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Josephson relation for disordered superfluids
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The Josephson sum rule relates the superfluid density to the condensate order parameter via the infrared residue
of the single-particle Green’s function. We establish an effective Josephson relation for disordered condensates
valid upon ensemble averaging. This relation has the merit of showing explicitly how superfluidity links to the
coherent density, i.e., the density of condensed particles with zero momentum. Detailed agreement is reached
with perturbation theory for weak disorder.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) and superfluidity are
certainly linked, and yet this link is difficult to state with
precision in situations that involve, e.g., strong interactions,
low dimensions, external potentials or temperatures close to
critical. Josephson [1] has derived a relation between the
superfluid mass density ρs and the BEC order parameter ψ

that provides such a link:

m|ψ |2
ρs

= − lim
k→0

k2

m
G(k,0). (1)

Here, m is the mass of the individual bosonic particle, and
G(k,0) is the single-particle Green’s function at momentum
k and zero (Matsubara) frequency. Because Green’s function
can be written as a frequency integral over its imaginary part,
the spectral function, this relation is also referred to as the
Josephson sum rule [2,3]. Only within mean-field theory,
neglecting quantum and thermal fluctuations, one finds that
ρs = m|ψ |2 [see Eq. (22) below], and there is no need for subtle
distinctions between condensate and superfluid. But especially
under critical conditions, the Josephson relation is precious
because it connects the scaling properties of condensate
and superfluid order parameters through the Josephson
(hyper-)scaling law [1,4,5].

Because of its conceptual and practical importance, the
Josephson relation has been rederived over the years using
various methods [2,3,5–7]. These derivations all make use
of translational invariance and thus are only valid, strictly
speaking, in clean systems. Although the Josephson scaling
law has been occasionally applied [8,9] (and questioned [10])
in disordered systems, it is not immediately clear how to read
the relation (1) in that case. Indeed, the BEC order parameter
ψ(r) acquires a spatial dependence on each realization of
disorder, and also Green’s function is no longer diagonal
in momentum. Since one can take ρs to be a self-averaging
quantity in a bulk system of linear size L, one may be tempted
to think that Eq. (1) should hold under the ensemble average,
noted by the overbar (. . . ):

m|ψ |2
ρs

= − lim
k→0

k2

m
G(k,0). (2)

If this were true, the Josephson relation would constrain
the ratio of superfluid density to the average condensate

density [11],

|ψ |2 = L−d

∫
d r|ψ(r)|2 =: nc. (3)

The purpose of this paper is to show that this is not the case.
In the following, the correct Josephson relation is first stated
and briefly discussed, then derived, and finally analytically
checked in the simplest accessible regime of low temperatures,
weak interactions, and weak disorder.

II. INHOMOGENEOUS JOSEPHSON RELATION

Our main result is the following Josephson relation for
inhomogeneous systems valid upon ensemble averaging:

m|ψ |2
ρs

= − lim
k→0

k2

m
G(k,0). (4)

Here, instead of the average condensate density of Eq. (3), it
is the coherent density

|ψ |2 =
∣∣∣∣L−d

∫
d rψ(r)

∣∣∣∣
2

=: ncoh (5)

of condensed particles with k = 0 that is linked with
the peculiar long-range, phase-coherent transport properties
that we call superfluid stiffness. The coherent density can

be defined equivalently by ncoh = lim|r|→∞ 〈ψ̂†(r)ψ̂(0)〉 as
the component with off-diagonal long-range order of the
ensemble-averaged one-body density matrix. As recognized
already by Penrose and Onsager [12], in systems that
are not fully translation invariant, the condensate properly
speaking comprises all particles in the maximally populated
eigenmode ψ(r) [13,14] and thus contains the coherent
component with k = 0 plus the “glassy” component with
k �= 0 [15,16].

Qualitatively, this strong link between superfluid and
coherent density may not surprise us much, and indeed it
has been observed in numerical calculations [17,18] that
superfluid and coherent fractions vanish together at (one and
the same) superfluid-insulator critical point, as implied by a
finite right-hand side of Eq. (4) at criticality. The preference
of Eq. (4) over Eq. (2) is also consistent with the view that the
insulating Bose glass close to the transition is a collection of
locally condensed puddles with finite mean density [Eq. (3)],
which fail to connect phase-coherently over the full system
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size [19–22]. However, Eq. (4) provides a general, fully
quantitative, and testable relation. Moreover, recent numer-
ical results in d = 2 [23] seem to suggest that superfluid
and coherent density do not vanish together. Therefore, we
believe it worthwhile to derive Eq. (4) by a microscopic
calculation and check its validity in an analytically tractable
limit.

III. DERIVATION

We consider a single-component Bose-condensed fluid with
repulsive interactions in its kinematic ground state, at inverse
temperature β, confined to a d-dimensional volume of linear
size L and subject to an external one-body potential V (r). The
total average density n = L−d

∫
d r〈ψ̂†(r)ψ̂(r)〉 is fixed by the

chemical potential μ and splits into the sum of the condensate
density (3) and the noncondensed density. The latter comprises
quantum-depleted and, at T > 0, thermally excited particles.
The condensate is described by a scalar, stationary BEC order
parameter ψ(r). Such an order parameter may be defined as
the macroscopically populated eigenmode of the one-body
density matrix [12]. In the U(1) symmetry-breaking picture of
BEC [24], one rather defines ψ(r) = 〈ψ̂(r)〉 as the expectation
value of the bosonic field operator; we use the latter definition
for its technical simplicity.

Following Baym [2] (see also [3]), we calculate via linear
response how much adding a particle with momentum k
changes the order parameter on the one hand and the current
density on the other. We assume that the external potential is
an ergodic random process, and reach translation invariance
by ensemble-averaging. Comparing the changes in order
parameter and current density then leads to the generalized
Josephson relation (4).

To this end, let

δĤk = δ â
†
k = δ

Ld/2

∫
d r e−ik·rψ̂†(r) (6)

be the small perturbation (|δ| � μ) that adds a particle with
momentum k to the system [25]. The linear response of the
condensate amplitude on average is

δψ(r) = −
∫ β

0
dτ 〈ψ̂(r,τ )δĤk(0)〉 = δ

Ld/2
eikrG(k,0), (7)

which brings about the zero-frequency component of the
ensemble-averaged Matsubara-Green function

G(k,iωn) = −
∫

d r e−ik·r
∫ β

0
dτ eiωnτ 〈ψ̂(r,τ )ψ̂†(0,0)〉.

(8)
(If the ensemble average were not taken at this stage, one would
face a Green’s function that is not diagonal in k, which would
compromise the following derivation.) The average condensate
amplitude,

ψ(r) + δψ(r) =: ψ(r)[1 + i δϕ], (9)

is changed by a pure phase factor when

δϕ = −i
δψ(r)

ψ(r)
= −iδ

Ld/2ψ(r)
eik·rG(k,0) (10)

is real, which can be realized by choosing the phase of δ

appropriately and in the limit k → 0 (this is the step where
taking the limit is required). This phase’s gradient then induces
on average the superfluid mass current

m δ j (r) = ρs

m
∇δϕ

∣∣∣∣
k→0

= δ
ρskeik·r

Ld/2mψ(r)
G(k,0)

∣∣∣
k→0

. (11)

Now we calculate the current directly via linear response,

δ j (r) = −
∫ β

0
dτ 〈 ĵ (r,τ )δĤk(0)〉. (12)

Yet, even for a perturbation as simple as Eq. (6), this is
in general impossible, for one cannot compute the full time
dependence of the current in the presence of interactions. But
we can invoke particle number conservation, as expressed by
the continuity equation, in imaginary time:

i∂τ n̂(r,τ ) + ∇ · ĵ (r,τ ) = 0. (13)

(Its proof is elementary: Given the Hamiltonian Ĥ [ψ̂,ψ̂†] =
K̂ + Û with kinetic energy K̂ = 1

2m

∫
d r∇ψ̂† · ∇ψ̂ , and an

interaction Û = U [n̂] that is a functional of the density
only, Eq. (13) is equivalent to the equation of motion
∂τ n̂ = [K̂,n̂].) In the momentum representation, the continuity
equation (13) becomes

∂τ n̂ p(τ ) + p · ĵ p(τ ) = 0, (14)

and thus permits us to replace the longitudinal current by the
density variation according to | p|ĵ ‖

p = −∂τ n̂ p. This allows us
to evaluate the Matsubara-time integral

δj ‖
p = | p|−1

∫ β

0
dτ 〈∂τ n̂ p(τ )δĤk(0)〉 = −| p|−1〈[n̂ p,δĤk]〉,

(15)
and we are left with the simple equal-time commutator

[n̂ p,δĤk] = δ â
†
k− p. (16)

Thus we find after ensemble-averaging

δj ‖(r) = − δ

Ld/2|k|ψ
∗(r)eik·r . (17)

Comparing this result with Eq. (11), whose leading contri-
bution in the limit k → 0 is also purely longitudinal, then
establishes Eq. (4). We remark that the zero-frequency Green’s
function appearing here contains the full dynamical single-
particle correlations and can in general not be reduced to the
equal-time momentum distribution that enters, for instance,
the one-body density matrix [26].

IV. CONSISTENCY CHECK IN PERTURBATION THEORY

Exact analytical results are hard to obtain, but we can evalu-
ate the factors entering Eq. (4) perturbatively for weak disorder
using inhomogeneous quadratic Bogoliubov theory [14,27]
and check whether they match. First, the coherent density is
given by Eq. (11) in [14],

ncoh = |ψ |2 = nc[1 − V2 + O(V 3)], (18)

and it is thus smaller than the total condensate density,
Eq. (3), by a factor that is determined by the glassy
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fraction [15]

V2 :=
∑

p

|V p|2(
ε0

p + 2gnc
)2 , (19)

with ε0
p = p2/2m the free dispersion. Furthermore, using

Eqs. (18)–(20) of [14], the single-particle Green’s function can
be expressed in terms of quasiparticle normal and anomalous
Green’s functions,

G(k,0) =
∑
p,q

[(uk pu
∗
kq + vk,− pv

∗
k,−q)G pq(0)

− (vk pu
∗
kq + uk,− pv

∗
k,−q)F pq(0)]. (20)

The matrix coefficients uk p and vk p generalize the usual
Bogoliubov factors uk,vk to the case where the condensate,
or Bogoliubov vacuum, is inhomogeneous. They encode the
condensate deformation by the external potential V (r) on the
mean-field level. All these factors can be Taylor-expanded to
the desired order in V (see Sec. 3.4 in [14] and Sec. III.B.
in [27]).

To zeroth order in V , for the clean system, one has

G(0)(k,0) = −(
u2

k + v2
k

)
ε−1

k , (21)

where εk = [ε0
k(ε0

k + 2gnc)]1/2 is the Bogoliubov dispersion.
Multiplication by k2 and taking the limit k → 0 as required by
Eq. (4) selects the most divergent contribution, which reduces
the number of terms quite substantially. Eq. (21) diverges
like 1/(2a2

kεk) = 1/2ε0
k = m/k2, such that from Eq. (4) one

finds

ρs = m|ψ |2 = mnc =: ρc. (22)

As expected, in a clean system and to the quadratic order of the
Bogoliubov Hamiltonian considered, the whole condensate is
superfluid.

At order V 2 in disorder strength, two types of contributions
survive in Eq. (20): (i) products like

u
(2)
k pu

(0)
kqG

(0)
pq(0) ∝ V2δk pδkquk(uk − 2vk)ε−1

k , (23)

with the clean, normal propagator G
(0)
pq(0) = −δ pqε

−1
p , but

no anomalous terms since F (0) = 0, and (ii) products
like

u
(0)
k pu

(0)
kqG

(2)
pq(0) ∝ δk pδkqu

2
kG

(2)
k (0) (24)

and similar with ukvkF
(2)
k (0). Mixed terms of the type

u(1)u(0)G(1) and the like do not survive the limit k → 0.
Type (i) terms yield, after taking the limit k → 0, a

correction (1 − V2) on the right-hand side of Eq. (4) that
cancels exactly the same factor introduced on the left-hand
side by the coherent fraction (18). Type (ii) terms after a bit of
algebra finally yield a correction of the form

lim
k→0

∑
p

(k · p)2

ε0
kε

0
p

|V p|2(
ε0

p + 2gnc
)2 = 4m2

d
V2. (25)

All in all, Eq. (4) predicts to order V 2 the correction

ρs = ρc

(
1 − 4

d
V2

)
, (26)

which is already well documented in the literature, see Eq. (12)
in [28], Eq. (19) in [29], Eq. (20) in [30], and Eq. (6) in [23].
This then explicitly validates the inhomogeneous Josephson
relation (4) to order V 2 and at the same time rules out Eq. (2).

Note, though, that one cannot obtain a temperature de-
pendence from Eq. (20) with the quadratic quasiparticle
Hamiltonian of [14,27] that contains only elastic impu-
rity scattering. In order to recover Landau’s celebrated
finite-temperature superfluid depletion [31] microscopically,
one would have to introduce interactions between the
quasiparticles.

A different method of calculating the superfluid den-
sity is to compute the normal density ρn = ρc − ρs di-
rectly from the transverse current-current correlation [2,31].
Inhomogeneous Bogoliubov theory [14,27] then predicts,
at T = 0,

ρn = 1

4nc

∑
p,q

pzqz

a paq
nck− pncq−k[F pq(0) − G pq(0)]

∣∣
k=k⊥→0.

(27)
Here, nck = L−d

∫
d r e−ikrnc(r) are the Fourier components

of the deformed condensate density, and k⊥ lies in the xy

plane transverse to the z axis. In the clean case, to zeroth
order in V , the condensate is homogeneous, ncq = ncδq,0,
and since kz = 0, the normal density vanishes. To order V 2,
only a single type of term survives the limit k⊥ → 0, namely,
n(1)n(1)G(0). Using Eq. (11) of [27], this expression evaluates
rather immediately to (4/d)ρcV2 and thus agrees with Eq. (26).
Clearly, to this order it is much simpler to evaluate Eq. (27)
than to find ρs from the Josephson relation, since there are no
common terms that cancel, like on the two sides of Eq. (4), and
only the clean quasiparticle propagator G

(0)
pq(0) enters together

with the condensate deformation. Lastly, we remark that this
approach can be generalized to finite temperature and thus
permits us to derive disorder corrections to Landau’s superfluid
depletion [32].

V. SUMMARY

A Josephson-type relation has been established for dis-
ordered Bose fluids between the superfluid density, the
infrared residue of the single-particle Green’s function, and
the coherent density, i.e., density of condensed particles
with zero momentum. Its validity for weak interactions
and disorder has been checked in detail by a perturbative
calculation using inhomogeneous Bogoliubov theory. The
numerical results of [17,18] agree qualitatively with its
prediction at the superfluid-insulator transition where coherent
and superfluid fraction vanish together. Although it may not
be evident to extract the infrared residue of the average zero-
frequency Green’s function with precision in the numerics, it
would be interesting to investigate the quantitative validity
of the sum rule (4) near the critical point in different
dimensions.
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