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Due to their low surface mass density, two-dimensional materials with a strong piezoelectric response are
interesting for nanoelectromechanical systems with high force sensitivity. Unlike graphene, the two sublattices
in a monolayer of hexagonal boron nitride (hBN) are occupied by different elements, which breaks inversion
symmetry and allows for piezoelectricity. This has been confirmed with density functional theory calculations
of the piezoelectric constant of hBN. Here, we formulate an entirely analytical derivation of the electronic
contribution to the piezoelectric response in this system based on the concepts of strain-induced pseudomagnetic
vector potential and the modern theory of polarization that relates the polar moment to the Berry curvature. Our
findings agree with the symmetry restrictions expected for the hBN lattice and reproduce well the magnitude of

the piezoelectric effect previously obtained ab initio.

DOI: 10.1103/PhysRevB.94.075404

I. INTRODUCTION

Truly two-dimensional materials became a subject of
intense research with the experimental isolation of graphene
about one decade ago [1-4]. In the wake of the many
developments driven initially by research in this graphite
monolayer, other two-dimensional crystals such as transition-
metal dichalcogenides, hexagonal boron nitride (hBN), phos-
phorene, and others, have gained prominence due to rich and
outstanding electronic, magnetic, structural, and optical prop-
erties [5-8]. The prospect of stacking individual monolayer
materials with different properties holds the promise of a
new paradigm in solid-state physics as this modular concept
of layered van der Waals heterostructures might enable the
tailoring of physical properties to levels much beyond the
band-gap engineering that is mainstream in semiconductor
heterostructures [9,10]. A key role in such heterostructures
would likely fall to hBN. While many two-dimensional build-
ing blocks are praised for their superior intrinsic electronic
properties, these are detrimentally sensitive to interactions
with substrates, other layers, and to contamination [11-13].
With a large band gap and a lattice mismatch of less than 2%
with respect to graphene, hBN has the potential to preserve
graphene’s celebrated properties within such heterostructures
and is currently the insulating substrate of choice for clean,
atomically flat deposition or interfacing of two-dimensional
crystals [6,14—18].

Beyond such a passive role, the properties of hBN also allow
for an active role. The monolayer of hBN has a honeycomb
lattice structure similar to that of graphene, yet one of its
two sublattices is occupied by boron (B), and the other by
nitrogen (N) atoms (see Fig. 1). This results in a strong ionic
bond and a band gap of ~6 eV [14,19-21]. Since inversion
symmetry is naturally absent in this crystal, a piezoelectric
response is possible [8,22,23], i.e., a change in the bulk electric
polarization P when subjected to external stress.

The ability to control bulk polarization mechanically
and, conversely, to convert electric fields into mechanical
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displacements is of enormous interest in the realm of energy
harvesting, particularly so at the micro- and nanoscale, where a
vision of self-powered miniaturized electronic devices is being
strongly pursued in materials science [24-27]. On another
front, a strong piezoelectric coupling has been shown to be
an important tool in cooling nanoelectromechanical systems
(NEMS) to their mechanical quantum ground state [28]. Such
applications demand a strong piezoelectric material from the
outset and that, in turn, requires a good insulator with a
robust interplay between the underlying electronic and me-
chanic/lattice degrees of freedom. Density functional theory
(DFT) calculations have established that an hBN monolayer
has among the highest specific piezoelectric coefficients (~ 1
pC/N) known [8,29]. Combined with the lowest surface
mass density of all known piezoelectric crystals, this might
allow for NEMS with as yet unknown force sensitivity [30].
Moreover, hBN could provide the piezoelectric coupling in a
layered graphene/hBN heterostructure and thus allow for the
electromechanical manipulation of graphene with an electric
field. Its strong piezoelectric characteristics, high mechanical
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FIG. 1. The lattice of hBN does not possess an inversion
center and hence allows for piezoelectricity. (a) Isotropic strain
(uyy =uyy,uyy = uy, =0) leads to a vanishing pseudomagnetic
vector potential A and does not induce a polarization P. (b), (c)
Realizations of the strain tensor u;; that lift the trigonal symmetry
and generate a change in the polarization. The induced polarization
and the vector potential are always orthogonal, P 1 A.
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stability, and easy handling make hBN a prime material for
such technological applications.

The lattice of (isotropically deformed) hBN does not belong
to one of the 10 polar classes and hence, hBN exhibits no
spontaneous polarization. However, it does sustain one when
subjected to anisotropic deformation. In this paper, we use
the modern theory of polarization and the geometric phase
approach [22,31,32] to calculate the electronic contribution
to the piezoelectric tensor of hBN in an entirely analytical
way. An ionic contribution is not considered, here [33-35]. A
DFT calculation in the context of hBN nanotubes established
that the dominant electronic contribution (*=80%) to the
polarization arises from the 7 valence band, and that it has
the same sign as the remaining contribution from the o
valence bands [29,36,37]. Therefore, a minimal yet promising
ansatz for the analytical description of piezoelectricity in
hBN consists in focusing entirely on the 7 bands. As we
demonstrate, the low energy band structure of the w bands
is already sufficient to derive results in qualitative and good
quantitative agreement with DFT calculations.

II. MODEL DETAILS

Due to the underlying honeycomb lattice, low energy
electrons in hBN effectively behave as (massive) Dirac
fermions. This is similar to the situation in graphene, except
for the mass term associated with the different orbital energies
at the B and N atoms. The difference in electronegativity
between the two species causes electron transfer from B to
N within the o bonds [38] and results in a bond with an
ionic character, in contrast to the purely covalent bond of
graphene [14,20]. The broken sublattice symmetry gives rise
to the band gap [39]. Such a model has already been used
to describe the chirality-dependent piezoelectric response of
hBN nanotubes [22]. In the vicinity of the K points in the
hexagonal reciprocal lattice, the effective Hamiltonian is then

H™ = hvp ™ - (g — 14), ey

where hvp = %|t|a, with |¢] as the magnitude of the nearest-
neighbor tight-binding hopping amplitude and a as the
interatomic distance. In the absence of strain, A=0. In
our notation, g = (¢gx,qy,A), where ¢, , are the Cartesian
components of the electron’s crystal momentum measured
relative to the high-symmetry points K (r =+1) and K’
(t = —1). The vector 0”) = (v0,,0,,0,) is defined in terms of
the three Pauli matrices that address the sublattice degree of
freedom (pseudospin) in this problem. Since the real electron
spin does not play arole in the following, it is not made explicit
in our expressions. The sublattice potential ~vy A arises due to
the different on-site energies at the boron (A > 0) and nitrogen
(—A) atoms, and gives rise to a band gap of 2hvz A in hBN.
When A =0, the energy dispersion associated with Eq. (1) is
the hyperbola

1/2
Eco(@)= % hvp (¢ +¢2 + A2)" ©)

centered at each K point. The vector A encodes the electron-
lattice coupling for anisotropic strains and provides the
essential mechanism through which the system can sustain a
strain-induced polarization. It is well known that the effect
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of such lattice deformations can be accounted for via the
pseudomagnetic vector potential A in the Hamiltonian H®.
The form of Eq. (1) aptly reflects the minimal-type substitution
q — § = q — T A, where the pseudomagnetic vector potential
is given by [3,40,41]

Ay

Uxx — Uyy

3tBk
y —Uxy — Uyx |. (3)

14Z 4hUF 0

This definition is given in terms of the strain tensor u;; =
(%;u; + 0ju;)/2, where u(r) is the local displacement field,
in general a function of position, although here we shall
focus on strictly uniform and planar strain configurations.
The parameter f = ‘;‘g—; < 0 describes the variation of the
hopping amplitude + < 0 with respect to bond length in linear
order and x ~ 1 [40]. In Sec. V, we discuss the complete
prefactor/coupling strength in detail. The electron-phonon
coupling encoded in A has the qualitative effect of displacing
the center of the Fermi circles from 7 K to (K + A)[42]. This
affects the Berry curvature in the parameter space (g,,qy,A),
where A€[0, A] parametrizes the sublattice potential.

In a microscopic description of strain-induced electrical
polarization, one formally and conventionally identifies two
additive contributions [33,43,44]. The first one, so called
ionic contribution, arises from the breakdown of the Cauchy-
Born rule and the need to explicitly consider relative ionic
displacements within the crystal’s unit cell that are not
accounted for by the macroscopic strain field u;;. This
ionic contribution can be characterized analytically if an
accurate empirical force constant model to describe the lattice
degrees of freedom is known [45]. In the case of hBN, such
calculations were performed by Michel and Verberck [34,35].
The second, electronic contribution arises from the induced
electronic density and is the specific focus of this paper,
computed within the quantum phase approach [31,44]. From
an ab initio standpoint, a common strategy to identify these
two contributions consists in (i) computing the electronic
polarization as a function of strain while keeping the ions
clamped and (ii) performing the same computation with fully
relaxed ions, which yields the rotal (electronic and ionic)
polarization. Note that the ionic and electronic contributions
have opposite sign for hBN [8,33,35,38].

To determine the electronic contribution to the piezoelectric
constant of an hBN monolayer, we conceive a gedanken-
experiment in which the gap parameter in Eq. (1) varies
adiabatically from A = O (graphene) to . = A (hBN). Such
adiabatic change is accompanied by the development of a bulk
polarization—induced dipole moment per unit area—whose
magnitude is obtained from [22,32,46]

A d2q @
P, =2e / dk/ Q). “)
; 0 Bz (22 N

Here, P; is the ith Cartesian component of the induced
polarization vector, e = |e| is the unit charge, and the factor
of 2 accounts for the spin degeneracy. The integral over half
the Brillouin zone (BZ) around each valley combined with the
summation over 7 recovers the full BZ integral required. The
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Berry curvature is given by
QO — l<aﬁ Bur> 3)

ou, [ou,
= —1
4k dqi | dr I | dg;

where |u.) is a valence eigenstate of Eq. (1) with A — A.

III. STRAIN-INDUCED POLARIZATION

From Eq. (5), one straightforwardly resolves the Berry
curvatures
() _ ‘jy () _ dx
qu,)\—_fﬁy Qq A_t2_€3’ (6)
where € = |E. ,(§x,Gy,1)|. To be specific, we consider now
the calculation of P, according to Eq. (4). Integration over the
adiabatic parameter leads to

v

TAG,

A ~
Tqg,

/d/\%z .

0 € (@2+32),/32+ 32 + A?

This is followed by the momentum integration over a square
[—w,+w]? centered at each of the two high-symmetry points
K and K’ of the undistorted BZ. To conserve the total number
of states, the area of each square is exactly half of the first
BZ zonme, i.e., w=3%*K/4=37347/a. After restoring the
prefactor, this BZ integration leads to an entirely analytical
expression for P, (and likewise for P,). For piezoelectricity,
the linear response of P with respect to strain is relevant. As
Eq. (3) shows that A is linear in strain, it is appropriate to
focus on the leading order of the induced polarization in the
pseudomagnetic vector potential:

p 2e - |: A
= —tan | ———
m? AV 2w24+A2
This is the main result of our analytic calculation. On one
hand, it manifests a new and useful qualitative result: the
pseudomagnetic vector potential and the induced polarization
are orthogonal, P L A, irrespective of the state of strain. On
the other hand, the exact and simple analytical expression in
Eq. (8) allows us to extract definite quantitative predictions re-
garding the magnitude of the piezoelectric coefficient in hBN.

(N

} Axi+ 0(AY. ©®)

IV. PIEZOELECTRIC TENSORS AND SYMMETRY
The components of the direct and converse piezoelectric
tensors are, respectively, given by
P P
e, = ,
do jk ik ou Jjk

diji = &)
where oy is the stress tensor. The crystal of hBN belongs to
the point group 6m2 (Ds;,) which, for the lattice orientation
introduced in Fig. 1 containing a mirror plane perpendicular
to the x axis, imposes the symmetry constraints

driy = di12 = dio1 = —dy,
(10
el = €112 = €121 = —e,

while all other components vanish identically [47]. The
piezoelectric response is thus characterized by only
one number, and we call d»;, and ey, the direct and converse
piezoelectric constants, respectively. The direct and converse
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effects are related through the elastic tensor, e;jx = diunC jxmn-
which, since we have only one independent component in each,
reduces to the simple relation e = d22(Cr220—C2211). To
confirm consistency of our model with symmetry constraints,
note that Eq. (8) implies (0 P /0A,) = —(d P, /0 A,). Together
with Eq. (3), this leads to, e.g.,

IPy A, OP DA,
A, duy, DA, duy,

e = =—ez. (1D
Analogously, we can verify that all the relations in Eq. (10)
are indeed satisfied by the model. The piezoelectric constant
is explicitly given by

ery = SPIE A (12)
T n%a Vawrtaz )

V. MAGNITUDE OF THE PIEZOELECTRIC CONSTANT

The electromechanical coupling strength %I,B/c in Eq. (3)
arises from a low energy approximation of a tight-binding
Hamiltonian that describes electronic hopping among the p,
orbitals of neighboring atoms in the honeycomb lattice of
hBN [40]. Under strain, the interatomic distances are changed
and the hopping amplitude ¢ < 0 is modified accordingly. This
couples the electronic system to the lattice degrees of freedom
to an extent that is controlled by the parameter g = 22 < 0
which reflects the sensitivity of the hopping amplitude to
changes in the bond length. Since, as in graphene, the & band
comes about due to electron hopping between the p, orbitals of
nearest-neighboring atoms, ¢ corresponds to the Slater-Koster
parameter V., and it is natural to expect an exponential
decay of r with increasing interatomic distance [48,49]. In
analogy with a parametrization that is fairly accurate in
graphene [42,50], we consider

@)=ty eﬁ(a—do)/flo’ (13)

where f9 = t(ap) denotes the hopping amplitude at the
equilibrium bond length ay. We can estimate B from
existing data for the Slater-Koster parameters V,, in
hBN with first-, second-, and third-nearest neighbors that
are fit to accurately reproduce the band structure ob-
tained from DFT calculations [8,15,20,51]. Both the first-
and the third-nearest-neighbor hopping occur between B
and N atoms. With fp=1" =¢(1.44 A)=—-2.16 eV and
1 =1(2.88 A)=—0.08 eV for the first and third neighbor
hopping amplitudes, respectively, we find 8 = —3.3, which is
a value very similar to that for graphene [50]. This similarity
is not surprising as the atomic orbitals involved are the same
in the two systems, and the relaxed interatomic distance is
nearly the same, too. For consistency of /) and ®, we
have used the values from Ref. [51] in our estimate for S.
However, literature values for the nearest-neighbor hopping
amplitude cumulate rather around 7o = — 2.3 eV and we thus
infer 18 =7.6 eV [14,15,52]. The dimensionless parameter k
depends on microscopic details of the lattice dynamics. In
lowest order of a valence-force-field model [40,45], it is given
by k = 1/+/2. This results in an electromechanical coupling
strength of %tﬁ/{ = 4.0 eV in Eq. (3). Putting this together
with all the other relevant parameters listed in Table I, we
evaluate Eq. (12) and finally estimate the contribution of the
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TABLE 1. The parameter B is discussed around Eq. (13) and
kx follows from a lowest order valence-force-field model [40,45].
The value for a stems from Refs. [15,17] and is also used for
w=3"¥7/a. With t = —2.3 eV [14,15,52] and hvr = 3|t|a/2,
A corresponds to a band gap of 2hvprA = 6.0 eV [15,19-21].
For C», — Cy11, we use the elastic constants C;; =291 N/m and
Ci, =62 N/m, as reported in Ref. [8] (Voigt notation; different lattice
orientation).

Quantity Value Quantity Value
B -33 K 0.71
w 0.96 A~ a 1.44 A
A 0.60 A_l C2222 - C22]1 229 NII’I_I
7 electrons to the total piezoelectric constants to be

e > 0.63 e/nm = 1.0 x 107" C/m,

dyyy >~ 2.8 e/uN = 0.44 pC/N. (14)

Duerloo et al. obtained the values e»y, >~ 1.38 x 1071 C/m in
a fully relaxed-ion DFT calculation and ey, >~ 3.71 x 10-10
C/m under clamped-ion conditions (note that our coordinate
convention is different from the one used by these authors) [8].
As described earlier, the latter corresponds to the electronic
contribution and is the one appropriate for direct comparison
with the figures quoted in Eq. (14) since our model accounts
only for the electronic part. We further recall that our
calculation hinges entirely on the electronic effects associated
with -band electrons, justified by the fact that, according
to first-principles calculations, these account for 80% of the
electronic piezoelectric response [29]. This factor of 0.8~
can be incorporated in our results allowing us to refine the
numbers in Eq. (14) to ey >~ 1.3 X 10719 C/m and dyyy ~
0.55 pC/N as the prediction for the electronic contribution
to the piezoelectric constants. Given the uncertainty inherent
to our estimate of the electromechanical coupling strength
%tﬂ/{ above, we consider this result to be in good quantitative
agreement with the first-principles value of 3.71 x 107'° C/m.
Beyond the scope of the current work, it would be interesting
to obtain ab initio a more precise value of the logarithmic
derivative of the hopping, §, so the quantitative accuracy of
our model can be fully assessed.

We reiterate the impressive magnitude of the piezoelectric
response in hBN already pointed out by Duerloo et al.
as well as Michel and Verberck [35]. For comparison, the
piezoelectric tensor components of quartz vary in the range
d ~ 0.7 — 2.3 pC/N [53]. The numbers in Eq. (14) show that
a single, atomically thin layer of hBN is essentially as good a
piezoelectric as a crystal of quartz.
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VI. CONCLUSION

We have obtained exact analytical results for the induced
polarization and piezoelectric constant of monolayer hBN
within the quantum geometric phase approach. In our minimal
model, which is proven to satisfy the symmetry constraints
expected for the point group 6m2 (Ds;), the interaction
between deformations and the electronic degrees of freedom
is captured in the effective two-band Hamiltonian via a
pseudomagnetic vector potential. Ionic degrees of freedom
are not considered. Using existing literature estimates for the
relevant band-structure parameters and elastic constants in this
system, we find that the converse and direct piezoelectric
constants for this model are as high as ex,=1.3 x 1071°
C/m and dy, =0.55 pC/N, respectively. The strain-induced
polarization P is exactly perpendicular to the pseudomagnetic
vector potential A.

We also provide an estimate for the so far unknown coupling
strength of the strain-induced pseudomagnetic vector potential
in hBN, namely, %lﬁl( =4.0 eV. That the magnitude of the
piezoelectric coefficient obtained here agrees well with the
value extracted from independent DFT calculations attests to
the validity and pertinence of the minimal model, especially
since it provides a simple analytical result for its dependence
on the basic material parameters. Another advantage of our
calculation is that, through Eqs. (1) and (8), one can interpret
the piezoelectric effect in this material as a consequence of
the displacement of the Dirac point under strain from its
default position at K in the BZ: a measurement of the electric
polarization is thus an indirect measure of how much and along
which direction the Dirac point drifts from K under strain.

Our findings for atomically flat hBN might be ultimately
put to test in hopefully upcoming experiments which, to our
knowledge, have not been reported yet. We thus provide an
analytical and concise description of piezoelectricity in hBN
that is of relevance for the understanding of nanoscale devices
containing hBN as a piezoelectric component, including—
but not limited to—heterostructured NEMS based on two-
dimensional materials.
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