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Speckle-intensity correlations of photons scattered by cold atoms
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The irradiation of a dilute cloud of cold atoms with a coherent light field produces a random intensity distribution
known as laser speckle. Its statistical fluctuations contain information about the mesoscopic scattering processes
at work inside the disordered medium. Following up on earlier work by Assaf and Akkermans [Phys. Rev. Lett.
98, 083601 (2007)], we analyze how static speckle-intensity correlations are affected by an internal Zeeman
degeneracy of the scattering atoms. It is proven on general grounds that the speckle correlations cannot exceed
the standard Rayleigh law. On the contrary, because which-path information is stored in the internal atomic states,
the intensity correlations suffer from strong decoherence and become exponentially small in the diffusive regime

applicable to an optically thick cloud.
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I. INTRODUCTION

In typical light-scattering experiments, a monochromatic
light beam irradiates a medium with a certain wave vector and
polarization (incident channel a), and the transmitted light
intensity 7, is then measured for a certain final direction and
polarization (scattered channel ). When the sample consists of
randomly located scatterers, one observes a complex intensity
pattern with large fluctuations known as a speckle pattern [1].
It originates from the interference between a large number of
field amplitudes scattered by the sample. This pattern depends
intricately on the positions of the scatterers, on the frequency
and polarization of the incoming light, on the direction of
observation, etc.

Since light scattering experiments allow for a precise
control of the incident beam and accurate analysis of the
scattered beam, they have been successfully used for thor-
ough investigations of theoretical concepts originating in
the field of mesoscopic electron transport, like weak and
strong localization, and universal conductance fluctuations
[2]. Already well documented for classical scatterers, light-
scattering experiments investigating coherent multiple scatter-
ing have entered a new realm when cold atoms were used
as scatterers [3]. It was rapidly realized that one crucial
difference between classical and atomic scatterers resides in
the atomic quantum internal structure, namely, the Zeeman
degeneracy of the atomic dipole-transition levels [4,5]. Each
atom behaves like a freely orientable magnetic impurity that
can exchange angular momentum with the scattered photon
and thus store which-path information [6]. Tracing out the
atomic magnetic degrees of freedom then generally results in
strong decoherence, as observed by a drastic reduction of the
coherent backscattering signal [7] compared to the case of
nondegenerate point scatterers [8].

To capture the generic features of a speckle pattern, one
usually performs an average over spatial configurations of
the scatterers. Typical quantities of interest are then the av-
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erage transmission 7', and the intensity-intensity correlation
T, T, where the overbar denotes the spatial configuration
average. Whenever the transmission 7}, originates from the
coherent superposition of a large number of uncorrelated,
complex random amplitudes, the central limit theorem as-
serts that its probability distribution is the Rayleigh law,
P(Ty) = Ta_bl exp{—T.w/Tap) [2]. As a consequence, the
statistical fluctuations obey 7, = n T,

Does the Rayleigh law hold also for the intensity-intensity
correlations of light scattered by cold atoms? This question
was first addressed in Ref. [9], where it was predicted that the
Zeeman degeneracy leads to a drastic increase of fluctuations

in excess of the Rayleigh limit 7,3, = Zsz. This claim raised
a controversy [10,11]. With this article, we present a detailed
theoretical re-analysis of the protocol proposed in [9]. In short,
we ascertain that the internal Zeeman degeneracy reduces
short-range speckle-intensity correlations instead of enhancing
them.

The rest of the paper is structured as follows: In Sec. II,
we state the relevant photon-scattering amplitude, determine
the ensemble-averaged intensity, and derive the appropriate
expression for the intensity correlations. In Sec. III, we
compute the diffusive intensity correlations analytically as
a function of Zeeman degeneracy, finding that they decay
exponentially with the sample thickness for atoms with a
degenerate internal ground state. Section IV concludes.

II. SPECKLE CORRELATIONS AND
THE RAYLEIGH CONSTRAINT

This section introduces the transition amplitude for the
scattering of a photon from immobile atoms with internal
structure, and determines the intensity and its correlations upon
ensemble averaging over internal and external configurations.
It is shown that the interference of amplitudes visiting atoms on
different scattering paths can only involve Rayleigh transitions

©2015 American Physical Society
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that preserve the internal state. Conversely, elastic Raman
scattering events act as ideal which-path markers and thus
reduce the relative weight of the interference terms. Finally,
we prove for the proposed setting that the relative fluctuations
are rigorously bounded from above by the Rayleigh limit.

A. Light-scattering amplitudes

Consider a dilute cloud of N identical atoms, cooled to
a temperature low enough such that they can be considered
immobile at fixed classical positions R = r'|j=1,...,N},
neglecting recoil effects and Doppler shifts. The density is
low enough for quantum degeneracy effects to be negligible.
Then, each atom is an ideal classical point scatterer for
electromagnetic radiation. We look at light being scattered by a
closed optical dipole transition between two internal electronic
levels, with total angular momentum J, in the ground state
and J. in the excited state. In the absence of external fields,
these levels are degenerate, and the ground state is spanned
by magnetic quantum numbers 1 in the range —J, < m < J.
The set of magnetic quantum numbers for all atoms is noted
M ={m’/|j =1,...,N}. We assume that the atomic sample is
uncorrelated, and statistically homogeneous, in the following
sense:

(i) The spatial ensemble average (-) = [ [, dr’ f(R) over
the classical positions is taken with the separable probability
density,

fR =[] rah, (1)

where generically f(r') = 1/V with V the sample volume
accessible to each atom.

(i) The ensemble average (-) = tr{p-} over the magnetic
quantum numbers uses the direct product state,

P=QQ0r @

where p' =Y pilm')(m'| is the initial state of atom i.

In the present section, the initial populations 0 < p,, < 1
are left arbitrary. Only for the analytical calculations in
the following Sec. III, all atoms are assumed to be in the
completely isotropic state with p,,; = 1/(2J, + 1).

Consider now the scattering of a monochromatic light
beam by the atomic sample. An incident field mode with
wave vector k, and transverse polarization €, is scattered
into a superposition of final modes Kk, €;,. The incident light
intensity is small compared to the saturation intensity of
the atomic transition, such that only the linear response,
i.e., scattering of a single photon at a time, has to be
considered. As a consequence, the light is scattered elastically,
k.| = |ky| = k. The internal state of an individual atom,
however, couples to the polarization of the scattered photon
and thus can either remain the same (Rayleigh transition) or
change (degenerate Raman transition), with the concomitant
change in the photon polarization imposed by angular-
momentum conservation. The scattering amplitude from the
initial state |k,,€,,M,) to a final state |k;,€,, M,,) is the matrix
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element,
Agp = (My|Top I M,), 3)

of the transition operator (also called T matrix [12]) 'f'ab =
(kb,ebﬁ(R)lka,ea) acting on the internal states of all atoms
[13].

Throughout the paper we assume that the atomic cloud
satisfies the diluteness conditions nA> < 1 and kI > 1, where
n is the number density of atoms in the cloud, X =27/k
the light wavelength, and ! the scattering mean free path. In
this case the light propagation can be described semiclas-
sically in terms of scattering paths I = {i},i, ...}, defined
as the ordered set of light-scattering atoms at positions
{r'|i € I} =: R!. The probability amplitude (3) then is the
coherent superposition,

Agy =Y _ AL, 4)
1

The diluteness condition also implies that one may safely
discard recurrent scattering events, in which scatterers are
visited repeatedly. Therefore, each atom appears at most once
in any given path /.

Importantly, only an atom i € I in the actual scattering
sequence can have its magnetic quantum number m' affected.
All other atoms j € I° ={j|j ¢ I} are bound to be mere
spectators in this scattering sequence, and their magnetic
quantum numbers remain unchanged. In mathematical terms,
this is expressed by writing the transition operator for path
[ in the form T/ @ 1°, where T/ = T(R’) operates only on
the scattering atoms, and 1’° does nothing to the atoms in
the spectator ensemble. By partitioning the magnetic quantum
numbers M = M! U M'® over scatterers and spectators, we
can write the scattering amplitude for the path 7 as

Agy = (Mg [T | Mo) M [ M ). )

The second factor imposes the constraint m; = my, for all
spectator atoms j € I°. An atom whose quantum number is
not changed during the sequence / can either be a member
of I and make a Rayleigh transition (mz =m!), or it can be
a member of the spectator set /°. But it is immediately clear
that any atom that makes a Raman transition (m}, # m!) must
belong to a scattering sequence I. In other words, Raman
transition events are path markers.

B. Intensity

The transition probability for the scattering process a — b
is |Agp|* = AwpAZ,. Each of the amplitudes A, here is
the superposition (4) of path amplitudes, such that the total
probability splits into a sum of diagonal (I = J) and off-
diagonal (I # J) contributions:

[Awl* =) AL AL+ ALAL (6)
I I#]

Because of the interference terms, this probability will in
general depend quite sensitively on the atomic positions, and
on the light field vectors (K,,€,,Kp,€5); the resulting random
light intensity distribution is known as an optical speckle
pattern. In the following, we first discuss the effect of the
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internal degrees of freedom, for a fixed spatial configuration,
and then proceed to spatial averages.

1. Internal ensemble average

The path amplitude (5) depends on the internal configu-
rations, M, and M;,. We assume that these internal quantum
numbers are not under microscopic control and trace them out
by averaging over the initial M, with weights py, = []; pm;
and summing over the final M,

T = Z P, Aap* =

My, M,

(AapAgp)- )

Inserting the double path sum (6) one thus arrives at the
transition probability,

T =Y (AL AL} + D (AL AL) 8)
I 14

Taking into account the product structure (5), the internal
averages are

(AapAis) = D pu (M [T05 | M5 )b [ T2y | )M |
Mq, My
x (M} |M["). ©)

There is an important difference between the diagonal, or
incoherent contributions (/ = J) and the coherent contribu-
tions (I # J) to the total intensity (8). This difference is best
appreciated in the single-scattering approximation (valid for an
optically thin medium, such as a collection of a few scatterers),
where the scattering path [ +— i reduces to the visited atom
[14]. In this situation, using (9) with / = J = i, one sees that
the incoherent contribution of atom i,

Z pm'

i
ma,mh

l l*

’mb)<mb| b|m > (10)

involves all transitions between its internal states that are
allowed by the dipole selection rules. Notably, these can
include degenerate Raman transitions (m) # m'). The in-
ternal quantum numbers of the N — 1 spectator atoms are
irrelevant and disappear by the elementary normalization
Zma.m; pma|(ma|mb>|2 = tr{p/} = 1. In contrast, in the co-
herent contribution from two different atoms,

Y g Dy (| T ol [T [ ml), (1)

mm[,

(AipAs) =

each of the two atoms i # j belongs to the spectator set of the
other (i € J® and j € I°). Consequently, two overlap factors
(m |m b) (m? b |ma) enforce Rayleigh transitions for both atoms
i and j in the step from Eq. (9) to Eq. (11), and the N — 2
remaining atoms in their joint spectator set (I U J)C are traced
out as irrelevant.

The preceding reasoning, together with (10) and (11)
written again with i — [ and j — J, holds also for multiple
scattering sequences, as long as the two paths /,J do not share
a common scatterer, I N J = @, suchthat I C J¢and J C I°.
This is actually the dominant situation in a dilute cloud with
N > 1 atoms. For future use, we note that the coherent internal
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ensemble average then decouples as

(AwAi) = TalTal. ans=0. 12
where (T1,) = tr{pT!,} involves only atoms of path .

It is a crucial insight for this paper that the internal path
markers impose the Rayleigh-scattering constraint for the
interference terms, whereas the incoherent terms now include
also the Raman scattering. This obviously complies with the
venerable rule of scattering theory (inherited from the su-
perposition principle of quantum mechanics) that amplitudes
for indistinguishable processes should be added coherently,
whereas the probabilities for distinguishable processes must
be added incoherently. And indeed, as already indicated above,
as soon as a single atom makes a Raman transition, this event
acts as a path marker that renders the amplitude distinguishable
from all the others where this atom was not visited. Thus, the
incoherent processes, including the Raman scattering events,
are much more numerous compared to the nondegenerate case.
As a consequence, the Rayleigh-scattering constraint reduces
the apparent speckle contrast with respect to this enhanced
background.

Of course, the reduction of interference visibility in the
presence of which-path information is not a new insight special
to mesoscopic systems, but has on the contrary been very well
studied in numerous contexts. Prominent examples include
the quantum-optical realization of Young’s double-slit exper-
iment using two trapped ions with internal structure [15,16],
Mach-Zehnder photon interferometry with path encoding by
polarization [17], and matter-wave interferometry with path
encoding in internal electronic states [18,19].

2. Spatial ensemble average

Consider again the path-resolved transition probability (8)
for light scattering in transmission across a dilute cloud of
scatterers, as depicted in the upper half of Fig. 1(a). In the
interference terms, all path pairs / # J involve large, random
phase differences. (In a transmission geometry, one can
neglect the pairing of time-reversed paths that is responsible
for coherent back-scatting. As pointed out before, one can
also discard subdominant contributions where / and J share
common scatterers.) Under the spatial ensemble average over
random atomic positions, the interference terms I # J vanish,
and thus the average intensity contains only the paired paths
I = J of the incoherent contribution,

Tu =) (T Th) (13)
I

as depicted in the upper half of Fig. 1(b). This average
transmitted intensity in the far field is a rather structureless,
smooth function of wave vectors and polarization vectors
without mesoscopic signatures of coherence. More interesting
information can be gained from intensity correlations, to be
discussed next.

C. Intensity correlations

We now consider the protocol proposed in [9] and analyze
the correlations between the two speckle patterns obtained
in consecutive scattering sequences a — b and a’ — b/,
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(a) (b)

FIG. 1. (Color online) Amplitudes for light scattering from mode a = (k,,€,) to b = (kp,€,) in a first pulse and from a’ to &’ in a second
pulse, across a dilute cloud of immobile point scatterers. (a) Possible paths I, J, K, L, drawn with four representative scatterers each.
(b) Pairing / = J and J = K, yielding the product T,,T ., of average intensities. (c) Pairing / = L and J = K, describing intensity

correlations 67,8 T,y .

recorded one shortly after the other. The waiting time between
pulses is supposed to be short enough for the atomic positions
to remain unchanged. Then, after each double pulse, the atoms
slowly move to new positions. This two-pulse experiment is
performed many times, until the ensemble average (-) over
random atomic positions is achieved.

Starting from the connected intensity correlator,

(STub(STu’b’ =T Tyy — TubTa/b’v (14)

one defines the magnitude of fluctuations compared to the
background,

) Tab5 Ta’b’

—, 15
Tub Tu’b’ ( )

Cab,a’b’ -
as the quantity of central interest. The product of intensities
(7) before spatial averaging reads

TuTus = 3 (aL,A50A%, 45)  (6)
IJKL

Along with Ref. [9], we assume here that the atoms are in
the same, completely uncorrelated state (2) at the arrival of
each pulse, such that the averages over the internal config-
urations decouple. Figure 1(a) represents these amplitudes
schematically. Just as for the average intensity (13), the
only terms surviving the spatial average are those where the
phases accumulated between different atoms are perfectly
compensated. This leaves two possible path pairings, namely
(I=J,K=L)and (I =L,J = K), depicted in Figs. 1(b)
and 1(c), respectively.

Following [9], we assume that the paths / and K do
not share any scatterer (I N K = #) [20]. The first pairing
(I = J,K = L) then yields the product of the average inten-
sities,

> (AL ALY S (AR AKE) =T wTaw.  (17)
I K

As a consequence, the speckle correlations (14) are entirely
due to the second pairing (I = L,J = K):

ST Tay = Y _ (AL, AKX AK, ALL). (18)
1K

Since I N K = @, both external and internal averages decou-
ple. In particular, Eq. (12) can be used, resulting in

8Tup8Tuy = Z (Téh><1-c11’b’>* Z <T5’h/>(-rfb>* (19)

1 K

PN

I

(20)

The derivation of this expression is the key achievement of
our paper. In essence, we find that under the assumption of
uncorrelated distributions, the mesoscopic speckle correlations
are given by a path-averaged propagator involving products
of independent internal averages (T2,)(T?,)*. As explained
in Sec. IIB 1 above, this is ultimately a consequence of the
Rayleigh scattering constraint for interference contributions.
Reference [9] predicted unphysically large speckle correla-
tions essentially because the Rayleigh constraint was not taken
into account; herein lies the difference between Eq. (5) in the
reply by Assaf and Akkermans [11] and our result (20).

D. The Rayleigh bound

We proceed to prove on general grounds that under the
stated hypotheses (disjoint paths / N K = ¥ and uncorrelated,
but otherwise arbitrary distributions of internal and external
degrees of freedom), the relative fluctuations (15) are bounded
from above by the Rayleigh law,

Cab,a’b/ < 1. (21)

Proof. In a first step, let
> (FLY(EL,) = (3T 22)

denote a scalar product with respect to the trace over the atomic
external degrees of freedom. The speckle correlations (20) are
then bounded by the Cauchy-Schwartz inequality,

ST T,y = |(T, T2 < (T, )T, T). (23)
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Equivalently, the general correlator (15) cannot be larger
than the geometric average of the diagonal correlators
Cab,ab = |(T’T)/Tab|2:

Cab,a/b’ < vV Cab,ahca’b’,a’b’~ (24)

In a second step, we prove that each diagonal correlator obeys
the Rayleigh bound,

2

Cab.ab = %}TS“") <1 (25)
Zl (Tabellb)
This bound is a corollary of the Cauchy-Schwarz inequality,
(ATB)? < (ATA)(B'B), (26)

now for the scalar product (AfB) = tr{p A’ B} of the trace over
the internal degrees of freedom. Setting A = 1 and B =T/,
one has

<Téb>|2 < (Té};f;b), 27)

and by linearity of the path sum and ensemble average,

ST < (T, 28)
I

1

whence (25). Together with (24), this yields the Rayleigh
bound (21). |

Clearly, expression (25) shows that a necessary and suf-
ficient condition for satisfying the Rayleigh law C,p 45 = 1
is that the internal ensemble average factorizes, (filfflb) =
| ('T'{Il b) |2. And we know from Ref. [S]—at least for the isotropic
internal state considered in [9]—that the average intensity is
equal to the averaged amplitudes squared if and only if the
ground state is nondegenerate (J, = 0). Therefore, we can
formally conclude that the fluctuations reach their maximum
value, Cypap = 1, only for J, = 0. In all other cases J; > 0,
the fluctuations are reduced, Cyp q0p < 1.

II1. DIFFUSIVE INTENSITY AND
SPECKLE CORRELATIONS

In the following, we recalculate the speckle correlations
along the lines of [9], but with the ensemble average over
internal quantum numbers as defined in Eq. (20). We first
recall how to compute the average light intensity scattered by
a single atom with internal degeneracy in the isotropic ground
state,

1
2J, + 1

Py = D Im)m'l. (29)
mi

Then we determine the single-scattering vertex for the corre-
lation propagator. In a second step, we compute the diffusive
intensities and their correlations. Finally, we determine the rel-

ative fluctuations observed in transmission across an optically
thick slab.

A. Single-scattering vertices

The dipole scattering of a photon from mode (k,,€,) to
mode (kj,€5,) by a single atom at position r' is described by
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the scattering operator,
Aizh = (GZ . a)(a . ea)ei(ka*kb)'l" . (30)

Proportionality factors that are irrelevant in the present context
have been set to unity, and d is the reduced atomic dipole
operator connecting the ground-state manifold with angular
momentum J, to the excited-state manifold with angular
momentum J.. For the isotropic internal state (29), the average
single-scattering intensity tr{pé'i"az'i'flb} = ('T';L'T'flb) can be
evaluated in closed form using the techniques of irreducible
tensor operators [5], Eq. (39):

ﬁj}ﬁib) = Me[wile, - €;* + wale, - €)* +wsl. (31
Here,

2J. +1
Mg = —e L
32Jg+ 1)
denotes a ratio of level degeneracies, and the weights w; are

rotational invariants that depend only on the total angular
momenta Jg, J.. Itis advantageous to define the reduced vertex

(32)

function /(e,,€;,€p,€}) = M;gl (f;;fib) given by

2 2
I(€,.€}.€5,€;) = W€, - €;]” + wale, - €p]° + w3, (33)

This function is essentially the radiation pattern, proportional
to the differential scattering cross section, in the given
polarization channel €, — €.

Let us now examine the single-scattering building block for
the correlation propagator (20), namely

Lopa = M (Tes) T (34)

In the bulk of the scattering medium, one has k, =k,
and k, = k; [cf. Fig. 1(c); the dependence on the external
momenta will be re-established below], and we can focus
on the dependence on polarization vectors. Because of the
Rayleigh-scattering constraint, the correlation vertex (34)
is proportional to the product of two independent traces
over internal states. Each trace selects the scalar component
k =0 of the dyadic tensor operator dd—a considerable
simplification compared to the single-scattering intensity
vertex (33) which couples components x = 0,1,2—and results
in

1€, €5 €1,€5) = Meg(€, - €)(€p - €5).  (35)

The scalar products between polarization vectors here mean
that the atom radiates exactly the polarization it has absorbed,
in both sequences a +— b and a’ — b’, as required by angular-
momentum conservation under the Rayleigh-scattering con-
straint. In this sense, the speckle correlations described by
Eq. (20) originate from a much more restricted set of events
than the full intensity. We are thus entitled to anticipate that
internal degeneracies will rather reduce the observable speckle
correlations, instead of enhancing them.

B. Multiple scattering: the diffuson

In order to sum the multiple-scattering intensity series, it
has proven useful [13] to write the Cartesian elements /;;, jx =
w18,-j8k1 + w28,~k5_,-1 + w38i18‘,‘k of the single-scattering
four-point vertex (33) as a sum of its irreducible tensorial
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components in the incident and scattered polarization
channels, respectively:

2
Lije =Y AT (36)
k=0

The projectors onto the three subspaces « = 0,1,2 of dimen-
sion 2k + 1 describing population, orientation, and alignment,
respectively [21], are in Cartesian elements,

Tl(loj)k = 58k, (37)
Tz(zlj)k = 5(8;8 — 8ix8j0). (38)
Tz(lz;k = 28180 + 8idj0) — 188 k. (39)

and the corresponding eigenvalues can be expressed by 6j
symbols of angular momentum theory:

1 K 2
I, Jg}' (40)

Using the decomposition (36), the entire multiple scattering
series for the average intensity has been summed exactly in
Ref. [13], including the constraint of transversality for the
far-field photons exchanged between distant atoms. In the
diffusion approximation, the bulk intensity propagator (known
as the “diffuson”) for the polarization channel €, — €, reads
in Fourier representation,

Ae = 3(2J. + 1){}

2 (k)
t
Tap@ =) —2L . (41)
’ 2 >+ (D7) !

Here, the momentum q is the Fourier variable conjugate to the
position difference, and the mode populations,

() (k)
tay = ZeaiGZjethZITizfjk’ (42)
ikl

depend only on the initial and final polarization. Each mode
has a diffusive propagator with a characteristic extinction range
I> = Dt,. Here, D = [%/37 is the (scalar) diffusion constant
with [ the mean free path and 7 the energy transport time [13].
The depolarization times,

AT

31 — bery)’ 43)

T =
describe the damping of mode populations. This depolarization
is due to two effects: first, the transversality constraint of free-
space propagation between atoms, as encoded by the photon
propagator eigenvalues,

bo=1, bi=3 b= ; (44)

o=

second, a scrambling of polarization by internal atomic Raman
transitions, as encoded in the vertex eigenvalues A, Eq. (40).

Only the scalar mode « = 0 that counts the total intensity
or number of photons has an infinite lifetime, 7, 1 — 0, since
boro =1 for all J,Js. The two other modes k¥ = 1,2 have
b < 1forall Jg,J. and thus describe depolarization on the
scale of the transport time t.
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C. Multiple scattering: the correlon

The previous derivation for the diffuson can be applied
to the correlation propagator of (20) (dubbed henceforth
“correlon”), by substituting the correlation vertex (35) for the
intensity vertex (33). The correlation vertex decomposes as

2
L = D M (45)
k=0
over the same projectors (37)—(39). But now there is only a
single, fully degenerate eigenvalue for all modes « = 0,1,2:

2Je+1
324+ 1)
This is nothing but a complicated way of saying that the vertex
(35) is proportional to the identity, preserving the polarization

under Rayleigh scattering. The diffusive correlation propaga-
tor then takes the same form as (41),

2O = Mgy = (46)

2 t(K)
(©) _ ab,a'b’

Ty (@ = i,k Y — o1 @D
k=0 q + (DTK )

The prefactor expresses the conservation of total momentum,
restored by the ensemble average over atomic positions, for
the four independent momenta entering the correlator. The
mode occupation factors also depend on all four polarizations
concerned,

U = D €arhyerneln T (48)
ijiki
In the parallel channels €, = €, and €, = €, one finds
) ® as given by (42). The decorrelation times,

ab.ab = tub
© _ MesT

= M 49
BT 31 = b M) “49)

are non-negative under all circumstances because 0 < b, < 1
and 0 < M, < 1 for all Je, J, because of the dipole selection
rule [J, — Jg| < 1.

Only atoms with a nondegenerate ground level (J, =
0,J. = 1) act as scalar point scatterers, and there is no differ-
ence between the average intensity and the average amplitude
squared (as discussed at length in the context of coherent
back-scattering [5]), such that (le'fab) = (Tup)*(Tup). Equiv-
alently, the correlation vertex and the intensity vertex have the
same eigenvalues, A, = A9 = 1. Therefore, from Eq. (25) we
recover the Rayleigh law of unit relative fluctuations,

Cabap =1 (Jg=0). (50)

But in general, contrary to what is claimed in [9], we
find no negative decorrelation times that could signal an
instability and a buildup of correlations over large distances.
For degenerate dipole scatterers with J, > 0, the correlation
vertex eigenvalues differ from their intensity counterparts, but,
as shown by (27), the speckle correlations can only be reduced
by the internal degeneracy, never enhanced.

D. Speckle correlations across a slab

As an application of the preceding formalism, we compute
the forward correlations a = a’, b = b’ measured in transmis-
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sion across a slab of width x = L /[ in units of the mean free
path /, following [9]. The solution of the diffusion equation in
the slab, for each irreducible polarization mode «, is

(sinh y,)?

I ()C) = . ,
Y, Sinh y,.x

(51

with reduced relaxation rates,

Ve = VTt = /300 = by), (52)

for both the intensity [whose eigenvalues A, are given by (40)],
and the correlation (whose eigenvalues are )»,(f) = M,,). For
conserved modes with y, = 0, (51) reduces to I, (x) = 1/x.

Concerning the polarizations, we assume unpolarized in-
cident light and no polarization selection at detection, which
implies that the weights t;',i?a p = [(l';}) given by (42) are averaged
to

SR P PN
The relative fluctuations, Eq. (25), thus read

205 (x) + r§c><x)>2
2Cp(x) + Ta(x) /)

In the denominator, and for thicknesses x > 1, the diffusive
Goldstone mode « = 0 with its algebraic decay dominates
over the exponentially decaying mode k = 2. In the numerator,
by =1 > by =7/10 implies 3 < y.. Thus, the mode x =
0 has the slower decrease and will dominate for thick samples.
For large optical thickness x > 1, we therefore find that the
correlations,

Capar@) ~ 2% exp [ =217x), (Jy>0),  (55)

(54)

Cab,ab(x) = <

are exponentially small, with a rate,

(©) _

Vo =4/3(Mg' - 1), (56)

per mean free path. This decorrelation rate is plotted in Fig. 2
as a function of J, for the three different dipole transition
types Jo — J; =0, & 1. For J; = J,, one has M, = 1/3, and
the prediction y,°’ = 3+/2 is independent of Jg.Forall J, > 0,
the rate yo(c) per mean free path is larger than unity, signaling
a rapid loss of correlations. The only case where correlations
should survive is for isotropic dipoles, J, = 0,J. = 1, where
Y = 0, and the Rayleigh law (50) applies.

IV. SUMMARY AND OUTLOOK

We have calculated analytically the short-range speckle
correlations measured by light scattering across a dilute cloud
of atoms with internal degeneracies, as proposed by [9]. These
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FIG. 2. (Color online) Decorrelation rate, Eq. (52), as a function
of ground-state angular momentum J, (in units of &) for the three
possible dipole transition types |J. — J,| < 1. The hatched area
indicates the region y(;c) < Oforbidden by the Rayleigh bound. Except
for the nondegenerate case J, = 0 of isotropic dipoles, where the rate
vanishes and the Rayleigh law applies, the decorrelation rate is always
larger than unity, signaling a rapid loss of correlations.

correlations are due to the interference between certain pairs
of disjoint path amplitudes. This interference can only occur
in the absence of Raman scattering events, which act as path
markers. In agreement with our initial claim [10], we find
that these correlations relative to the average intensity are
always smaller than unity and cannot exceed the Rayleigh
limit, which is only recovered for atoms with a nondegenerate
ground state (J, = 0). In transmission across an optically thick
slab, the correlations are even predicted to be exponentially
small. Of course, the exponential reduction (55), within the
strict protocol proposed in Ref. [9], does not preclude the
enhancement of spectral fluctuations by internal degeneracies,
as predicted for an entirely different protocol in Ref. [22].

The internal degeneracy of atomic point scatterers is
thus found to reduce generic mesoscopic effects such as
diffusive intensity correlations and coherent backscattering.
As a possible extension of this work, it would be interesting to
analyze whether more long-range correlations—due to paired
paths with scatterers in common [2]—are affected in a similar
way.
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