a vector equation, we can
write the solution for ρ(t) as

ρ(t) =
∑

i

ci vi e
λi t , (25)

where λ and v are the eigenvalues and eigenvectors of L,
respectively. The coefficients ci can be found from the initial
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conditions

ρ(0) =
∑

i

civi . (26)

For the initial conditions of the total density matrix we
apply the sudden approximation [15]. We assume that at times
t < 0, the electronic (ρe) and nuclear (ρnuc) density matrices
are uncorrelated and for t = 0 the state of the total system
ρ is given by ρ(0) = ρe(0) ⊗ ρnuc(0). The initial state for the
electronic system is

ρe(t = 0) = |h↓〉〈h↓|. (27)

The initial nuclear state is assumed to be a fully mixed state.
This assumption is justified by the fact that under normal
experimental conditions, the thermal energy is much larger
than the nuclear Zeeman kBT � Enuc

Z . Thus, it is reasonable
to assume a fully unpolarized nuclear state

ρnuc =
∑
χ

p(χ )|χ〉〈χ |. (28)

By assuming the nuclear spins to be spin- 1
2 and considering

the case of a Dicke state |jm〉, we derive the probability dis-
tribution p(χ ). Since we can write the probability for a Dicke
state as the probability to find a given j times the conditional
probability of finding m knowing j , p(j,m) = pj (j )pm(m|j ),
our task is reduced to find the degeneracy g(j ) of the quantum
number j . We have p(j,m) = g(j )pm(m|j )/dim(H), where
dim(H) = 2N is the total number of nuclear spin states. For a
thermal state, the distribution of m for a given j is uniform,

pm(m|j ) = [�(j + m) − �(j − m)]

2j + 1
, (29)

where �(x) is the Heaviside step function. The degeneracy
g(j ) can be found following the method of Ref. [48]; we find

g(j ) = (2j + 1)2N !(
N
2 + j + 1

)
!
(

N
2 − j

)
!
. (30)

As a simple and intuitive example, consider the case of two
spins (N = 2). For this case, we can explicitly construct
the four Dicke states {|0,0〉,|1, − 1〉,|1,0〉,|1,1〉}, which are
the well-known singlet (j = 0) and triplet states (j = 1).
Equation (30) for j = 0 and 1 yields, respectively, g(0) = 1
and g(1) = 3. Combining the previously derived results, we
arrive at

p(j,m) = (2j + 1)N ![�(j + m) − �(j − m)](
N
2 + j + 1

)
!
(

N
2 − j

)
!2N

. (31)

This result is straightforwardly generalized for the case of
a state |χ〉,

p(χ ) =
n∏

i=1

p(ji,mi), (32)

with N in Eq. (31) being replaced by Ni , i.e., the number of
nuclear spins in group i. Finally, we arrive at the expression
of the initial density matrix

ρ(0) =
∑

χ

p(χ )|h↓χ〉〈h↓χ |. (33)

IV. RESULTS

We calculate the nuclear spin polarization as a function of
the pumping time tpump and as a function of laser detuning

 for a fixed pumping time. The polarization P is calculated
according to

P (t) =
∑

k

Ae
k

〈
I z
k (t)

〉
, (34)

with 〈I z
k (t)〉 = Tr [I z

k ρnuc(t)] and ρnuc(t) = Tre[ρ(t)] is ob-
tained by taking the partial trace over the electronic states.
This definition corresponds to the experimental procedure
that is employed to measure the nuclear spin magnetization,
which is done by measuring the shift of the electronic Zeeman
splitting and interpreting it as an effective magnetic field
Bnuc = ∑

k Ae
k〈I z

k 〉/g∗μB.

A. Homogeneous hyperfine coupling

The simplest way to solve Eq. (24) is to assume a
homogeneous hyperfine coupling constant Ae

k = Ae/N (Ae =
110 μeV for InP quantum dots [33]). This model corresponds
to the case in which the electronic envelope wave function
in the quantum dot is a plane wave. It is often referred to as
“box” model [49,50]. In this case, a state |χ〉 reduces to a Dicke
state |jm〉. In this basis, the density matrix is block diagonal
(each block corresponding to a fixed j ), which allows us to
compute the time evolution separately for each block. This is a
direct consequence of the lack of transitions between different
j states.

In Fig. 2, we present results for the polarization as a function
of pumping time tpump and laser detuning 
 for different
number of spins. In order to find a percentage, we have divided
P by the maximally achievable polarization Pmax = −N/2.
Here, the minus sign reflects the direction nuclear spins are
polarized with the present pumping mechanism. In accordance
with the experimental findings [33], we observe a buildup of
polarization for 
 = 0 and −ωe

Z , but not to the same extent
[cf. Fig. 2(c)]. Moreover, we observe a decline of the possible
maximal degree of polarization with increasing number of
nuclear spins.

The fact that a polarization of 100% is not possible for
homogeneous hyperfine coupling is attributed to the formation
of a hyperfine dark state [51–54]

ρnuc(t � tsat) =
∑

j

pj (j )|j − j 〉〈j − j |. (35)

The population of this state cannot be changed by the hyperfine
interaction since there is no population transfer between
different j blocks.

The polarization of such a state can be straightforwardly
evaluated by using pj (j ) = g(j )/2N . We have

P N
sat = 1

Pmax

N
2∑
j

j pj (j ), (36)
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FIG. 2. (Color online) Nuclear spin polarization calculated for
the case of homogeneous hyperfine coupling constant. (a) Saturation
of the polarization for N = 30 by pumping the spin-forbidden
transition at a laser detuning 
 = −ωe

Z = −220 μeV and the allowed
transition at 
 = 0. (b) Same as (a), but with N = 100. (c) The
degree of nuclear polarization for N = 30 and 100 after a pumping
time tpump = 0.2 ms as function of laser detuning 
. The maximal
degree of polarization observed for 
 = −ωe

Z reduces for increasing
number of spins. The vertical lines at 
 = −ωe

Z and 
 = 0 are visual
guides to emphasize laser dragging effects and the change of optical
resonance. Inset: magnification around 
 = 0 showing a difference
in the polarization degree between N = 30 and 100.

where the lower bound of the sum is j = 0 for even N and j =
1
2 for an odd N . The sum (36) can be evaluated analytically:

P N
sat = − 1

N
+

⎧⎨
⎩

2(1+2N)�( N+1
2 )√

πN2�( N
2 ) , N even

2�( N
2 )√

π�( N+1
2 ) , N odd.

(37)

Using Sterling’s formula, we find that both expressions
asymptotically approach P N ≈ √

π/8N .
The evaluation of Eq. (37) for N = 30 and 100, respec-

tively, yields P 30
sat � 26.04% and P 100

sat � 14.99% in a very
good agreement with our results. The asymptotic behavior
can be easily understood by considering the distribution pj (j )
for increasing number of spins (cf. Fig. 3). For systems with a
large number of nuclear spins, the distribution only has sizable
values around a small vicinity of its maximum (j � √

N/2).

0

0.1

0.2

0.3

0 10 20 30 40 50

p
j
(j

)

j

N = 10

N = 100

N = 1000

FIG. 3. (Color online) Distribution pj (j ) of the total angular
momentum j . The larger the system gets, the smaller the value of
pj becomes for the most likely j ∼ √

N/2 and the faster it converges
to 0.

This results in the values of j that could potentially lead to high
polarization, such as j = N/2, to play no role in the average
polarization since pj (N/2)N�1 ∼ 0. As an example, we have
P 104

sat ∼ 1%, with similar estimations found in Refs. [52,53].
This behavior for a large number of nuclear spins is far from ex-
perimentally observable values, therefore, a model with homo-
geneous hyperfine coupling cannot be used for explaining the
limit of the nuclear polarization observed in the experiments.

We, however, have to point out that such a model quali-
tatively reproduces all physical phenomena observed experi-
mentally. In addition to the already discussed similarities with
experimental data, it also reproduces dragging effects arising
from the buildup of nuclear polarization. They can be noticed
in Fig. 2(c), but are not prominent because of two reasons: we
can only model a small number of nuclear spins and achieve
low degrees of polarization. Both of these facts correspond to
negligible Overhauser fields compared to the electron Zeeman
splitting. The buildup of the Overhauser field causes the laser
dragging [30,33] and changes the optical resonance conditions.
This leads to the maximal polarization to be shifted from the
expected values of detuning, 
 = 0 and −ωe

Z .

B. Inhomogeneous hyperfine coupling

In a more realistic model for the hyperfine interaction,
an electron spin in a quantum dot couples to nuclear spins
at different lattice sites with different strengths [cf. Eqs. (5)
and (6)]. In the case where the confinement is assumed to be
harmonic, we have Ae

k = Ae
0 exp(−r2

k /r2
0 ) [15,34], where r0 is

the radial size of the confinement. Ae
1 is the coupling strength

of the nuclear spin in the center of the quantum dot and rk

is the radius of the kth shell with a constant coupling. With
nuclear spins divided in many groups of constant coupling, the
problem becomes more complex, but we can still use the same
concepts as for the homogeneous coupling case. In the latter
case, the quantum number j is conserved and in the former
case the conserved quantum numbers are the total angular
momenta of different groups: j1,j2, . . . ,jn. Consequently, the
nuclear density matrix is block diagonal for different sets of
j1,j2, . . . ,jn, and we can once more evaluate the nuclear
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FIG. 4. (Color online) Nuclear polarization calculated for in-
homogeneous hyperfine interaction. Due to the limitation of the
computing power at our disposal, we have simulated two groups of
nuclear spins with coupling strengths Ae

1 = 107 Hz and Ae
2 = 105 Hz:

the saturation of the polarization for the laser detuning at the forbidden
(
 = −ωe

Z) and allowed (
 = 0) transitions for (a) N1 = 4,N2 = 2
and (b) N1 = 6,N2 = 4. (c) Nuclear polarization for different laser
detunings and for different number of spins divided into two groups
for tpump = 0.08s. The vertical lines at 
 = −ωe

Z and 0 are visual
guides to emphasize the shift of the optical resonance.

dynamics separately for these blocks. Since the power of
conventional computers does not allow us to compute the
polarization dynamics for many groups of spins, we consider
the case of two and three groups.

In Fig. 4, we present results for the nuclear polarization
dynamics for two different coupling constants. As previously,
we consider a different number of spins and compute the
polarization as a function of pumping time tpump and detuning

. The results present a similar behavior as for the case of
homogeneous hyperfine coupling (cf. Fig. 2). However, quan-
titatively there is a difference between the reachable maximal
polarizations. The saturation of the polarization for N1 = 6,
Ae

1 = 107 Hz and N2 = 4, Ae
2 = 105 Hz is 59%; it would

be 42% if the same number of spins were homogeneously
coupled. For N1 = 4 and N2 = 2, we find 74.7%, while it
would have been 51% for six homogeneously coupled spins.
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FIG. 5. (Color online) Saturation of nuclear polarization calcu-
lated for nuclear spins divided into three groups and inhomogeneously
coupled to the electronic spin. The coupling strengths are Ae

1 =
108 Hz, Ae

2 = 107 Hz, and Ae
3 = 106 Hz. (a) Polarization at 
 =

−ωe
Z and (b) at 
 = 0.

As for the homogeneous case, the nuclear state is driven
into a dark state for the hyperfine coupling, which is a
generalization of Eq. (35):

ρnuc(t � tsat) =
∑

j1,...,jn

pχj
(j1, . . . ,jn)

n⊗
i=1

|ji, − ji〉〈ji,−ji |,

(38)

with pχj
(j1, . . . ,jn) = ∏n

i=1 g(ji)/2Ni . We verify that this is
indeed the case by computing the degree of polarization of the
nuclear state given in Eq. (38). The generalization of Eq. (36)
yields

P
{Ni }n1
sat =

∑N1/2...Nn/2
j1...jn

(
Ae

1j1 + . . . + Ae
njn

)
pχj

(j1, . . . ,jn)∑n
k=1 Ae

k
Nk

2

.

(39)

Using Eq. (39), we find for N1 = 6 and N2 = 4, P
6,4
sat =

59.25% and for N1 = 4 and N2 = 2, P
6,4
sat = 74.69% in very

good agreement with our results.
To confirm our observations, we have also computed the

saturation of the polarization for n = 3. The total number
of spins was kept constant, while the number of spins in
the groups was varied. We have chosen Ae

1 = 108 Hz, Ae
2 =

107 Hz, and Ae
3 = 106 Hz. The results are presented in Fig. 5.

We compare the polarization at saturation as obtained with the
solution of the master equation and calculated using Eq. (39).
We find very good agreement between both results, which
indicates that the nuclear spin state is driven to the dark
state described by Eq. (38). We have found P

4,2,2
sat = 60%,

P
2,4,2
sat = 72%, and P

2,2,4
sat = 74.7%.

As our results demonstrate, a more realistic treatment of
the hyperfine interaction leads to a substantial increase in the
maximal degree of nuclear polarization. Moreover, the results
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presented in Fig. 5 suggest that the polarization degree depends
strongly on the group configurations, i.e., the number of spins
per group, strength of the coupling (electronic envelope wave
function), and (to a minor extent) on the total number of spins.
Since Eq. (39) predicts accurately the degree of polarization,
we can apply it for finding the maximal degree of nuclear
polarizations for larger systems, mimicking to some extent the
nuclear spins in quantum dots.

For a more realistic description, we assumed a system where
nuclear spins form a three-dimensional cubic lattice (InP has
a zinc-blende lattice) and split the lattice sites into equidistant
shells from the maximum of the electron wave function, which
is assumed to have a Gaussian distribution. For a system of
360 spins we obtained 25.5% of polarization and for 365 spins
30.4%. The difference between the two cases comes from the
relative position of the maximum of the electron wave function
relative to the lattice: in the first case, it was set in the middle of
the unit cell, and in the second case, it was exactly at a lattice
site. This result clearly indicates that there is no universal
value for Psat, but rather that every quantum dot has a different
saturation polarization. We consider now a quantum dot made
out of two elements (two sublattices) with different hyperfine
coupling constants. We have to group the nuclear spins not only
by considering the distance to the center, but also by taking
into account the different hyperfine couplings of each species.
If we consider the previous cases, but we divide the lattice
into two sublattices, the degree of nuclear spin polarization of
the dark state becomes 34.4% and 40.6%, respectively. This
calculation shows that in realistic quantum dots, which consist
of two and very often more elements, the achievable degree
of polarization is higher than the one calculated with identical
nuclear spins. We show in Appendices A and B the explicit
distribution of Ak’s and Nk’s for both considered cases.

In our calculations, we have considered systems consisting
of nuclear spins with I = 1

2 , whereas the relevant optically
active semiconductor quantum dots are built up by materials
(e.g., In and P) with I � 1

2 . We can therefore raise the question
if some of the neglected interactions could significantly affect
the nuclear spin pumping. In our model, we have neglected
nuclear-nuclear spin interactions, i.e., nuclear Zeeman energy,
dipole-dipole coupling, and quadrupole splittings, the latter
only being relevant for I > 1

2 . Among these, nuclear dipole-
dipole interaction constitutes a competing mechanism that
could prevent the formation of the dark state. However,
experimental findings indicate that nuclear spin diffusion
happens on time scales ranging from seconds to hours [10,55].
This indicates a small dipole coupling that can be neglected
in comparison with the hyperfine-mediated nuclear dipole-
dipole coupling, and which is the main source of diffusion
during the pumping cycle. The effect of the nuclear Zeeman
and quadrupole splitting is more subtle. The obvious change
concerns Eq. (22), where the denominator would also
include the difference in nuclear Zeeman energy and
quadrupole splitting between the nuclear states |χ〉 and |χ ′〉.
These are small corrections in comparison with the electron
Zeeman energy and therefore they do not alter Eq. (22) signif-
icantly. However, when considering different isotopes, the nu-
clear Zeeman and quadrupole interactions force an additional
division of nuclear spins with the same distance from the maxi-
mum of the electron wave function. Different isotopes have dif-

ferent nuclear gyromagnetic ratios and quadrupolar splittings
which lead to slightly different forbidden relaxation rates. Such
additional fragmentation leads to an increase of the maximal
degree of polarization. A smaller number of nuclear spins per
shell leads to an increase of the statistical weight of the states
contributing the most to the degree of polarization (cf. Fig. 3).

V. CONCLUSIONS

We have developed a master-equation formalism that allows
us to partially explain recent experimental observations [36]
on the saturation of the nuclear spin polarization when
pumped via an optically spin-forbidden transition between
a heavy hole and a trion state. We have identified both
mechanisms leading to spin polarization depending on the
laser detuning and we have found flip-flop rates that depend
explicitly on the nuclear state.

Based on our formalism, we have calculated the exact time
evolution of the nuclear spin polarization. Considering the
nuclear spin bath as an ensemble of quantum spins, which
is initially in thermal equilibrium, we have investigated two
possible models for the hyperfine interaction: homogeneous
and inhomogeneous. In both cases, the saturation of the nuclear
polarization is attributed to the conservation of the total angular
momentum of the whole nuclear state in the homogeneous case
or of the particular groups of same coupling for the inhomoge-
neous case. In the latter, the degree of maximal nuclear polar-
ization is consistent with the experimentally observed values.
Our findings show that variations in the maximal degree of po-
larization depend on the chemical composition of the quantum
dot and the distribution of the electron wave function inside of
the quantum dot. However, the latter property offers a possible
way to overcome the limit set by the dark state. It is possible
to change the functional form of the electronic wave function
by applying electric fields [51,53]. This would lead to a redefi-
nition of the nuclear spin groups with the same hyperfine cou-
pling constant, which would further allow hyperfine-mediated
nuclear spin pumping. It has still to be proven experimentally
that such a protocol can indeed achieve higher degrees of
nuclear spin polarization than the one set by a dark state.
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APPENDIX A: Ak AND Nk DISTRIBUTIONS FOR A
SYSTEM OF 360 NUCLEAR SPINS

In Fig. 6, we present the strength of the hyperfine coupling
constants Ak [Fig. 6(a)] and the number of nuclear spins Nk

[Fig. 6(b)] as a function of the distance to the maximum of
the wave function for a system made of identical nuclear
spins. The distance is measured in units of the lattice constant
a. We note that the maximum of the wave function is
not situated at a lattice site. For a three-dimensional cubic
lattice, the 360 nuclear sins are divided among 10 groups.
In Fig. 6(c), we show the distribution of As

k and in Fig. 6(d)
the number of nuclear spins Ns

k (s = A, B) for a system with
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k .
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k in each sublattice.

two nuclear species. The nuclear spins of each species form a
sublattice denoted A and B. We have assumed for simplicity
that each sublattice is constituted by the same number of
nuclear spins.

APPENDIX B: Ak AND Nk DISTRIBUTION FOR A SYSTEM
OF 365 NUCLEAR SPINS

In Fig. 7, we present the same data as in the previous
appendix, but for the maximum of the wave function situated
at a lattice site.
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