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Anderson localization of Bogoliubov excitations is stud-
ied for disordered lattice Bose gases in planar quasi–one-
dimensional geometries. The inverse localization length is
computed as function of energy by a numerical transfer-
matrix scheme, for strips of different widths. These results
are described accurately by analytical formulas based on a
weak-disorder expansion of backscattering mean free paths.

1 Setting, objectives, and scope

Single-particle Anderson localization in quasi-1D ge-
ometries with correlated disorder is already a chal-
lenging problem [1–4]. With interactions, the situation
becomes even more interesting. Here, we study the lo-
calization properties of the Bogoliubov quasi-particles
(BQP) of weakly disordered Bose gases at zero temper-
ature on quasi-1D lattices. While interactions tend to
screen the disorder and thus stabilize extended (quasi-)
condensates [5] for weak disorder [6, 7], BQPs are
expected to be localized irrespective of their energy
or disorder strength in low dimensions [8–10], thus
emulating noninteracting particles in the orthogonal
Wigner-Dyson universality class [11]. Yet, BQPs differ
qualitatively from noninteracting particles because of
their collective, phonon-like behavior at low energy.
Moreover, they experience a randomness mediated by
the inhomogeneous condensate background, which re-
sponds nonlinearly and nonlocally to the bare disor-
der [12–14]. This interplay has been extensively exam-
ined in 1D [15–18], where direct backscattering provides
the only pathway to localization.

In this Letter, we discuss the localization length of
BQPs on quasi-1D planar lattices of transverse width
N × 1 (shown in Fig. 1 a). While the techniques devel-
oped below also apply to Nx × Ny bars, strips provide the
simplest realization of a multi-channel geometry, where
phase-coherent scattering between modes is the rule.

The bosons are described by the Bose-Hubbard (BH)
model with on-site interaction U > 0, hopping t (with
periodic boundary conditions across the strip) and on-
site disorder Vx. The random potential Vx is drawn from
a Gaussian distribution and has no spatial correlation on
the lattice scale, Vx Vx′ = δxx′ V 2, where the overline de-
notes disorder averaging and V 2 is the on-site variance.
For each realization of disorder, the mean-field (MF)
ground-state density nx is determined by the conden-
sate amplitude �x = √

nx that solves the discrete Gross-
Pitaevskii (GP) equation

−t
∑
〈xx′〉

�x′ + (2t + Vx)�x + U�3
x = μ�x, (1)

where the sum runs over the nearest neighbors of x.
The chemical potential μ controls the average occu-
pation n = nx . In the limit of large occupations [19],
an expansion of the BH Hamiltonian around the
MF solution yields the Bogoliubov-de Gennes (BdG)
equations

−t
∑
〈xx′〉

ux′ + [2t + Vx + 2Unx − μ]ux + Unxvx = Eux

−t
∑
〈xx′〉

vx′ + [2t + Vx + 2Unx − μ]vx + Unxux = −Evx,

(2)

where ux and vx are the BQP particle and hole com-
ponents at energy E . These Bogoliubov excitations
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Figure 1 System configuration for the 4 × 1 geometry. (a) Sketch
of the discrete strip geometry, with hopping amplitudes indicated
on the left and on-site disorder on the right. (b) Clean lattice Bo-
goliubov dispersion showing contributions from the transverse
modes kj , ( j = 0, . . . , 3). (c) Clean excitation DOS [cf. Eq. (3)] with
1D divergencies at channel openings. The color code indicates the
relative contribution of the individual transverse modes. All dis-
tances are given in units of lattice spacing. Panels (b) and (c) are
drawn for Un/t = 2.0.

determine ground-state properties as well as the
(thermo-)dynamical response of the system.

In the remainder of this paper, we compute the de-
pendence of the BQP localization length on the excita-
tion energy. We first present a numerical transfer-matrix
method that provides us with precise estimates of the lo-
calization length over a wide range of parameters (sec-
tion 2). Then we develop an analytical framework that
combines random-matrix theory [1] with a microscopic
transport theory (section 3). In particular, we find that
the predictions using a lattice Boltzmann mean-free path
are in excellent agreement with the numerics.

2 Numerical transfer-matrix calculations

Our numerical calculations of the localization length fol-
low a standard transfer-matrix scheme [1, 20–22]: The
BdG equations (2) are cast into the recursive form wi+1 =
Mi wi , where the 4N-component vector wi encodes the
values of ux and vx on two neighboring lattice slices at
z = i and z = i − 1 (throughout the article, distances are

expressed in units of lattice spacing). The transfer ma-
trix Mi is parametrized by E as well as the values of
Vx and nx on slice i. The propagation of the BdG exci-
tations along z, from an arbitrary initial condition w0,
then simply amounts to matrix-vector multiplication.
Via this procedure, the estimator ln ‖wL‖/L yields, with
probability one, the largest Lyapunov exponent λ1 in the
limit L → ∞. The r largest Lyapunov exponents λ1 >

. . . > λr are retrieved similarly, by propagating a frame of
r linearly independent initial vectors w[ j]

0 ( j = 1, . . . , r),
enforcing their orthogonality during propagation, and
monitoring their exponential growth (to maintain nu-
merical accuracy, we performed a Gram-Schmidt or-
thonormalization every 8 sites). As the BQP Lyapunov
exponents come in pairs of opposite sign, 2N vectors
are required to calculate the smallest positive Lyapunov
exponent λ = λ2N, identified as the inverse localization
length 1/lloc [1, 22].

One crucial advantage of the transfer-matrix ap-
proach is the self-averaging of the ln ‖w[ j]

L ‖/L estima-
tors, whose relative fluctuations decrease as 1/

√
L. The

propagation of one set of initial vectors over a large dis-
tance L thus suffices to compute the Lyapunov spectrum
with the desired precision. Such a scheme is easy to im-
plement with an uncorrelated random potential, as the
purely local random values of Vx can be generated on the
fly. In the case of BQPs, however, the GP equation (1) re-
quires to predetermine the disorder-induced deforma-
tion of the condensate background and thus implies a
global minimization problem that is already intractable
for the size required to achieve only 10% accuracy on
the Lyapunov exponents. In our calculations, we chained
quasi-1D segments of length L0 = 214 and, on each seg-
ment, solved Eq. (1) at fixed density n with a conjugate-
gradient technique [23, 24]. While each segment inter-
face introduces a slight mismatch in μ, and also in nx

over typically
√

t/(Un) sites, the impact of these artifacts
on λ vanishes with increasing L0. We checked that all
the results presented here are converged with respect to
the choice of L0. To ensure a sufficient scrambling of ini-
tial data and speed up estimations, we chained up to 64
segments and averaged the ln ‖w[ j]

L ‖ data over 200 inde-
pendent propagations. By contrast, a global, perturbative
calculation of the background deformation via analyti-
cal smoothing theory [12], even if pushed to higher or-
ders [14], would be more difficult to control and, more-
over, prohibit studying the regime of stronger disorder.

Figure 2 shows the inverse localization length λ

as function of energy for various strip widths N. For
all N we observe two important features. First, λ di-
verges at the inner band edges, where the channels of
the clean system open or close (cf. Fig. 1c) and thus
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Figure 2 Inverse localization length λ (error bars indicate the er-
ror of the mean after averaging over 500 configurations in (a) and
(b) and 225 in (c), and are hardly appreciable on the scale of the
plot) and its estimates from transport theory as a function of en-
ergy. The dashed line is [(NE + 1)lbs]−1 from Eq. (5), and the solid
red line is [2(NE + 1)ltr]−1 from Eq. (6). The staircase-like line in-
dicates the number of open channels NE (scale on the right bor-
der). Parameters: hopping Un = 2t ≈ μ, i.e., the transition from
sound waves to particle excitations is around E/t = 2. Disorder
strength V = 0.1Un.

contribute a divergent 1D density of states (DOS), which
results in strong scattering and thus localization on short
length scales. Second, for an equal number of open chan-
nels and once inner divergences are disregarded, λ dis-
plays a similar trend as in 1D [10], increasing with E in
the phonon regime E � Un, and decreasing in the free-
particle regime E � Un. As N increases, the inner reso-
nances becomes less prominent, and a convergence to
a smooth curve describing the 2D localization exponent
can be anticipated. The controlled study of the limit, re-
quiring finite-size scaling techniques [21, 22], must be
left for future work.

3 Analytical transport theory

For quasi-1D strips, random-matrix theory [1] predicts
that the localization length lloc = 2(NE + 1)ltr is propor-
tional to the transport mean free path ltr. Here, NE is the
number of open channels at energy E . In this section, we
validate this prediction using two different analytical ex-
pressions for the mean free path.

The clean system is discrete translation invariant, and
therefore the free-particle dispersion relation is diago-
nal in momentum, ε0

k = 2t
∑

i=x,z[1 − cos(ki)]. The dis-
persion of Bogoliubov excitations then reads as usual
εk = [ε0

k(ε0
k + 2Un)]1/2. On the strip, the momentum k =

(kj, kz) is transverse quantized as kj = 2π j/N under pe-
riodic boundary conditions with j = 0, . . . , N − 1, thus
defining the N possible channels. In terms of the longitu-
dinal group velocity vk = ∂εk/∂kz (all velocities here and
below refer to the z-component), the DOS per unit length
and transverse size is expressed as

ρ(E) = 1
N

N−1∑
j=0

∫ π

−π

dkz

2π
δ(E − εk) = 1

2π N

∑
k∈SE

|vk|−1. (3)

SE denotes the energy shell in momentum space, namely
the set of points k such that εk = E . Its cardinality |SE | =
2NE counts both forward and backward propagating
channels with kz > 0 and kz < 0, respectively. The clean
DOS is plotted in Fig. 1c. The opening and closing of each
channel produces a characteristic van Hove divergence.
Near the divergence, essentially only one channel mat-
ters. In between these singularities several channels mix,
as indicated by the color coding in the plot.

The disorder potential produces elastic scattering out
of a given mode k with a rate γk =2π

∑
p δ(εk − εp)|Wk p|2.

Here Wk p = Vk− pwk p is a (first-order) matrix element of
the disordered Bogoliubov Hamiltonian, namely the bare
disorder Fourier component Vk− p dressed by an enve-
lope

wk p=
(ε0

k + Un)ε0
k− p − 2Unε0

k

εk(2Un + ε0
k− p)

(ε0
k = ε0

p) (4)

that accounts for the underlying nonlinearities [13, 25].
[Eq. (4) is the on-shell value w(1)

k p|ε0
k=ε0

p
given by Eqs. (13) –

(15) in [25] or, equivalently, the lattice version of Eq. (14)
in [26].] The associated elastic mean free path is then the
group velocity divided by the scattering rate. Since local-
ization along the z direction can only be caused by scat-
tering events that flip the momentum z-component, we

C© 2015 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim L3www.ann-phys.org



Ra
pi

d
Re

se
ar

ch
Le

tt
er

C. Gaul, P. Lugan, and C. A. Müller: Anderson localization of Bogoliubov excitations on quasi-1D strips

consider the backscattering mean free path

lbs(E)−1 = min
k∈SE

V 2

N|vk|
∑

p

′|vp|−1w2
k p . (5)

The primed sum runs only over those momenta p ∈
Sεk with z-components of opposite sign, sgn( pzkz) = −1.
Here we assumed that on an (optical) lattice, the dis-
order is typically uncorrelated between sites [25]. With
correlated disorder, the prefactor V 2 in Eq. (5) [and also
in Eq. (6) below] would appear as the correlator |Vk− p|2

under the sums. Moreover, we take the shortest inverse
mean free path at a given energy E since the numerics
produce the smallest localization exponent. The result-
ing prediction [(NE + 1)lbs(E)]−1 is plotted as the dashed
line in Fig. 2. There is already some overall qualitative
agreement, which becomes even quantitative at low and
high energies, where only a single channel contributes.
And indeed, in this case (NE = 1) one has 2π Nρ(E) =
2|vk|−1 at εk = E , and thus the estimate for the Lyapunov
exponent (2lbs)−1 = V 2w2

k(−k)/(2Nv2
k) agrees with the es-

tablished theoretical result [10, 13, 14].1 A similar situ-
ation occurs for strictly longitudinal disorder that does
not couple the different channels. Then, each channel
defines a separate 1D localization problem, with its own
localization length.

The number NE of open channels is also plotted in
each figure. With more open channels, the estimate in-
volving lbs becomes less reliable, which becomes es-
pecially obvious near the center of plots b) and c) for
the 8 × 1 and 32 × 1 geometries. The agreement deteri-
orates even further if only diagonal backscattering into
the same channel ( pj = kj and pz = −kz) is taken into ac-
count.

We therefore try to improve on our estimate and con-
sider the lattice version of the full Boltzmann transport
mean free path, which can be derived within linear-
response quantum transport theory [27, 28]. With the no-
tations introduced above, this gives

ltr(E)−1 = V 2

2π N2ρ(E)〈v2〉3/2
E

∑
k, p∈SE

vp(vp − vk)w2
k p

|vp||vk| (6)

Here, 〈v2〉E = ∑
k∈SE

|vk|/[2π Nρ(E)] denotes an energy-
shell average. The usual factor (1 − cos θ) in scattering
angle θ under the momentum integral (see, e.g., [13],

1 In the 1D case with ±k along z and quadratic dispersion ε0
2k =4ε0

k ,
one has wk(−k) = ε0

k/εk and thus [2lbs(εk)]−1 = V 2 S2
k/[2N(v0

k)2]
in terms of the free-particle velocity v0

k = ∂ε0
k/∂k and

Sk = ε0
k/(Un + ε0

k ), which agrees with [10], Eq. (11).

Fig. 6 and [29], Eq. (6)) is now represented by (vp − vk).
The factors of |vk| and |vp| in the denominator stem from
the kz-integrals over on-shell spectral functions, analo-
gous to the second equality in (3).

For a strict 1D problem, i.e., for a single open chan-
nel (NE = 1), this expression reduces to 2ltr = lbs, as it
should [1], Eq. (152). In the present context, we are
more interested in the situation where the disorder does
produce scattering between the modes and thus jus-
tifies the random-matrix theory assumptions. And in-
deed, when several channels are open, the agreement
of Eq. (6) with the numerical data is very satisfactory, as
shown in Fig. 2. Remarkably, Eq. (6) performs especially
well in between the 1D resonances, where the coherent
coupling between channels has to be described rather
accurately.

Of course, the result (6) is perturbative in nature. First
of all, it diverges at the internal resonances, whereas we
expect the true localization exponent to remain finite.
The possible derivation of, say, a beyond-first-order cut-
off for these divergences is far beyond the scope of the
present paper with its focus on the mixed channels in
between the resonances. Secondly, the result (6) is es-
sentially valid for weak enough disorder (V 
 Un), and
thus only holds if the (quasi-)condensate is extended.
For much stronger disorder, the condensate fragments
and the Bose fluid enters the non-superfluid, Bose-glass
phase [30]. In that regime, the Bogoliubov spectrum re-
mains real-valued and positive (for the usual positive
branch), but the low-energy density of states reflects
the breakdown of superfluidity in the sense of Landau’s
criterion [24]. The precise, quantitative connection be-
tween the superfluid-Bose glass transition and the An-
derson localization of Bogoliubov excitations is a inter-
esting topic that needs yet to be explored in different
dimensionalities.

4 Summary and outlook

In conclusion, we have calculated the localization length
for Bogoliubov excitations of Bose-Einstein condensates
on disordered lattices with a planar quasi-1D geometry.
Numerical data from a transfer-matrix computation are
very well reproduced by an analytical formula adapted
from continuum transport theory. Our approach could
extend to larger systems N × 1 (and N × N) with N → ∞
using finite-size scaling and thus yield the full 2D (and
3D) localization lengths, with the aim to track down
possible mobility edges for BQPs in dimensions higher
than 1.
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