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Spin-degenerate regimes for single quantum dots in transition metal dichalcogenide monolayers

Matthew Brooks* and Guido Burkard
Department of Physics, University of Konstanz, D-78464 Konstanz, Germany

(Received 17 March 2017; published 12 June 2017)

Strong spin-orbit coupling in transition metal dichalcogenide (TMDC) monolayers results in spin-resolvable
band structures about the K and K ′ valleys such that the eigenbasis of a two-dimensional quantum dot (QD) in
a TMDC monolayer in zero field is described by the Kramers pairs |0〉− = |K ′ ↑〉 , |1〉− = |K ↓〉 and |0〉+ =
|K ↑〉 , |1〉+ = |K ′ ↓〉. The strong spin-orbit coupling limits the usefulness of single TMDC QDs as spin qubits.
Possible regimes of spin-degenerate states, overcoming the spin-orbit coupling in monolayer TMDC QDs, are
investigated in both zero field, where the spin and valley degrees of freedom become fourfold degenerate, and
twofold degeneracy in some magnetic field, localized to a given valley. Such regimes are shown to be achievable
in MoS2, where the spin-orbit coupling is sufficiently low and of the right sign such that the spin-resolved
conduction bands intersect at points about the K and K ′ valleys and as such may be exploited by selecting
suitable critical dot radii.

DOI: 10.1103/PhysRevB.95.245411

I. INTRODUCTION

Transition metal dichalcogenide (TMDC) monolayers are
atomically thin crystal layers exfoliated down from bulk
weakly cohesive stacks. Similar to graphene, a hexagonal
lattice of alternating lattice sites results in two inequivalent,
time-reversal-symmetric valleys [K and K ′; see Fig. 1(b)]
[1–4]. Unlike graphene, the monolayer crystals possess broken
inversion symmetry [see Fig. 1(a)], inducing direct band gaps
in the visible range about the two valleys [5–7]. Furthermore,
strong spin-orbit coupling from the transition metal atoms
introduces a strong coupling between the spin and valley
degrees of freedom [see Fig. 1(a)] [8–10]. TMDCs are
characterized by the chemical composition MX2, where M

denotes the transition metal (Mo or W) and X denotes the
chalcogenide (S or Se). The presence of a direct band gap and
spin-valley coupling in a two-dimensional material allows for
a number of interesting electronic, spintronic, and valleytronic
applications, including room-temperature quantum spin Hall
insulators, optically pumped valley polarization, long-lived
exciton spin polarization, and two-dimensional (2D) quantum
dots (QDs) [11–16].

While the strong spin-valley coupling of TMDC mono-
layers offers numerous interesting physical phenomena, it
presents a difficulty for qubit implementation in gated QDs.
Kramers pairs of the spin and valley degrees of freedom
result from this coupling [13,14,17]. At low energy the
|0〉− = |K ′ ↑〉 and |1〉− = |K ↓〉 states are degenerate in zero
field and are energetically separate from the |0〉+ = |K ↑〉 and
|1〉+ = |K ′ ↓〉 states [14,18,19]. This effect can be observed
in the spin-resolvable structure of the conduction band (CB)
about the K and K ′ points [20,21], as shown in Fig. 1(c).
The obvious choice for the computational basis of a qubit
is therefore a spin-valley qubit consisting of the two states
of the lowest-lying Kramers pair, |0〉− (|1〉−) in MoX2 and
|0〉+ (|1〉+) in WX2, where the required energy difference
may be achieved by spin-valley Zeeman splitting induced
by a perpendicular magnetic field [22–25]. However, such
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qubits are inherently limited by a necessity for coupling of
the valley states. Methods of doing so have been proposed
in carbon nanotubes by means of short-range disorder in the
dots [22,26], requiring atomic-level engineering, or by optical
manipulation [27]. Additionally, the valley coherence of WSe2

excitons has been measured [28], demonstrating an order of
magnitude lower coherence times than spin in other TMDC
monolayer crystals [11]. If qubits in TMDC monolayers could
operate similarly to semiconductor spin qubits, then the broad
theoretical and experimental findings of the field [29–31] could
be directly utilized. In so doing, a novel breed of 2D, optically
active, direct band gap, and relatively nuclear spin free [15]
semiconductor spin qubits would be gained without the need
for an artificially induced band gap, as is needed in graphene
[32]. This requires a method of manipulating the dots such
that the spin-orbit coupling may be suppressed and regimes of
pure spin qubits may be accessed.

There is a noticeable and useful difference between the low-
energy band structures of Mo-based and W-based monolayers,
as demonstrated in Fig. 1(c): the band crossings observed
in the spin-resolved CB structures in Mo monolayers are
absent in W monolayers, which suggests that it is possible to
achieve spin degeneracy localized within a given valley. Such
spin-degenerate regimes offer the possibility of implementing
the desired pure spin qubits in TMDCs. Additionally, by
placing a TMDC material in a perpendicular magnetic field,
breaking time-reversal symmetry, valley Zeeman splitting may
be introduced to the system. Previous work [14] has suggested
that it may be possible to access regimes of spin degeneracy
within the same valley by introducing a large magnetic field.
In this work, we build upon previous analyses of TMDC
QDs in an effective low-energy regime by solving for various
conditions in which a spin qubit may be viable, demonstrating
a dot-size-tunable spin-orbit splitting and investigating the
effects of a finite-potential well model as opposed to previous
assumptions of an infinite potential.

Here, we present methods of achieving spin degeneracy
within a given valley of a QD in a TMDC monolayer at zero
or moderate fields. First, in Sec. II a zero-external-field model
is discussed, demonstrating the Kramers pairing of states to
derive an expression for a critical radius at which fourfold
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FIG. 1. (a) Three-dimensional view of a TMDC unit cell (red
denoting M atoms, blue denoting X atoms) showing the three
sublayers of a TMDC monolayer and the broken inversion of the
crystal lattice. (b) Planar (X-Y ) view of a TMDC lattice. (c) Spin-
resolved conduction band (red: |0〉− = |K ′ ↑〉 and |1〉− = |K ↓〉,
blue: |0〉+ = |K ↑〉 and |1〉+ = |K ′ ↓〉) around the K valley in the
BZ of Mo- and W-based TMDC monolayers demonstrating the spin
crossings present in Mo TMDCs and not in W; the K ′ valley may be
visualized simply by the time reversal of the given band structure.

spin-valley degeneracy may be expected. Also we discuss
the best candidate monolayer for a pure spin qubit. Then
in Sec. III an external magnetic field perpendicular to the
dot is considered, and numerical solutions to the necessary
external field strengths at a given dot radius are shown at
which a spin-degenerate state within a given valley is expected.
Next, the effects of the finite confinement potential on the two
previously discussed regimes are given in Sec. IV. Finally, an
effective implementation regime for the various methods of
achieving valley-independent spin degeneracy is discussed in
Sec. V before a summary is given in Sec. VI.

II. ZERO FIELD

To describe a QD in monolayer TMDC the following
effective low-energy Hamiltonian about the K and K ′ points
in the CB is employed [14]:

Hdot = H
τ,s
el + H intr

so + V = h̄2q+q−
2m

τ,s
eff

+ τ�cbsz + V. (1)

Here, τ = 1 (−1) refers to the K (K ′) valley, sz gives the spin
Pauli z matrix with eigenvalues s = 1 (−1) for spin ↑ (↓),
wave number operators q± = qx ± iqy , where qk = −i∂k,�cb

is the energy splitting in the CB due to the strong intrinsic spin-
orbit coupling of the TMDC monolayer, and the spin-valley-
dependent effective electron mass is defined as 1/m

τ,s
eff =

1/m0
el − τs/δmeff, where δmeff is material dependent. Initially,

it is assumed that the QD potential V is sufficiently deep that

it may be described by an infinite hard-walled potential,

V =
{

0 r � RD,

∞ r > RD,
(2)

where r is the radial coordinate and RD is the radius of the
dot. This may be assumed in lieu of a harmonic potential, as
is often used in bulk semiconductor QD models since the 2D
nature of a TMDC allows for a more direct interface between
the gates and the plane in which an electron will be confined.
Additionally, such an assumption allows for edge effects at the
boundary of the dot to be neglected. In 2D polar coordinates,
the wave-number operators may be defined as

q± = ±ie±iφ

(
∓ ∂r − i

r
∂φ

)
, (3)

where φ is the angular coordinate. Assuming the dot is circular,
rotational symmetry about the z axis dictates that the dot’s
Hamiltonian will commute and share eigenstates with the z

component of the angular momentum operator lz. This allows
for the normalized solution of the angular component of the
wave function �(r,φ) = R(r)�(φ) to be given as

�(φ) = eilφ

√
2π

. (4)

Since the radial component of the wave function observes
the boundary condition R(RD) = 0, the following expression
is derived, where jn,l is the nth zero (n = 1,2,3, . . . ) of the lth
Bessel function of the first kind Jl (l = 0,±1,±2, . . . ):

Rn,l(r) = (−1)
|l|−l

2

√
2J|l|

( jn,|l|
RD

r
)

RDjn,|l|+1
. (5)

As such, the full normalized solutions of a hard-wall TMDC
quantum dot in zero external field are given in the spinor form
as

�
↑
n,l(r,φ) = eilφ

√
2π

(
1
0

)
Rn,l(r), (6a)

�
↓
n,l(r,φ) = eilφ

√
2π

(
0
1

)
Rn,l(r), (6b)

and the spin, valley, and dot-radius-dependent energy eigen-
values are given as

En,l
τ,s(RD) = h̄2j 2

n,|l|
2m

τ,s
eff R

2
D

+ τs�cb. (7)

From the four realizations of spin and valley, only two sepa-
rate energy solutions in zero field emerge, i.e., En,l

K,↑ = E
n,l
K ′,↓ =

E
n,l
+ and E

n,l
K ′,↑ = E

n,l
K,↓ = E

n,l
− . These two possible solutions

describe the |0〉+ (|1〉+) and |0〉− (|1〉−) Kramers pairs, respec-
tively. If the two solutions are assumed to be equivalent, then
Eq. (7) may be used to describe the radius at which fourfold
degeneracy in the valley-spin Hilbert space is achieved. As
such, a critical radius Rn,l

c at which E
n,l
+ = E

n,l
− is given by

Rn,l
c = h̄jn,|l|

2
√

�cb

√
1

m−
eff

− 1

m+
eff

, (8)
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FIG. 2. (a) Zero-field energy spectrum of the n = 1, l = 0 eigen-
states [blue: |0〉+ (|1〉+) and red: |0〉− (|1〉−)] of a MoS2 hard-wall QD
of a given dot radius RD; here, a point of fourfold degeneracy of the
valley-spin eigenstates is observed at a particular radius. Inset: region
about which the fourfold degeneracy is observed in the spectrum.
(b) Zero-field energy spectrum of the n = 1, l = 0 eigenstates of a
WS2 hard-wall QD of a given dot radius; here, no point of fourfold
degeneracy of the valley-spin eigenstates is observable due to the
�cb > 0 not being satisfied by W-based TMDCs.

where m−
eff = m

K↓/K ′↑
eff and m+

eff = m
K↑/K ′↓
eff . Therefore, there

are real solutions to the critical radius at which fourfold
valley-spin degeneracy may exist for dots with intrinsic
spin-orbit coupling such that �cb > 0 and m+

eff > m−
eff. The

latter condition is given for all possible TMDC monolayers,
while the former is only satisfied by Mo-based TMDCs (�cb =
1.5 meV for MoS2 and �cb = 11.5 meV for MoSe2; see Fig. 2)
[4,14]. Alternatively, real solutions of Rc may be found in
materials where both �cb < 0 and m+

eff < m−
eff; however, there

is no known TMDC that satisfies the latter condition.
In the ground state (n = 1, l = 0) the critical radius at which

fourfold degeneracy may be expected is 4.13 nm for MoS2

and 1.46 nm for MoSe2 QDs. While both radii are difficult
to achieve by electrostatic gating, MoS2 monolayers offer
plausibly achievable fourfold degeneracy through some critical
radii and, consequently, prove themselves to be the most viable
candidate for 2D single-QD pure spin qubits. For the remainder
of the present work we will focus solely on MoS2 monolayers.

III. PERPENDICULAR MAGNETIC FIELD

Following the previous methods [14], the spin-valley
eigenenergies of a TMDC monolayer QD in a constant

FIG. 3. Energy spectra of the n = 1, l = 0 state in a QD of
20 nm radius on a MoS2 monolayer under a perpendicular magnetic
field. Here, the critical field strength at which E

n=1,l=0
K ′,↓ = E

n=1,l=0
K ′,↑ is

observed at the high magnetic field strength of ∼23 T. The blue solid
(dashed) line shows|K ′ ↑〉 (|K ↓〉), and the red solid (dashed) line
shows |K ↑〉 (|K ′ ↓〉).

perpendicular magnetic field Bz may be derived from the
following Hamiltonian:

H
τ,s
B⊥ = h̄ωτ,s

c α+α− + τ�cbsz + 1 + τ

2

Bz

|Bz| h̄ωτ,s
c

+1

2
(τgvl + gspsz)μBBz, (9)

where the cyclotron frequency is defined as ωτ,s
c =

e|Bz|/m
τ,s
eff , μB is the Bohr magneton, gsp is the spin g factor,

gvl is the valley g factor, and α± denote the modified wave-
number operators α± = ∓ilBq±/

√
2, where lB = √

h̄/eBz is
the magnetic length. After appropriate gauge selection wave
functions in terms of the dimensionless length parameter ρ =
r2/2l2

B are given as Pn,l(ρ) = ρ|l|/2e−ρ/2M(an,l,|l| + 1,ρ),
where an,l describes the nth solution of the bound-state
identity M(an,l,|l| + 1,ρD) = 0, where ρD = ρ[r = RD] and
M(a,b,c) is the confluent hypergeometric function of the first
kind. The addition of an out-of-plane magnetic field does not
break the rotational symmetry of the dot; hence, the angular
component of the wave function is not affected by this change.
The eigenenergies are therefore given as

E
τ,s
n,l = h̄ωτ,s

c

(
1 + τ

2

Bz

|Bz| + |l| + l

2
− an,l

)

+ τ�cbsz + 1

2
(τgvl + sgsp)μBBz. (10)

From Eq. (10), spectra demonstrating the effect of an
out-of-plane magnetic field for QDs in MoS2 monolayers
may be calculated numerically. The splitting of the spin and
valley states due to the external magnetic field allows for spin-
degenerate crossings for a given radius within the K ′ valley,
i.e., at some external magnetic field strength E

n,l
K ′,↑ = E

n,l
K ′,↓

(see Fig. 3). These critical magnetic field strengths Bc for
given dot radii may be determined for a range of radii to give
the spin-degenerate regime spectra shown in Fig. 4.
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FIG. 4. Spin-degeneracy curves of critical out-of-plane magnetic
field strength Bc with the radius of a QD on a MoS2 monolayer for the
first few states; the black solid (dashed) line shows n = 1 (2), l = 0,
the red solid (dashed) line shows n = 1, l = 1 (−1), the blue solid
(dashed) line shows n = 1, l = 2 (−2), and the purple solid (dashed)
line shows n = 1, l = 2 (−2).

These spectra show separate plateaus in the critical field
strength at relatively high dot radii (R > 20 nm) for the l � 0
and l < 0 angular states, differing by up to ∼5 T, but with
both still at high field strengths. This is the limit at which
the maximum Kramers pair energy difference at zero field is
observed and valley Zeeman splitting alone is used to achieve
spin degeneracy. On the other end of the spectra, at low external
field strengths the gradient of the regime curves increases,
compromising the fabrication error robustness of single-dot
spin qubits; that is, small errors (∼1 nm) in QD radii would
make the difference between operating the qubit at 1- and
6-T external field. Thus, operating a spin qubit with a single-
electron regime in the ground state is not easily implemented.
The possibility of operation at excited states and alternative
enhancement methods are considered and discussed in Sec. V.

IV. FINITE WELL

Up to this point, all models used assume QDs with an
infinite hard-wall potential. Here, the effects of transitioning
to a finite hard-wall potential

V =
{

0 r � RD,

V0 r � RD,
(11)

on the spin-degenerate regimes discussed are shown. Thus, for
both the zero-field and perpendicular-magnetic-field regimes,
the �(r = RD,φ) = 0 boundary condition is replaced by the
continuity condition at the potential interface ∂r ln[�r�RD

n,l (r =
RD,φ)] = ∂r ln[�r�RD

n,l (r = RD,φ)] [33].

FIG. 5. Spin-degenerate critical radii Rc of QD of finite potential
height in MoS2 monolayers at the ground and first few excited states,
red: n = 1, l = 0, blue: n = 1, |l| = 1, purple: n = 1, |l| = 2.

In zero field the unnormalized radial portions of the
wave function within and outside of the potential barrier are
described as follows:

Rn,l(r) =
{
J|l|

(
εin
n,lr

)
r � RD,

e
ilπ
2 K|l|

(
εout
n,l r

)
r � RD.

(12)

Here, Kl is the lth modified Bessel function of the
second kind, εin

n,l = √
2m

τ,s
eff [En,l − τ�cbsz]/h̄, and εout

n,l =√
2m

τ,s
eff [V0 − En,l + τ�cbsz]/h̄. Eigenenergies as a function

of potential height may then be numerically calculated by
applying the continuity condition to Eq. (12),

εin
n,lJ|l|+1

(
εin
n,lRD

)
J|l|

(
εin
n,lRD

) = εout
n,l K|l|+1

(
εout
n,l RD

)
K|l|

(
εout
n,l RD

) . (13)

From this, the fourfold-degenerate critical radii as a function
of potential height may be calculated, leading to the result
shown in Fig. 5. The effect of a finite potential is noticeable
only at low potential heights, <100 meV, whereafter a sharp
drop in the critical radii is observed.

Similarly, when a finite potential is considered with an
external magnetic field over the QD, the unnormalized radial
component of the wave function is described as

Pn,l(ρ) = ρ|l|/2e−ρ/2

{
M

(
ãin

n,l,|l| + 1,ρ
)

r � RD,

U
(
ãout

n,l ,|l| + 1,ρ
)

r � RD,
(14)

where U (ãout
n,l ,|l| + 1,ρ) is Tricomi’s hypergeometric function,

ãin
n,l is the nth numerical solution to the continuity equation at

the potential barrier, and ãout
n,l = ãin

n,l + V0/h̄ωτ,s
c . The conti-

nuity condition may then be applied to achieve the following
characteristic equation:

(1 + |l|)ãout
n,l M

(
ãin

n,l,|l| + 1,ρD

)
U

(
1 + ãout

n,l ,|l| + 2,ρD

)
+ ãin

n,lM
(
1 + ãin

n,l,|l| + 2,ρD

)
U

(
ãout

n,l ,|l| + 1,ρD

) = 0,

(15)

from which ãin
n,l may be numerically extracted and applied to

Eq. (10) in lieu of an,l . The effect of a finite-potential-height
model on the spin-degenerate regimes of MoS2 is shown in
Fig. 6.
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FIG. 6. Spin-degenerate critical magnetic field Bc of QDs of finite
potential heights in MoS2 monolayers at the ground of heights 1 eV
(red line), 0.5 eV (blue line), and 0.25 eV (purple line) and infinite
potential (black dashed line) for reference.

A similar effect on the spin-degeneracy regimes is shown
in both Figs. 5 and 6. At shallow potential heights the required
critical radius of the dot decreases by ∼1–2 nm. However, at
high magnetic field, there is no discernible difference between
the finite- and infinite-potential solutions. This result poses
little threat to the operation of dots with a single electron
charged into the ground state as the potential height may be
selected to be sufficiently high such that little to no difference
in the critical radii will be observed. However, as discussed in
Sec. V, this effect must be considered when switching to an
excited operational electron state by charging.

V. SINGLE QUANTUM DOTS AS QUBITS

To achieve a pure spin qubit in a single MoS2 QD, some
considered parameter selection is required to gain a certain
robustness of the operational regime. As previously stated
in Sec. III, a regime with a single electron in the lowest
spin-degenerate state requires either a very large external field
(> 20 T) or extreme precision in the QD’s radius. This is not
ideal; however, these problems may be mitigated by charging
the dot to operate at higher degenerate states. As can be
seen in Fig. 4, at reasonable external fields (�10 T), for each
increasing excited state the necessary QD radius increases in
accordance with Eq. (8). These regimes allowing for larger
dot radii are more reliably achieved by gated monolayer QD
fabrication methods. Moreover, the (|l| + l)/2 term of Eq. (10)
splits the plateaus of the regime curves shown in Fig. 4 into the
higher plateaus of the l � 0 and lower l = 1,2, . . . plateaus.
Therefore, if a charged excited state is chosen as the operational
state, the ideal choice would be an l > 0 angular state.

Even in the lowest spin-degenerate state, some charging
may be required. The operational electron confined to the K ′
valley is at a higher energy than the two other possible states in
the K valley (see Fig. 3). Although valley lifetime is expectedly
long [11,34], eventually, the electron will decay out of the
higher operational state to these empty states. Also, since each
excitation state may be split into four different configurations
of spin and valley, the total number of electrons needed to

charge the dot up to the desired operational regime is 3 + 4N ,
where N is an integer describing the excitation level of the
operational state; that is, N = 0 corresponds to the ground
state n = 1,l = 0, N = 1 corresponds to the first excited state
n = 1,l = −1, etc. The direct band gap of monolayer MoS2 is
∼1.8 eV [6], and current advances in gated QD nanostructures
in MoS2 give a charging energy of 2 meV at a dot radius
of 70 nm [35]. This result has been said to align well with
the self-capacitance model [29,35,36]; therefore, using said
model, the charging energy at desired radii for spin-degenerate
regimes (∼10 nm) may be approximately shown to increase to
∼14 meV. This is, however, a broad approximation; therefore,
further study of the perturbation of the energy levels due
to Coulomb interaction mediated by the Keldysh potential
[37] is warranted. However, such effects are spin and valley
independent and should serve only as a renormalization of the
effects studied here. These considerations do, however, limit
the choice of excited operational states; as is evident in Fig. 5,
at highly charged states relative to the potential height and
band gap, the critical radii will be compromised.

Additionally, ferromagnetic substrates may be employed
to enhance the valley splitting due to an external magnetic
field. Recent experiments have demonstrated an effective ∼2 T
addition to the magnetic field inducing valley Zeeman splitting
in WSe2 monolayers on a EuS ferromagnetic substrate [38].
Such techniques may be employed to reduce the necessary
external field strength to reasonable quantities.

An alternative quantum confinement method with TMDC
monolayers has been proposed by way of heterostructures
consisting of islands of one form of Mo-based TMDC within
a sea of the corresponding W-based monolayer [15,39] or
by sufficiently small free-standing flakes [40]. While such
methods offer quantum confinement on the desired scale,
high-intervalley-coupling terms are introduced at small dot
radii due to edge effects, offering a decoherence channel
to the system. Additionally, such structures offer scalability
challenges such as the lack of a method to adjust the exchange
coupling if the proposed model is extended to a double-QD
system. However, such studies of quantum confinement in
TMDCs pay close attention to the effect of dot shape, a
consideration that was omitted here for simple symmetry
considerations but could yet warrant consideration in further
research.

With a suitable operational regime selected, operation
of the spin qubit is relatively straightforward. The energy
gap between the up- and down-spin computational bases
is tunable by the external magnetic field, while Bychkov-
Rashba spin-orbit coupling induced by an external electric
field perpendicular to the device may be used to provide
off-diagonal spin-coupling terms in the spin Hilbert space [14].

VI. SUMMARY

Overall, given selection of a proper operational regime
and reasonable accuracy in QD fabrication at low radii,
MoS2 monolayer QDs do offer novel pure spin qubits in 2D
semiconductors. Overcoming the Kramers pairs of gated QDs
on TMDC monolayers was explored to achieve operational
regimes of pure spin qubits, thus avoiding the problem of
achieving valley state mixing and low valley coherence times.
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Zero-field fourfold spin-valley degeneracy was demonstrated
to be achievable in Mo-based TMDC monolayers, unlike
their W-based counterparts, at low QD radii, while spin
degeneracy solely within a given valley was shown to be
achieved by application of a sufficiently high external magnetic
field perpendicular to the dot. Regime restrictions for spin-
degenerate MoS2 QDs have been shown, demonstrating radi-
ally sensitive low-external-field regimes which may be made to
be more robust when charged into higher operational states and
enhanced valley-Zeeman-splitting substrates. Switching from
an infinite- to a finite-potential barrier model did demonstrate
a drop in the expected values of spin-degenerate critical radii
but only at particularly low barrier heights. In addition to the
moderate expected charging energy this somewhat limits the

usefulness of highly charged operational states but will not
substantially affect operation at the first few excited states. To
conclude, a theoretical demonstration of QD-radius-dependent
spin-orbit effects in TMDC monolayers was given along with
descriptions of possible methods to implement novel pure spin
qubits on two-dimensional semiconductor crystals.
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