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Abstract
The goal of this article is to review the progress of three-electron spin qubits from their 
inception to the state of the art. We direct the main focus towards the exchange-only qubit 
(Bacon et al 2000 Phys. Rev. Lett. 85 1758–61, DiVincenzo et al 2000 Nature 408 339) and 
its derived versions, e.g. the resonant exchange (RX) qubit, but we also discuss other qubit 
implementations using three electron spins. For each three-spin qubit we describe the qubit 
model, the envisioned physical realization, the implementations of single-qubit operations, as 
well as the read-out and initialization schemes. Two-qubit gates and decoherence properties 
are discussed for the RX qubit and the exchange-only qubit, thereby completing the list of 
requirements for quantum computation for a viable candidate qubit implementation. We 
start by describing the full system of three electrons in a triple quantum dot, then discuss the 
charge-stability diagram, restricting ourselves to the relevant subsystem, introduce the qubit 
states, and discuss important transitions to other charge states (Russ et al 2016 Phys. Rev. B 
94 165411). Introducing the various qubit implementations, we begin with the exchange-only 
qubit (DiVincenzo et al 2000 Nature 408 339, Laird et al 2010 Phys. Rev. B 82 075403), 
followed by the RX qubit (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 
Phys. Rev. Lett. 111 050502), the spin-charge qubit (Kyriakidis and Burkard 2007 Phys. Rev. 
B 75 115324), and the hybrid qubit (Shi et al 2012 Phys. Rev. Lett. 108 140503, Koh et al 
2012 Phys. Rev. Lett. 109 250503, Cao et al 2016 Phys. Rev. Lett. 116 086801, Thorgrimsson 
et al 2016 arXiv:1611.04945). The main focus will be on the exchange-only qubit and its 
modification, the RX qubit, whose single-qubit operations are realized by driving the qubit 
at its resonant frequency in the microwave range similar to electron spin resonance. Two 
different types of two-qubit operations are presented for the exchange-only qubits which can 
be divided into short-ranged and long-ranged interactions. Both of these interaction types are 
expected to be necessary in a large-scale quantum computer. The short-ranged interactions 
use the exchange coupling by placing qubits next to each other and applying exchange-pulses 
(DiVincenzo et al 2000 Nature 408 339, Fong and Wandzura 2011 Quantum Inf. Comput. 
11 1003, Setiawan et al 2014 Phys. Rev. B 89 085314, Zeuch et al 2014 Phys. Rev. B 90 
045306, Doherty and Wardrop 2013 Phys. Rev. Lett. 111 050503, Shim and Tahan 2016 Phys. 
Rev. B 93 121410), while the long-ranged interactions use the photons of a superconducting 
microwave cavity as a mediator in order to couple two qubits over long distances (Russ and 
Burkard 2015 Phys. Rev. B 92 205412, Srinivasa et al 2016 Phys. Rev. B 94 205421). The 
nature of the three-electron qubit states each having the same total spin and total spin in 
z-direction (same Zeeman energy) provides a natural protection against several sources of 
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noise (DiVincenzo et al 2000 Nature 408 339, Taylor et al 2013 Phys. Rev. Lett. 111 050502, 
Kempe et al 2001 Phys. Rev. A 63 042307, Russ and Burkard 2015 Phys. Rev. B 91 235411). 
The price to pay for this advantage is an increase in gate complexity. We also take into account 
the decoherence of the qubit through the influence of magnetic noise (Ladd 2012 Phys. Rev. B 
86 125408, Mehl and DiVincenzo 2013 Phys. Rev. B 87 195309, Hung et al 2014 Phys. Rev. B 
90 045308), in particular dephasing due to the presence of nuclear spins, as well as dephasing 
due to charge noise (Medford et al 2013 Phys. Rev. Lett. 111 050501, Taylor et al 2013 Phys. 
Rev. Lett. 111 050502, Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 
2015 Phys. Rev. B 91 235411, Fei et al 2015 Phys. Rev. B 91 205434), fluctuations of the 
energy levels on each dot due to noisy gate voltages or the environment. Several techniques 
are discussed which partly decouple the qubit from magnetic noise (Setiawan et al 2014 Phys. 
Rev. B 89 085314, West and Fong 2012 New J. Phys. 14 083002, Rohling and Burkard 2016 
Phys. Rev. B 93 205434) while for charge noise it is shown that it is favorable to operate the 
qubit on the so-called ‘(double) sweet spots’ (Taylor et al 2013 Phys. Rev. Lett. 111 050502, 
Shim and Tahan 2016 Phys. Rev. B 93 121410, Russ and Burkard 2015 Phys. Rev. B 91 
235411, Fei et al 2015 Phys. Rev. B 91 205434, Malinowski et al 2017 arXiv: 1704.01298), 
which are least susceptible to noise, thus providing a longer lifetime of the qubit.

Keywords: qubits, spin qubits, exchange-only qubits, resonant exchange qubits, RX qubit, 
charge noise, cavity QED

(Some figures may appear in colour only in the online journal)

1. Introduction

1.1. Quantum computation

Since the early beginnings, certain aspects of quantum mechan-
ics such as entanglement and non-locality have fascinated those 
who studied it due to their counterintuitive behavior in com-
parison with everyday life, thus fueling heated debates. With 
the rise of the information processing technology the question 
arose whether these quantum properties could be exploited 
and used for information processing, thus opening the research 
field of quantum information processing (see e.g. [28] for a 
historical account). Quantum computers follow a logic based 
on quantum mechanics and can be seen as superior to classi-
cal computers since they have the ability to solve certain prob-
lems which classical computers cannot solve in any reasonable 
time. It does not seem that quantum computers surpass clas-
sical computers in performing arbitrary tasks but since they 
operate according to quantum mechanical laws, they appear 
to be superior in simulating other quant um systems [29, 30], 
a problem that classical computers are unable to tackle effi-
ciently. Furthermore, quantum comp uters can solve some very 
specialized problems. The most well-known application is the 
Shor algorithm which is able to efficiently factorize integers 
[31] and thereby subvert the ability to encode encrypted infor-
mation using prime factors as a private key [32]. Other known 
applications are the Deutsch algorithm, its generalization, the 
Deutsch–Josza algorithm [28], and the Grover algorithm for 
efficient search in unsorted databases [33, 34].

Following directly after the discovery of some of its poten-
tial applications, concepts for a physical realization of such a 
quantum computer were proposed. These concepts are based 
on the charge of electrons [35, 36], the spin of electrons in 
quantum dots [37], nuclear spin [38], photons in resonators and 

cavities [39], trapped ions [40], low-capacitance Josephson 
junctions [41, 42], donor atoms [43], colored centers in dia-
mond [44, 45] or silicon-carbide [46], or linear optics [47].

The five DiVincenzo criteria for a fully functioning 
quant um computer [36, 48, 49] help to decide which concepts 
are reliable and, in a few words, comprise the scalability of the 
system, initialization and read-out schemes, the durability of 
the stored information, and concepts for precise control of the 
quantum bits (qubits) [36]. These qubits are the fundamental 
building block of each quantum computer and are not lim-
ited to two states, 0 and 1, but can be in any superposition of 
these, α β|Ψ = | + |0 1⟩ ⟩ ⟩ with α β| | + | | = 12 2  [28], thus form-
ing a quantum two-level system. Each qubit can be visualized 
on the Bloch sphere (see figure 1) where the basis states of 
the qubit, |0⟩ and |1⟩, are located on the poles while vectors 
pointing to the surface of the sphere represent all possible pure 
states of the qubit. Thus, complete control of a qubit requires 
interactions corresponding to two independent axes of rota-
tions on the Bloch sphere [28]. The physical realization of 
these rotations depends on the chosen qubit system.

The aim of this topical review is to review the recent pro-
gress and advances of three-spin qubit systems which are 
considered as a possible and promising candidate for a func-
tioning quantum computer. The organization of the paper is as 
follows. In section 1, we provide an introduction in which we 
briefly cover the fundamental concepts needed for three-spin 
qubits such as their experimental realization (section 1.2), fol-
lowed by a discussion of the exchange interaction (section 
1.3), the single-spin qubit (section 1.4), and the two-spin sin-
glet-triplet qubit (section 1.5). Subsequently in section 2, the 
three-spin qubits are introduced. We start by explaining the 
electrical (section 2.1) and spin properties of three-spin qubits 
(section 2.2) constructing a framework for their further invest-
igation. Afterwards, we introduce and discuss the different 
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physical implementations of three-spin qubits in the light of 
the DiVincenzo criteria, the exchange-only qubit (section 
2.3) with its derived versions, the resonant-exchange qubit 
(section 2.3.4) and the always-on exchange-only qubit (sec-
tion 2.3.3), the spin-charge qubit (section 2.4), and the hybrid 
qubit (section 2.5). In section 3, two-qubit gates are discussed 
for the three-spin qubits with the focus on exchange-based 
short-ranged (section 3.1) and cavity-mediated long-ranged 
operations (section 3.2). Finally, in section 4, we investigate 
the behavior of three-spin qubits under the influence of the 
two main sources of decoherence, magnetic noise (section 
4.1) and charge noise (section 4.2), and provide concepts for a 
reduction of the decoherence effects. We conclude in section 5 
with a summary and future perspectives.

1.2. Spin qubits: physical realization and measurement  
techniques

Although three-spin qubits were already proposed in 2000 [2] 
it took several years for the appearance of devices capable of 
operating three-spin qubits due to the multitude technical and 
engineering challenges. The main challenges for a function-
ing three-spin (here three electrons in a triple quantum dot 
(TQD)) device is the complexity of the system since several 
gate electrodes are needed in order to address each electron 
individually. The first device was realized around 2006 [50] 
and was soon followed by other realizations [4, 51–61, 62] 
which improved the positioning of the electrons. A function-
ing three-spin qubit device capable of quantum computation 
was demonstrated in a double quantum dot (DQD) [11, 63–65] 
and in a linear TQD [4, 5, 54, 59, 60, 66–70]. While a triangu-
lar shape provides some interesting new features, e.g. chiral-
ity [71–77] and faster qubit operations [2, 13], the advantages 
currently do not seem to outweigh the exper imental draw-
backs and difficulties. Therefore, and since almost all experi-
ments and most theoretical studies use the linear geometry we 
also mostly stick to the linear geometry in this review and 
implicitly assume that each TQD is linearly arranged, unless 
otherwise stated.

The most common technique implementing semicon-
ductor quantum dots (QDs) are lateral QDs where a two-
dimensional electron gas (2DEG) is further confined by 
electrostatic potentials provided by the gate electrodes 
forming an (approximately) zero-dimensional structure (see 
figure 2). While GaAs [78] and silicon (Si) [79] are the typi-
cal choice of mat erial, more exotic semiconductors [80–87] 
are also possible although rare. Crucial for the implementa-
tion is the 2DEG exper imentally realized by using a hetero-
structure which accumulates the electrons at an interface; 
the GaAs layer is sandwiched between AlGaAs layers [78] 
and Si by either SiGe [79] layers or SiOx [88, 89] layers. 
Advances in fabrication process allow for atomically pre-
cise layer interfaces and gate structures with a very high 
precision giving rise to scalable and controllable quantum 
dot devices (selected examples see [69, 90–98]) with the 
current record of nine individually addressable QDs [99]. 
Regarding the choice for material there is a clear tendency 
towards favoring Si since Si consists of  ≈95% nuclear free 
isotopes which can be increased with isotopic purification 
[100]. For further confinement of the electrons, metallic 
gates are placed on top and/or underneath the heterostruc-
ture which locally deplete the 2DEG forming an isolated 
island. In undoped Si/SiGe the 2DEG is typically empty 
with no gate voltage applied and the gates accumulate 
electrons into the 2DEG [79]. Calibration of the voltages 
on these gate allows one to reach the few electron regime 
where only a few electrons are still occupying the dots 
[78, 79]. Additional gates (number depends on the material 
and fabrication, e.g. four in the device seen in figure 2) are 
required to form the dots as well as to control the coupling 
to the lead which allows for a filling of the dots. A typical 
setup for a TQD consists of at least five gates (see figure 2), 
three gates (L-, C-, R-gate in figure 2) on top of each QD 
in order to control the energy at each dot and two gates in 
between for control of the tunneling couplings. Due to the 

Figure 1. Visualization of a qubit on the Bloch sphere. The basis 
states |0⟩ and |1⟩ are located on the poles and arbitrary pure qubit 
states |Ψ⟩ are represented by vectors pointing to an arbitrary point 
on the surface of the sphere.

Figure 2. Scanning electron micrograph of a depletion mode triple 
quantum dot (TQD) device in GaAs. Metallic gates (light gray) are 
deposited on top of the heterostructure (dark gray) to deplete the 
2DEG underneath in order to form isolated structures. The number 
of electrons and the energy in each QD is controlled by the gates 
labeled as L, C, and R. Tunneling between the electrons is controlled 
by the thinner gates in between. Reprinted with permission from [68] 
Copyright 2014 by the American Physical Society.
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higher complexity of the multiple-dot nano-devices recent 
devices use a stacking gate architecture crucial for large-
scale devices [89, 94, 95, 99, 101].

Common techniques for measurement of the QD devices 
require additional QDs or quantum point contacts (QPC) 
[102, 103], single electron transistors [104–106], or tunnel 
junctions [107] in order to sense the number and movement of 
the electrons in each dot in a time resolved measurement [78, 
79]. Due to the finite range of the charge sensors, large arrays 
of QDs have multiple sensors, e.g. a recently studied nine-dot 
device has three charge sensors [99]. Another measurement 
technique involves photons that carry the information out 
of the device. Connecting the device to a microwave cavity 
allows for read-out of device parameters using cavity quantum 
electrodynamics (cQED) without directly interfering with the 
device [108–117]. Both measurement techniques also allow 
for read-out of the qubit states; cavity read-out requires for a 
few implementations strong coupling between the qubit and 
the cavity. The measurement techniques can be grouped as 
either invasive, e.g. emptying the QD [78, 79], or noninvasive, 
sensing the charge or spin of the electrons in the QD without 
changing the electron number [78, 79].

1.3. The exchange interaction

The most important tool for spin quantum computation with elec-
trons in QDs is the exchange interaction, originating from the 
sign change under exchange of fermionic particles, since it can be 
electrically controlled both very precisely and fast by detuning of 
the externally applied electrostatic gate voltages [78, 118].

A sufficient explanation for exchange interaction between 
Ne electrons in N QDs is provided by the Hubbard model 
[119, 120] with symmetric spin-conserving nearest neighbor 
hopping

⎡
⎣⎢

⎤
⎦⎥∑

∑ ∑

= − +

+ + +
σ

σ σ

=

=↑ ↓

H
U

n n Vn

U n n t c c

2
1

h.c. ,

i

N

i i i i

i j
C i j ij i j

Hub
1

, ,
, ,

˜
( )

( )
⟨ ⟩

†
 

(1)

where the operator σci,
†  ( σci, ) creates (annihilates) an electron 

in QD i with spin σ=↑ ↓, , Vi is the gate energy in QD i, Ũ is 
the energy penalty for doubly occupying a single QD due to 
the Coulomb repulsion, and UC is the energy to pay for two 
electrons in neighboring QDs. We define the number opera-

tor ≡∑σ σ σn c ci i i, ,
†  and the gate-controlled hopping matrix 

elements = =t t tij ji . For a number of electrons Ne matching 
the number N of QDs, N  =  Ne, the low-energy Hamiltonian 
for suitably adjusted gate potentials Vi can be approximated 
by a Schrieffer–Wolff transformation [121, 122] yielding an 
Heisenberg spin chain

∑= ⋅S SH J ,
i j

ij i jHeis
,⟨ ⟩

 (2)

where Si is the spin operator of the ith electron in QD i and 
the sum runs over neighboring pairs of electrons. While the 
general case is quite interesting, in this review we are only 
interested in small systems with N 3⩽ .

We explicitly demonstrate the simplest case for exchange, 
two electrons in N  =  2 QDs. Considering a single (valley-) 
orbital for each QD and restricting ourselves to the Sz  =  0 sub-
space there are four relevant states

| ≡ − |↑ ↓ ↓ ↑s c c c c
1

2
vac ,1, 2, 1, 2,⟩ ( ) ⟩† † † †

 (3)

| ≡ + |↑ ↓ ↓ ↑t c c c c
1

2
vac ,0 1, 2, 1, 2,⟩ ( ) ⟩† † † †

 (4)

| ≡ |↑ ↓s c c vac ,11 1, 1,⟩ ⟩† † (5)

| ≡ |↑ ↓s c c vac .22 2, 2,⟩ ⟩† † (6)

States with =±S 1z  and |t0⟩ are pure triplet states, thus, not 
coupled to any intermediate states with (2, 0) or (0, 2) charge 
configurations and, therefore, not affected by the exchange 
interaction. Introducing the dipolar detuning parameter 
ε≡ −V V 21 2( )/ , the charging energy = −U U UC˜  and assum-
ing real valued tunneling parameters, the matrix representa-
tion of equation (1) in the basis given above is given by

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

ε
ε

=
+

−

H

t t

t U

t U

0 0 2 2
0 0 0 0
2 0

2 0 0

.ST (7)

In figure 3 the eigenenergies of this Hamiltonian are plot-
ted as a function of the detuning ε. Inside the (1, 1)-charge 
configuration regime the singlet qubit state |s⟩ is hybridized, 
| |s s⟩ → ˜⟩, by the admixture of the other charge states, |s 11⟩  and 
|s 22⟩ , thereby, splitting the qubit by the exchange interaction 

Figure 3. Eigenenergies (in units of the charging energy U) of 
the singlet-triplet (ST) qubit as a function of detuning ε for weak 
tunneling, =t U0.02 . The inset magnifies the energy splitting 
between the |s⟩ and |t0⟩ state due to the exchange interaction J. 
Inside the (1, 1) charge configuration regime ε≈ −J t U U4 2 2 2/( ) 
[120]. The eigenenergies are labeled with their dominating charge 
configuration. There is a sweet spot (black star in inset) at zero 
detuning, ε = 0.
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ε≈ −J t U U4 2 2 2/( ) [120] which can be used either for entan-
gling two-qubit gates or single qubit rotations depending on 
the implementation of the logical qubit.

1.4. Spin-
1
2

 qubit

The original idea for a semiconductor electron spin qubit was 
proposed by Loss and DiVincenzo [123] two decades ago. As 

the simplest choice, the spin-1

2
 qubit is encoded in the two-

level system associated with the spin-degree of freedom, i.e. 
the | ≡ | ↑0⟩ ⟩ and | ≡ | ↓1⟩ ⟩ states, of a single electron confined 
in the lowest orbital of a single QD. Since the qubit states have 
opposite spin projections the qubit is susceptible to magnetic 
fields. An external magnetic field τB( ) (can depend on time τ) 
lifts the degeneracy between the qubit states by the Zeeman 
energy µ τ= ⋅B SE g B ( )  [37, 78] and fixes the quantization 
axis.

Considering τ τ=B B B, 0,x z
T( ) ( ( ) )  with a large time- 

independent magnetic field in z-direction, Bz  =  B, and a small 
oscillatory driving field in x-direction, τ ωτ=B B cosx D( ) ( ). In 
qubit space the Zeeman term takes the expression for electron 
spin resonance (ESR)

ħ ħ ( )ω σ ω ωτ σ= +H
2 2

cosz z x xESR (8)

with the Zeeman energies ω µ= g Bz Bħ  and ω µ= g Bx DBħ . 
Turning on the oscillating field causes Rabi transitions between 
the spin states which together with the energy splitting of the 
qubit states provide full control of the qubit [37]. As an alter-
native for oscillating magnetic fields one can also modulate 
the g-factor of the material which yields the same expression. 
The speed of the gates depends on the strength of the oscil-
latory driving field resulting in typical gate times τ ≈ 100 nsg    
[124].

Electric dipole spin resonance (EDSR) can be seen as an 
improvement of ESR which allows for electric driving of the 
qubit instead of magnetic driving. In the presence of spin–
orbit interaction an electric field τ ωτ=E E cos0( ) ( ) induces, 
in general, non-zero components of a pseudo magnetic field 
τb( ) perpendicular to the static magnetic field [37, 125]. This 

perpendicular (pseudo) magnetic field yields the same dynam-
ics in the system as a real magnetic field due to τ τ∝b E( ) ( ) 
with a coupling strength ω x̃ depending on the spin–orbit 
parameters [125]. Experiments demonstrate successful qubit 
rotations including spin flips achieving gate times on the order 
of τ ≈ 100 nsg    in GaAs devices [126]. However, the proposed 
τ ≈ 10 nsg    [125] are not reached yet due to problems occurring 
at high electric fields, e.g. incomplete spin flips, [127]. Since 
the Rabi oscillations depend on the strength of the spin–orbit 
interaction, materials with strong spin–orbit coupling, such 
as InAs nanowires, can increase spin-flip frequency corre-
spondingly [128]. Rabi oscillation as fast as ≈f 58 MHzRabi    
were demonstrated [129]. However, the qubit fidelity of these 
fast gates is quite poor (≈50%) due to strong dephasing from 
nuclear spins [129].

Alternatively, one can use an oscillating electric field 
combined with a gradient in the magnetic field (slanting 

magnetic field) which does not rely on spin–orbit interac-
tion [130, 131] allowing for the use of materials with weak 
spin–orbit coupling such as silicon. The electric field τE( ) 
induces an oscillation of the electron position such that the 
electron experiences an oscillating magnetic field of the same 
frequency τ τ∝B E( ) ( ). Experiments in a GaAs device using 
the Overhauser fields demonstrate a spin-flip time comparable 
to standard ESR (τ ≈ 110 nsg   ) [132] while the use of an inte-
grated magnet yield a spin-flip time as fast as τ ≈ 20 nsg    [133] 
due to larger field gradients. High fidelity spin-flips are dem-
onstrated in silicon devices ( ≈f 5 MHzRabi   ) due to the lower 
percentage of nuclear-spins and also show sufficient distinc-
tion to other valley states [101]. Individual control in multi-
spin systems is successfully demonstrated in GaAs devices 
( ≈f 9 MHzRabi    [131], ≈f 3 MHzRabi    [134]).

Initialization and read-out schemes, among others, require 
a nearby auxiliary QD in order to enable a spin-to-charge con-
version which is detectable by a QPC, or the coupling to the 
lead [78, 135].

The common implementation of two-qubit gates for spin-
1

2
 qubits makes use of the exchange interaction [78, 118] 

between two electrons in neighboring QDs (see previous sec-
tion 1.3) which induces the universal SWAP-gate as described 
in the original proposal [123]. Experiments demonstrate two-
qubit gates with a gate time τ ≈ 180 psg    [78, 118, 136] with 
gate fidelities exceeding 99%. A full demonstration of univer-

sal quantum control in two spin-1

2
 qubits was demonstrated 

about a decade after the original proposal [134].

The main advantage of single spin-1

2
 qubits is their immu-

nity to electric charge noise from background fluctuations; 

however, two or more coupled spin-1

2
 qubits are not always 

immune. The exchange interaction needed for two-qubit gates 
is sensitive to charge noise, thus limiting the gate fidelity 
[137]. Improvements use, among others, dynamical decou-
pling techniques or operate the qubits at a sweet spot [138–
140], working points least susceptible to the noise. In this 
review we do not focus on decoherence in single-spin qubits 
which is already extensively covered in related reviews (see 
[141] and [37]).

The electric control of spin-1

2
 qubits is challenging to 

implement due to its dependence on slanting magnetic fields, 
spin–orbit effects, or oscillating magnetic fields which are not 
very reliable due to the weak coupling to the spins. Another 

potential drawback of the spin-1

2
 qubit is the rather strong sus-

ceptibility to (global) magnetic fields which are, on the one 
hand, required for fast single qubit operations, while on the 
other hand, allow coupling the qubit to magnetic noise giv-
ing rise to strong decoherence. The strongest source of deco-
herence is magnetic noise due to nuclear spins [37, 142–145] 
while relaxation processes are dominated by the spin–orbit 
interaction [37, 146–151]. Theoretical studies [142] and 
experimental demonstration [78, 118] show typical dephasing 
times on the order of ≈T 10 ns2  �  in GaAs devices [118, 152]. 
However, due to the slow dynamic of the nuclear field, the 
coherence time of the qubit can be significantly increased by 
either strongly polarizing the nuclear spin [145] which has not 

J. Phys.: Condens. Matter 29 (2017) 393001



Topical Review

6

been successfully demonstrated yet, or using rephasing pulse 
sequences as spin-echo or CPMG [153]. Combining echo 
sequences additional notch filtering of the nuclear dynam-
ics gives rise to even longer decoherence times ≈T 0.87 ms2    
[154]. Relaxation processes scale with an external magnetic 
field and are typically several orders of magnitudes slower 
[78, 155] with extreme cases ≈T 1 s1    [155]. Both main sources 
for decoherence are reduced significantly in silicon devices 
due to the smaller number of nuclear spins and weaker spin–
orbit interaction [79].

1.5. Singlet-triplet (ST) qubit

One idea to achieve (partial) electrical control of the qubit gates 

and to counteract the sensitivity of spin-1

2
 qubits to fluctuations 

in global magnetic field (here labelled global magnetic noise) 
is to encode the quantum information in the Sz  =  0 subspace 
of two electrons in a double quantum dot (DQD). One state is 
the Sz  =  0 triplet state | ≡ |↑ ↓ +|↓ ↑t , , 20⟩ ( ⟩ ⟩)/  and the other 
state is the singlet state | ≡ |↑ ↓ −|↓ ↑s , , 2⟩ ( ⟩ ⟩)/ . Since both 
states have the same Sz  =  0 quantum number, global magnetic 
noise pointing along the quantization axis has no effect on 
these two states, thus, the singlet-triplet (S-T) qubit is pro-
tected against such noise and a simple example of a decoher-
ence free subspace (DFS) qubit.

One axis of qubit control is provided by the electrically 
controllable exchange interaction between the electrons in the 
DQD due to the hybridization of the singlet energy given by 
admixture of charge states with doubly occupied dots and giv-
ing rise to a splitting of the singlet and triplet energy. This is 
the same mechanism that provides the two-qubit gates for the 

spin-1

2
 qubit which can be controlled to a very high degree 

predicting gate fidelities exceeding 99% [140] with gate times 
below one nanosecond [118].

A second axis of control is provided by a gradient of the 
magnetic field in the DQD which lifts the degeneracy between 
the states | +| =|↑ ↓t s 2 ,0( ⟩ ⟩)/ ⟩ and | −| =|↓ ↑t s 2 ,0( ⟩ ⟩)/ ⟩ 
due to the difference in magnetic fields in the two QDs. This 
leads to rotations of the qubit around an axis orthogonal to 
the quantization axis [156]. Experimentally, these gradi-
ents are either given by the Overhauser fields of the nuclear 
spins in the host material, typical for GaAs, or the artificial 
magn etic field gradient obtained by placing a micromagnet 
in the vicinity of the DQD [131]. The latter implementation 
is needed for materials with a low density of nuclear spins 
such as silicon.

Read-out and state preparation can be achieved in the same 

way as for spin-1

2
 qubits via ‘spin-to-charge’ conversion, where 

the gates are adiabatically detuned in such a way that one of 
the doubly occupied states is energetically highly favored [78]. 
Due to the Pauli exclusion principle only the anti-symmetric 
singlet state |s⟩ is coupled via tunneling t to the doubly occu-
pied state while the triplet state transition is forbidden giv-
ing rise to a read-out technique with fidelities exceeding 99%. 
The requirements for this read-out method to work are spin 

conserving hopping and a single non-degenerate ground state 
in the QD with a sufficient energy gap to the excited states.

Two-qubit gates can be implemented by the short-ranged 
exchange interaction together with spin–orbit interaction 
(exchange interaction alone is insufficient due to its high sym-
metry) [157], magnetic field gradients [158], by capacitively 
coupled DQDs [159–162] or an auxiliary dot [163]. Long-
ranged two-qubit gates can either use the electrostatic cou-
pling between the DQDs [159, 164, 165], and/or the coupling 
of two DQDs to the same microwave cavity [159, 166–171]. 
Since microwave cavity have been under intense investigation 
recently due to the access to high quality and high imped-
ance microwave cavities [115, 172], the last approach seems 
in reach. The required strong coupling regime for such an 
interaction, where the transfer of information is faster than 
the cavity and the qubit decays, has recently been achieved 
for a single electron charge inside a DQD in carbon nanotubes 
[173], Si/SiGe [113] and GaAs [115] quantum dots.

The main concern of the ST qubit is the lack of electric 
control for one of the single-qubit rotation axes provided by 
the magnetic field gradients. Since this axes are either pro-
vided by Overhauser fields, which one cannot control, or by 
an additional micro magnet, where the magnetic fields are 
fixed by the geometry, this interaction is permanently turned 
on. The latter implementation can be controlled to a certain 
degree by changing the relative position of the quantum dots 
to the micro magnets through the gate voltages which changes 
the magnetic field gradients the qubit is exposed to [131].

Another downside for the ST qubit is the opening of a chan-
nel which couples the qubit to charge noise, electric fluctua-
tions of the environment or the gate potentials. Electric fields 
can couple to the qubit through the detuning parameter ε and in 
this way give rise to an exponential decay of coherence due to 
dephasing. The exact decay depends on the spectral density of 
the noise ω ω= | | γ−S Aq( ˜ ) ˜  where A is the strength of the noise, 
ω̃ is the noise frequency, and γ is the spectral density exponent 
which usually has to be set phenomenologically or needs to 
be measured in experiments and strongly depends on the host 
material and device fabrication. This power law dependence 
arises from statistical calculations considering many fluctua-
tors [139, 174], agreeing well with experimental studies in sili-
con and GaAs [139]. Due to interference of the system, e.g. 
working with a 50 Hz AC current, other noise spectral density 
dependences also occur and add up with the low-frequency 
noise, ω ω= | | γ−S Aq( ˜ ) ˜ . These additional noise sources directly 
depend on the exact experimental setup and can often be fil-
tered directly. However, the low-frequency spectrum is domi-
nated by ‘1/f-noise’ with a power law with typical values for 
γ range from 0.7 to 2.3 [139, 175–178], but higher values are 
not unusual [179]. Protection against such charge noise can 
be obtained by operating the qubit system at a high symmetry 
point, where the transition to both asymmetric charge states is 
equal. At such a sweet spot, the ground state energy gap as a 
function of the detuning ε = −V V 21 2( )/  has an extremum, thus 
the qubit is immune to energy fluctuations in ε due to charge 
noise in first order [96, 140, 180–183]. However, second or 
higher order effects still limit the dephasing time.
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2. Three-electron spin qubits

Taking the idea of electrical control and protection of the 
qubit against noise one step further leads ultimately to the 
three-spin qubit which can be controlled fully electrically. 
Some three-spin qubits also form a decoherence-free sub-
space (DFS) qubit implying that they are immune to all 
collective decoherence, i.e. decoherence which affects all 
spins in one qubit, many nearby qubits, or ideally in the full 
quantum computer in the same way [184]. There are many 
different ways of implementing such a three-spin qubit. 
In this review we cover the exchange-only (EO) qubit [2], 
the spin-charge qubit [7], the hybrid qubit [8, 9, 11], the 
resonant exchange (RX) qubit [5, 6], and on the always-on 
exchange-only (AEON) qubit [16]. All of these qubit imple-
mentations are realized using three electrons in either a single 
quant um dot, double quantum dot (DQD), or triple quantum 
dot (TQD) depending on the qubit implementation. The full 
spin-space is spanned by = ⊗ ⊗3spin 1 2 1 2 1 2/ / /H H H H  which 

can be divided into two spin-1

2
 and one spin-3

2
 subspace, thus, 

= ⊕ ⊕3spin 1 2 1 2 3 2/ / /H H H H , where σH  denotes the Hilbert 
space corresponding to the irreducible representation of 
SU(2) with total spin σ. In other words the Hilbert space 
can be separated into a S  =  3/2 quadruplet and a degener-
ate S  =  1/2 doublet [4, 185] which can further be split into 
a high and low energy qubit by an external magnetic field 
along the z-axis. The qubit states for these qubits are chosen 
in such a way that they have identical spin quantum num-
bers, both the total spin S  =  1/2 and the total spin projection 
along the quantization axis Sz  =  1/2 giving rise to immunity 
against global magnetic fluctuations. Different qubit realiza-
tions are introduced and discussed in detail in the following 
sections and we postpone a more detailed discussion about 
DFSs and further dynamical (noise) decoupling schemes in 
three spin qubits to section  4 and refer to a related review 
[184] for more details. However, before delving into the qubit 
implementations, some basic properties of electrons in TQDs 
need to be introduced.

For the description of TQDs, the extended Hubbard 
Hamiltonian (see equation (1) for N  =  3 quantum dots) is an 
appropriate choice throughout almost the full review since it 
combines all key features of the three-spin qubits while the 
expressions are still succinct. Therefore, in this review we skip 
a realistic and comprehensive discussion of the exact energy 
levels and their microscopic dependence on gate voltages, 
the geometry of the TQD, the number of electrons, and the 
magnetic field [186–192] and only briefly introduce the key 
points while sticking to the Hubbard model in the remainder. 
A comprehensive study of these can be found in the related 
review [192].

2.1. Electrostatic properties of electrons in a TQD

As a first step to visualize, navigate, and find relevant states 
in the large Hilbert space of multi-electron states in a TQD, 
the charge stability diagram of the TQD is helpful as it high-
lights the charge transitions between different occupancies of 

multiple QDs [51, 58, 192–197] and neglects all spin related 
effects. To generate the charge stability diagram, we use here 
a modified version of the algorithm used in [198, 199] with a 
maximum number of (four) electrons in the TQD and a fixed 
rate for the electron tunneling between the dots. Figure 4 shows 
the low electron occupancy part of the charge stability diagram 
as a function of the two detuning parameters defined as

ε µ µ= − 2,1 3( )/ (9)

ε µ µ µ= − + 2,M 2 1 3( )/ (10)

for a fixed value of the average voltage µ µ µ= + +eV 3av 1 2 3( )/ . 

The parameter µ = ∑ = v Vi j i j j1
3

,  with i, j  =  1, 2, 3 is the chemi-

cal potential of QD i given by the gate voltages Vi (see figure 2) 

Figure 4. Charge stability diagram of a triple quantum dot 
(TQD) with realistic parameter settings as a function of detuning 
parameters ε and εM from equation (25) (a) for an arbitrary number 
of electrons and (b) for a fixed number n  =  3 of electrons. Both 
diagrams were obtained using a capacitance model of the TQD 
adapted from [51, 195].

J. Phys.: Condens. Matter 29 (2017) 393001



Topical Review

8

underneath each QD and vi,j describes the electrostatic interac-
tion between QD i and the gate underneath QD j and depends 
on the charging energies, the additional energy one has to pay 
to add another electron to the corresponding dot [51, 193]. In 
few words, the vi,j describe how each gate has to be adjusted 
in order to change the chemical potential in each dot. Taking 
into account a finite coupling between the QDs due to cross 
capacitance effects, i.e. adding an electron in one QD changes 
the potential of the neighboring QD, the typical honeycomb 
structured diagrams shown in figure 4 are obtained.

In the center of the charge stability diagram for a fixed 
value of Vtot lies the (1,1,1) charge configuration regime with 
one electron in each QD surrounded by the six asymmetric 
charge configurations, (2,0,1), (1,0,2), (1,2,0), (0,2,1), (2,1,0), 
and (0,1,2) with the same number of electrons. Here, (l,m,n) 
labels a charge configuration with l electrons in the left QD, 
m electrons in the center QD, and n electrons in the right QD. 
Each of these asymmetric states except the last two are inter-
linked with the (1,1,1) charge configuration through a single 
hopping event while the last two states require two hopping 
events. States with triple occupation of a single QD are located 
at more extreme values of the detuning parameters. Note that 
the average voltage Vav roughly sets the total number of elec-
trons in the TQD since the number of electrons is allowed to 
change due a coupling to the leads.

Special points of interest for quantum computation and 
qubit implementations are typically centered inside a charge 
configuration regime or located at the charge transition 
points where multiple charge configurations intersect since 
these points provide a high symmetry with respect to charge 
configurations.

2.2. Spin properties of three-spin qubits in TQDs

In a second step, spin and orbital effects are reintroduced 
which in general further subdivides the stability diagram. The 

Hilbert space of three electron-spins with spin 1

2
 in a TQD is 

= ⊗ ⊗3spin 1 2 1 2 1 2/ / /H H H H  and combined with only a single 
available orbital in each QD contains in total 20 possible states 
(220 possible states for a second available orbital, e.g. addi-
tional valley). There are eight states with a symmetric charge 
configuration (1, 1, 1), and two states with asymmetric charge 
configurations (2, 0, 1), (1, 0, 2), (1, 2, 0), (0, 2, 1), (2, 1, 0), 
and (0, 1, 2) each. States with a triply occupied QD (3, 0, 0), 
(0, 3, 0), and (0, 0, 3) are excluded due to the restriction to a 
single available orbit in each dot.

The corresponding spin Hilbert space H =3spin

/ / /H H H⊕ ⊕3 2 1 2 1 2 can be divided into a quadruplet 3 2/H  with 
effective spin-3/2 and two degenerate doublets 1 2/H  which 
combined with different orbits and restricted to the total spin 
S  =  1/2 subspace gives rise to a two-fold degenerate subspace 

⊕+ −1 2 1 2/ /H H . This subspace is effectively decoupled from 
the S  =  3/2 subspace considering weak magn etic field gradi-
ents [23] and weak spin orbit interaction [22]. Leakage into 
the S  =  3/2 and /=±S 1 2z  states is suppressed by exchange 
[23]. These two subspaces, distinguished by /=±S 1 2z , are 
interchangeable with respect to the exchange interaction, thus 
an external magnetic field allows us to focus on only one of 

them, e.g. S  =  1/2, Sz  =  +1/2. Without loss of generality, the 
S  =  Sz  =  +1/2 subspace is spanned by the basis states

〉 〉 〉| ≡ | | ↑s0 ,13 2 (11)

| ≡ | | ↓ − | | ↑+t t1
2

3

1

3
,13 2 0 13 2⟩ ⟩ ⟩ ⟩ ⟩ (12)

〉 〉 〉| ≡ | | ↑s2 ,11 3 (13)

〉 〉 〉| ≡ | ↑ |s3 ,1 33 (14)

〉 〉 〉| ≡ | ↑ |s4 ,1 22 (15)

〉 〉 〉| ≡ | | ↑s5 ,22 3 (16)

| ≡ | | ↑s6 ,11 2〉 〉 〉 (17)

〉 〉 〉| ≡ | ↑ |s7 ,2 33 (18)

with the two-electron singlet state | ≡ | ↑ | ↓ − | ↓ | ↑s ij〉 ( 〉 〉 〉 〉)/ 
2  and the two-electron triplet states 〉 ( 〉 〉| ≡ | ↑ | ↓ +t ij0

| ↓ | ↑ 2〉 〉)/  and | ≡ | ↑ | ↑+t ij⟩ ⟩ ⟩ occupying QD i and QD j. 
Since the doubly occupied states |2⟩, |3⟩, |4⟩, and |5⟩ are 
obtained from |0⟩ and |1⟩ via the motion of a single electron 
and the states |6⟩ and |7⟩ requires at least two hopping events, 
the latter two states are neglected in most studies. The motiv-
ation comes from perturbation theory where these terms only 
add higher order corrections in the relevant parameter regimes 
[3, 5, 6, 16, 20, 22, 24]. The resulting matrix representation 
of the Hamiltonian equation  (1) in this basis up to a global 
energy shift, is [3]

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

=

− −

−

−

H

t t t t

t t t t

t t E

t t E

t t E

t t E

0 0 2 2 2 2

0 0 3 2 3 2 3 2 3 2

2 3 2 0 0 0

2 3 2 0 0 0

2 3 2 0 0 0

2 3 2 0 0 0

.

l r r l

l r r l

l l

r r

r r

l l

2

3

4

5

/ / / /
/ / / /

/ /
/ /
/ /
/ /

 (19)

The symmetric tunneling parameters are = ≡t t t 2l12 21 / , 
= ≡t t t 2r23 32 / , and = =t t 013 31  and the simplified expres-

sions for the charging energies of the states are

ε ε= − +E U,M2 (20)

ε ε= − − +E U,M3 (21)

ε ε= + +E U,M4 (22)

ε ε= − + +E U.M5 (23)

In this case, all of the charging energies Ei depend only on the 
two detuning parameters

ε = −V V 2,1 3( )/ (24)
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ε = − + +V V V U2 ,M C2 1 3( )/ (25)

and the adjusted charging energy = −U U UC˜ . In the general 
case ≠U Ui j, where Ui is the charging energy in dot i, the expres-
sions for the charging energies of the states are changed [16].

The logical choice for a qubit is the two-level system con-
sisting of the ground state and the first excited state, ener-
getically split by the ground-state energy gap ω. For �t El r i, , 
these are essentially the states |0⟩ and |1⟩ with corrections 
∝ t El r i, / . In figures 5(a) and (c) the ground-state energy-gap 
is plotted as a function of the two detuning parameters, ε 
and εM, with labels indicating the dominant charge con-
figuration (a) excluding and (c) including the states |6⟩ and 
|7⟩. Figure 5 (right column) shows the charge ground state  
from equation  (18) excluding (figure 5(b)) and including 
the states |6⟩ and |7⟩ (figure 5(d)). The logical qubit states, 
defined as the ground state and the first excited state, have 

different charge configurations depending on the exact loca-
tion in the detuning space. In the (1,1,1) charge configura-
tion regime the spin qubit states are |0⟩ and |1⟩ hybridized by 
the admixture of the asymmetric states | | | |2 , 3 , 4 , 5⟩ ⟩ ⟩ ⟩ (to a 
less degree also by |6⟩ and |7⟩) giving rise to a finite energy 
gap between the states ω.

2.3. Exchange-only (EO) qubit

The idea of all-electric qubit control ultimately leads to the 
exchange-only qubit which, as the name suggests, provides 
the possibility for full qubit control with only the exchange 
interaction [2]. Analogously to the ST qubit (see section 1.5), 
the exchange interaction originates from the hybridization of 
the logical qubit states with asymmetric charge states and can 
be precisely controlled by electrostatic control of the gates 
underneath and in between the QDs. In this section, we try 

Figure 5. (Left column) Energy landscape of the ground-state energy gap ω of a three-spin qubit as a function of the detuning parameters ε 
and εM in a triple quantum dot in units of the charging energy U. For the tunneling parameters the ratios =t U0.022l  and =t U0.015r  and 
for the mutual charging energy =U U0.2C  are used. Maneuvering through the (ε, εM) plane one can access various parameter regimes that 
allow the use of different qubit implementations in different charge configurations (l,m,n), where l electrons are in the left, m electrons in 
the center, and n electrons in the right QD. We indicated the double sweet spots (DSS) (black dots), the location of the exchange-only (EO) 
qubit, the resonant exchange (RX) qubit (dashed triangle), the asymmetric resonant exchange (ARX) qubit, and the left and right hybrid 
(Hl,r) qubit highlighted. (Right column) Charge ground state of a three-spin qubit in the absence of tunneling, = =t t 0l r  as a function of 
the detuning parameters ε and εM in a triple quantum dot in units of the charging energy U. For plots (a) and (b) the states with (2,1,0) and 
(0,1,2) charge configurations are neglected corresponding to a large cross-charging energy U UC�  while for plots (c) and (d) small a value 
=U U0.2C  is considered. Figures taken from [3, 200].
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to provide an overview of preceding experimental and theor-
etical developments of the exchange-only qubit. The organi-
zation is as follows. We start with the model and subsequently 
follow with the single-qubit operations, where we discuss 
the two main types of experimental realizations. We discuss 
two-qubit operations and the decoherence of our qubit due to 
environ ment separately in the next sections 3 and 4.

2.3.1. Model. For the EO qubit the focus is on the eight-
dimensional subspace with a symmetric (1, 1, 1) charge con-
figuration which can be separated into a S  =  3/2 quadruplet 
and a degenerate S  =  1/2 doublet [4, 185, 201] whose degen-
eracy can be lifted by an external magnetic field aligned along 
the z-axis. We are interested in these doublets since they pro-
vide two two-level systems, each having identical quantum 
numbers, one being the total spin S  =  1/2 the other being 
the projection of the total spin along the quantization axis 

/=±S 1 2z . For the Sz  =  +1/2 two-level system an appropriate 
basis is given by

〉 〉 〉 ( 〉 〉)| ≡ | | ↑ = |↑ ↑ ↓ − |↓ ↑ ↑+ s0
1

2
, , , , ,13 2 (26)

| ≡ | | ↓ − | | ↑

= |↑ ↓ ↑ − |↑ ↑ ↓ − |↓ ↑ ↑

+ +t t1
2

3

1

3
1

6
2 , , , , , , ,

13 2 0 13 2〉 〉 〉 〉 〉

( 〉 〉 〉)
 

(27)

while for the Sz  =  −1/2 two-level system all spins are flipped,

| ≡| | ↓ = |↓ ↓ ↑ − |↑ ↓ ↓− s0
1

2
, , , , ,13 2〉 〉 〉 ( 〉 〉) (28)

| ≡ | | ↑ − | | ↓

= |↓ ↑ ↓ − |↓ ↓ ↑ − |↑ ↓ ↓

− −t t1
2

3

1

3
1

6
2 , , , , , , .

13 2 0 13 2〉 〉 〉 〉 〉

( 〉 〉 〉)
 

(29)

A special feature of the EO qubit is the possibility for two dif-
ferent qubit encodings using either the ‘subspace’ or the ‘sub-
system’ encoding. For the subspace, as the name suggests, the 
qubit states are encoded in a real subspace of the total Hilbert 
space, either in the positive two-level system, 〉 〉| = | +0 0  and 
| = | +1 1〉 〉, or in the negative two-level system, 〉 〉| = | −0 0  and 

〉 〉| = | −1 1 . This implementation needs a sufficiently strong 
magnetic field along the quantization axis to break the degen-
eracy of the doublets and energetically favor one of the two-
level systems depending on the sign of the magnetic field. 
Here, we use the convention that the positive (Sz  =  +1/2) sub-
space qubit is energetically favorable. Particularly, fine-tuning 
of the confinement potentials and adjusting the strength of the 
magnetic field energetically separate the doublet states from 
the quadruplet states [202] in Si [192, 203] and GaAs [192, 
202]. For a finite magnetic field, one of the two-level systems 
is pushed down in energy, such that it forms the well isolated 
states, hence, reducing orbital relaxation.

The second type of encoding is the ‘subsystem’ qubit which 
utilizes all states with S  =  1/2, thus, | =| ±0 0⟩ ⟩ and | =| ±1 1⟩ ⟩ 

giving rise to a qubit implementations with one leftover 
degree of freedom [2, 19]. In the absence of a magnetic field 
there are parameter regimes where the orbital energies dom-
inate pushing the quadruplet up in energy and the doublets 
down in energy [192, 203] allowing for the implementation 
of such a subsystem qubit. It is crucial for this implementa-
tion that there are no interactions which couple the | ±0 ⟩ states 
differently than the | ±1 ⟩ states. Under this condition, the two-
level systems are not entangled and the additional degree of 
freedom can be rewritten into a global degree of freedom 
allowing for a well-defined qubit [19]. In realistic systems, 
the exchange interaction fulfills these conditions while local 
magnetic field gradients and spin–orbit coupling violate it.

In the low energy subspace in the (1, 1, 1) charge configu-
ration regime a Schrieffer–Wolff transformation yields (anal-
ogously to the ST qubit) an effective Heisenberg Hamiltonian 
for the hybridized states, however, with three exchange cou-
pling parameters

σ σ σ σ σ σ= ⋅ + ⋅ + ⋅H
J J J

4 4 4
.1 2 2 3 1 3eff,TQD

12 23 13
 (30)

For a linear arrangement and neglecting superexchange 
J13  =  0. The expressions for the exchange couplings depend 
on the choice of the subspace taken into account. Since the 
states with (2,1,0) and (0,1,2) charge configurations are not 
directly coupled to the (1,1,1) charge states they are usually 
neglected for the derivation of the exchange couplings. In this 
case, the exchange couplings are given by [3]

ε ε= = − −J J t U U2 ,l l M12
2 2 2/ [ ( ) ] (31)

ε ε= = − +J J t U U2 .r r M23
2 2 2/ [ ( ) ] (32)

More general expressions which include different Coulomb 
terms Ui in each QD are given in [16] and are not shown here. 
The resulting energy splitting between the qubit states is given 
by [6]

ω = + −J J JJ .l r l r
2 2 (33)

2.3.2. Conventional single qubit operations. The exchange-
only qubit allows for all-electrical control of the qubit rota-
tions with only the exchange interactions allowing for Jl and Jr 
two independent axes of control. In the hybridized qubit basis, 
|0⟩ and |1⟩, the Heisenberg Hamiltonian from equation  (30) 
can be expressed as

1 σ σ= − −H E
J j

2

3

2
z xqubit 0 2 (34)

with the qubit Pauli matrices, 〉〈 〉〈σ ≡ | | − | |0 0 1 1z  and 
σ ≡ | | + | |0 1 1 0x 〉〈 〉〈 , and the exchange energies ≡ +J J J 2l r( )/  
and ≡ −j J J 2l r( )/ . The first term ∝ E0 only contributes to a 
global phase of the qubit, thus, can be ignored. Note, that the 
rotation axes are provided by the sum and difference of the 
exchange interaction between the dots (see equations (31) and 
(32)), thus, the rotation axes corresponding to an exchange 
pulse of Jl,r are not perpendicular on the Bloch sphere. To be 
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exact, the angle between the rotation axes corresponding to 
the pure exchange interactions J12 and J23 is �120 ; a symmetric 
pulse =J J12 23 provides rotations around the z-axis while the 
rotation around the x-axis is given by a three-step pulse due 
to the exchange interaction always being positive. This can be 
visualized using the classic Euler angle construction as rota-
tions around three axes can simulate a rotation around any 
axis. Hence, in total four serial exchange pulses (for ≠J 013  
three pulses) are always sufficient to create arbitrary single 
qubit operations [2]. In experiments, there are two ways of 
controlling the exchange interaction which differentiate in the 
choice of the operating gates.

Tilting based exchange pulses. The usual way to control 
the exchange interaction in a TQD is by varying the gate 
potentials underneath each QD adapted from DQDs [78, 
118] and successfully demonstrated for TQDs [59, 66, 67, 
69, 70]. The exchange interactions ε εJ ,l r M, ( ) are controlled 
by adjusting the gate potentials, maneuvering through the 
detuning space spanned by the two detuning parameters ε 
and εM. An exchange-pulse, thus, requires the movement of 
the point of operation to the correct spot at which Jl and Jr 
take the desired values for the single qubit operation. Visual-
ized in parameter space, this corresponds to maneuvering to 
a region where either Jl or Jr dominates the exchange interac-
tion. In a ST qubit, this corresponds to a tilting of the QD 
potential while for the EO qubit both detuning parameters 
play a role (shown schematically in figure  6 top row). Pre-
cisely, a pure Jl-pulse requires �ε ε ε ε| − | | + |M M  and a pure 
Jr-pulse requires �ε ε ε ε| − | | + |M M , while the requirement 
for the (1,1,1) charge configuration regime ε ε| ± | <UM  must 
still hold. Since the detuning parameters have to be operated 
adiabatically and are located far away in detuning space, this 
limits the speed of arbitrary qubit rotations since they require 
a sequence of Jl and Jr pulses. To speed up gate operations, 
optimized pulse sequences can be used. Universal control 
has been demonstrated experimentally in the two most com-
mon materials, Si [69] and GaAs [4, 5, 54, 59, 60, 66–68], 
yielding control over two independent rotation axes with both 
exchange couplings exceeding µ≈ ≈J 100 MHz 40 eV     [69]. 
Strong dephasing from hyperfine interactions in GaAs devices 
[59, 67] and charge noise in Si devices [69], however, limits 
the fidelity of the qubit rotations. A significant improvement 
is to be expected by operating the qubit at charge noise sweet 
spots [6, 20, 24], using dynamical decoupling sequences [184, 
204–206], and reported using devices with nuclear-spin-free 
isotopes [69].

2.3.3. Symmetric operation point (AEON qubit). Another 
concept for improved single qubit rotations is the symmet-
ric operation point (SOP) [96], where one keeps the qubit at 
a high symmetry point while operating the qubit, i.e. never 
leaving the SOP in detuning space. Taking a closer look at 
the expression for the exchange couplings in equations (31) 
and (32) one finds that such operation is possible via control-
ling the tunneling amplitudes tl,(r) which also leads to control 

over the exchange couplings due to ∝J tl r l r, ,
2

( ) ( ). To be exact, 

this way to control exchange was already proposed in the 
original paper by Loss and DiVincenzo [123]. Since recent 
architectures for quantum dot devices [78, 79] always include 
an additional (static) gate to set the tunnel coupling between 
the dots the symmetric operation point (SOP) does not require 
new quantum dot architectures [96, 183].

The AEON qubit [16] is a modified version of the original 
EO qubit [2] where the exchange interaction is either com-
pletely turned on or completely turned off while staying at 
a favorable operation point, therefore, a candidate for such 
a symmetric implementation. As already shown, full control 
over the qubit is possible through the two exchange interac-
tions = +J J J 2l r( )/  and = −j J Jl r( ) consisting of the left 

(right) exchange coupling Jl,(r) with the approximated expres-

sion ∓ε ε= −J t U U2l r l r M, ,
2 2 2/ [ ( ) ] (for the general expression 

see [16]). The specific expressions for the exchange coupling 
in the AEON qubit allow for the existence of a double sweet 
spot (DSS) which is insensitive to noise in lowest order with 
respect to both detuning param eters simultaneously (a more 
detailed discussion and definition follows in section  4.2). 
The DSS for the AEON qubit is located directly in the center 

in the energy landscape of the ground-state energy gap 

ω = +J j32 2  (see figure  5), thus, possessing the highest 
symmetry with respect to all (directly tunnel coupled) asym-
metric charge configurations. Since the location of the DSS is 
provided by the geometry of the TQD, thus, independent of 
the tunneling parameters, it still exists even for less symmetric 
geometries albeit not located in the center [16]. This allows for 
operating the qubit by tuning the tunneling parameters while 
staying permanently on the DSS. Setting the tunneling param-
eters to be symmetric =t tl r (turning on both exchange cou-
pling simultaneously) results in a rotation around the z-axis 

Figure 6. Schematic illustration of the two methods for operating 
the qubit described in the main text. The black lines represent the 
energy potential of the TQD which is filled with three electrons 
(red dots). The qubit is in some initial state at time S. Then, a 
single-qubit operation, tilt or symmetric, is performed at time X, 
leaving the qubit in some final state at time E. For the tilt method, 
the detuning, the energy potential difference between the quantum 
dots, is changed to operate the single-qubit gates. The solid and 
the dashed line correspond to two linear independent rotations. For 
the symmetric method the tunnel-barrier, the height of the energy 
potential separating the quantum dots, is lowered for the gate 
operation. A symmetric lowering corresponds to a rotation around 
the ẑ-axis, while an asymmetric lowering causes a rotation around 
some axis n̂ [16].
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(see figure 6 middle row), while setting = +t t6 2 2l r( ) /  
results in a rotation around the = − +n x z 2ˆ ( ˆ ˆ)/ -axis (see 
figure 6 bottom row) which together with a rotation around 
the z-axis causes a rotation around the orthogonal x-axis [16]. 
Therefore, a three-pulse sequence is sufficient for arbitrary 
single qubit gates which is one pulse less than needed for the 
conventional EO qubit [2]. Since the exchange couplings are 
either completely turned on or completely turned off, sym-
metric gate operations, which control the tunnel barriers tl,r 
directly, are required. Simultaneously, this makes the AEON 
qubit robust against leakage induced by a magnetic field gra-
dient [23], albeit to a lesser degree than the RX qubit (see 
section 2.3.4) due to smaller exchange couplings.

Additionally, the symmetric way of operation allows for 
heavy filtering of the detuning gates together decreasing 
the effects of the charge noise on the qubit. However, time-
dependent control of the tunneling parameters also opens 
another channel for coupling noise to the qubit via the tunnel 
couplings [3]. Experiments in operating a DQD symmetrically 
demonstrate a significant improvement of the qubit decoher-
ence times and overall fidelities compared to the standard 
implementation using detuning as control [96, 183], therefore, 
indicating that noise coupled to the qubit via detuning domi-
nates over noise coupled via tunneling. Up to date there is no 
experimental demonstration of symmetric operation of three-
spin qubits, however, experiments successfully demonstrated 
control over various QDs [207].

The initialization techniques, read-out schemes, and physi-
cal implementation of the AEON qubit are identical to the 
conventional EO qubit. We note however that initialization 
and read-out using spin-to-charge conversion is not optimal 
for this implementation since one needs to traverse the RX 
regime in parameter space [16, 27].

2.3.4. Resonant exchange operation (RX qubit). The RX 
qubit [5, 6, 15] is a modified version of the EO qubit where 
the exchange interaction is always turned on, while the qubit 
is operated (as the name suggests) through a resonant mod-
ulation of the exchange interaction. As a first thought this 

may sound like a step backwards to the original spin-1

2
 qubit 

which depends on the (slow) qubit rotation through ESR [78] 
or EDSR [208], however, due to the permanently turned on 
exchange interaction which induces a strong qubit splitting, 
the energy gap can be modulated electrically and also much 
more strongly, giving rise to high fidelity gates and gate times 
on the order of nanoseconds [5, 27].

Analogously to the EO qubit, the qubit states are given by 
equations (26) and (27), and therefore, still located inside the 
(1, 1, 1) charge configuration regime. However, due to �ε ε| |M  
the qubit state are strongly hybridized by the admixture of the 
(2, 0, 1) and (1, 0, 2) charge configurations resulting in a large 
energy gap between the qubit states while the influence of 
the (1, 2, 0) and (0, 2, 1) charge configurations is negligible. 
Inside the (ε ε, M)-landscape of the ground state energy gap the 
RX regime is located in the upper part of the diamond formed 
(1, 1, 1) charge regime (white triangle in figure 5). The RX 

qubit Hamiltonian in its eigenbasis with a modulated detuning 
ε ε δε+→  takes the form [3, 6]

ω σ δε ησ= +H
2

z xqubit RX
ħ

 (35)

with the resonance frequency ω = +J j3RX
2 2ħ , the mod-

ulation coupling η ε ε= ∂ ∂ + ∂ ∂
ω

J J j j31

2
[ ( / ) ( / )], and the 

exchange couplings = +J J J 2l r( )/  and = −j J Jl r( ). Due to 
the negligible influence of the (1, 2, 0) and (0, 2, 1) charge 
configurations the exchange coupling is approximated by 

ε ε= − ±J t Ul r l r M, ,
2 /( ) [3, 6, 20].

Rabi oscillations corresponding to qubit rotations become 
accessible through resonant driving of the detuning ε near the 
qubit’s resonance frequency ωRX, thus, δε τ ντ φ= +f cos( ) ( ) 
with an adjustable phase φ, while the modulation ampl-
itude τf ( ) varies slowly (compared to ωRX) in time τ. Near 
resonance, �δ ωRX with δ ν ω= − RX, the Rabi frequency is 
given within the rotating frame approximation by [6]

τ
τ

ε
Ω ≈

−
f t

U

3
,

M

2

2ħ
( ) ( )

( )
 (36)

while the axis of rotation is set by the adjustable phase φ of 
the driving. Experiments in a GaAs TQD device have dem-
onstrated π rotations of the qubit around two axes of control 
on nanosecond time scales, =t 2.5 nsgate    [5, 27]. Combined 
with a CPMG coherence time µ≈T 10 s2   , this allows for more 
than 103 coherent gates [5]. In this experiment, the resonance 
detuning is affected by the Overhauser fields which causes 
additional dephasing and is therefore the limiting factor for 
the coherence time. Results from a more recent experiment 
confirm that the limitation is caused by nuclear spins for weak 
driving, while for strong driving charge noise is the limiting 
factor [27]. Interestingly, operating the RX at a symmetric 
operation point provides only a slight improvement (a more 
detailed discussion follows in section 4.2). An experimental 
realization in a silicon device (Si/SiGe or SiMOS) should sig-
nificantly improve the RX qubit for weak driving due to the 
absence of nuclear spins under isotopic purification [69, 79, 
100, 209–211].

The initialization techniques, read-out schemes, and physi-
cal implementation are identical to the conventional EO qubit. 
As a remark, both initialization and read-out schemes using 
either spin-to-charge conversion or cavity quantum electrody-
namics (cQED) based techniques should be feasible due to 
the short distance in (ε ε, M) parameter space with respect to 
the (2, 0, 1) and (1, 0, 2) charge configurations which strongly 
hybridize the qubit states [6, 17, 18].

Other methods. Up to this point we have only considered 
a linearly aligned TQD which is used in most experimental 
setups. In the following, we briefly introduce triangularly 
arranged TQD systems (TQD molecules) where we mainly 
focus on the implementation of qubit rotations in such a sys-
tem which differ from the linear case. For more details about 
the energy structure and properties we refer to the review by 
Chan-Yu Hsieh (see [192]) or the original works [71, 72]. In 
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addition to the exchange interaction J13 between the first and 
the last dot an (equilateral) triangular shape adds another fea-
ture, the chirality, to the system. This allows for a new set of 
qubit states in the same S  =  1/2 and =±S 1 2z /  subspace

|+ = |↑↑↓ + |↑↓↑ + |↓↑↑
π π+ +1

3
e e ,i 2

3
i 4

3( )⟩ ⟩ ⟩ ⟩ (37)

|− = |↑↑↓ + |↑↓↑ + |↓↑↑
π π− −1

3
e e ,i 2

3
i 4

3( )⟩ ⟩ ⟩ ⟩ (38)

which are the eigenstates of the chirality operator [71] with 
the eigenvalues χ =± 1. A unitary transformation connects 
them with the conventional eigenstates from equations  (26) 
and (27). The low-energy subspace can also be approximated 
by a Heisenberg exchange Hamiltonian [72], however, the 
exchange couplings include additional terms arising from 
the circular structure and chirality [75, 212–214]. Applying 
an in-plane electric field breaks the symmetry of the system 
and gives rise to terms σ∝ y in the qubit space, corresponding 
to rotations around the y-axis on the Bloch sphere [74, 75]. 
Combining the in-plane electric field with spin–orbit effects, 
very fast Rabi oscillations between the chiral qubit states are 
proposed with τ = 0.1Rabi –10 ps3   depending on the realization 
of the device [215]. Additionally, the ring structure allows for 
the application of topologically protected quantum computa-
tion due to the non-trivial phase an electron acquires when 
traveling around a circle [73, 192]. Since this is beyond the 
scope of this review, we end the discussion of triangularly 
shaped TQDs and continue with further qubit implementa-
tions of three-spin qubits.

2.4. Spin-charge qubit

The spin-charge qubit is a unique implementation for a three-
spin qubit since all three electrons are located in a single 
quantum dot occupying the three lowest orbitals [7]. The qubit 
states are

| ≡| | ↓s1 ,01 2⟩ ⟩ ⟩ (39)

| ≡ | | ↑ − | | ↓−t t0
2

3

1

3
,01 2 0 01 2⟩ ⟩ ⟩ ⟩ ⟩ (40)

where each orbital, 0,1,2, is occupied by a single electron with 
the qubit states corresponding to the S  =  1/2 and Sz  =  −1/2 
subspace (see section  2.2). Orbital relaxation processes can 
be suppressed by designing the confinement potential in such 
a way that the S  =  1/2 and Sz  =  −1/2 two-level system form 
the ground and the first excited state [187–192]. In this sense, 
the qubit implementation is very similar to the exchange-only 
qubit where the quantum dot (position degree of freedom) 
is interchanged with the orbital (orbital degree of freedom). 
Therefore, single qubit rotations are not possible anymore 
through conventional electric control, i.e. control over the 
exchange interaction through biasing of the gate voltages 
underneath or in-between the QDs. Instead of controlling the 
detuning or the barrier between the QDs one can acquire sin-
gle-qubit rotations by controlling the confinement potential, 

particularly, the eccentricity of the confinement potential. 
Going beyond the Hubbard Hamiltonian and considering 
electrons in an elliptic confinement potential with eccentrici-
ties ωx and ωy the Hamiltonian in the qubit space can be writ-
ten as [7, 216]

1σ σ= + +H b b b .x x z zqubit 0 2 (41)

The parameters are = −b V V3 2x 0220 1221( )/ , = − +b Vz 0110  
+V V 21221 0220( )/ , and = + +b V V V0 0101 1212 0202 with the 

usual matrix elements = | |V o o o o, ,o o o o 1 2 Coulomb 3 41 2 3 4 ⟨ ⟩V  
and ∈o 0, 1, 2i { } originating from the long-range Coulomb 
interaction. A direct comparison of equations  (41) and (34) 
shows that the matrix elements of the form Vo o o o1 2 2 1 resemble 
an orbital exchange interaction, thus, ∼V Jl0110 , ∼V Jr1221 , 
and ∼V J0220 13 (omitted in equation (34)). While the explicit 
expressions can be found in [216], the main result is a differ-
ent dependence of bx and bz with respect to the eccentricity 
ratio ω ω≡r x y/  which both can be electrically adjusted by the 
gates. In the presence of a fixed magnetic field, this allows for 
fast electrically driven single qubit gates with sub-nanosecond 
gate times (τ ≈ 1g –10 ps  ) in GaAs and faster in silicon due to 
stronger confinement [7].

The next requirement for quantum computation are feasible 
read-out and initialization schemes. In the case that the qubit 
states (see equations (39)–(40)) are the ground states, the ini-
tialization is trivial and just a matter of thermalization [7]; this, 
however, can be slow. In the general case initialization tech-
niques may be adapted from the EO qubit or the ST qubit; a 
singlet state is initialized in an isolated QD and in a second step 
the adiabatic opening of the tunnel barriers allows for the tun-
neling of a third electron. For read-out, a destructive measure-
ment is suggested that detects if a fourth electron is resonantly 
tunneling in the QD or not, following the same protocol as 
used for a single-spin qubit [7, 135]. Since the qubit states are 
not degenerate, read-out techniques using cavity quantum elec-
trodynamics (cQED) should be adaptable [112, 114, 217, 218].

2.5. Hybrid qubit

The holy grail for quantum computation is claimed by the 
qubit implementation which allows most high-fidelity opera-
tions during its coherence time. There are basically two ways 
of winning the race, either the coherence time is increased or 
the gate time is decreased, i.e. making the qubit operations 
faster. While the exchange-only qubit and its derivations try 
to increase the coherence time the hybrid qubit (HQ) is a rep-
resentative of the latter approach, which in short, combines 
the longevity of spin qubits and the fast qubit operations of a 
charge qubit [8]. Note, that this section is far from complete 
and only covers the core concepts and recent advances provid-
ing a first insight of the hybrid qubit and that the hybrid qubit 
deserves a review article on its own.

The HQ qubit is implemented in a double quantum dot 
(DQD) analogously to the ST-qubit, however, filled with three 
electrons. The qubit states are

| ≡| | ↓s0 ,R L⟩ ⟩ ⟩ (42)
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| ≡ − | | ↑ + | | ↓−t t1
2

3

1

3
,R L R L0⟩ ⟩ ⟩ ⟩ ⟩ (43)

where the right QD is doubly occupied while the left QD 
only singly occupied (see SEM image in figure 7 inset) which 
corresponds to the S  =  1/2 and Sz  =  −1/2 subspace (see sec-
tion 2.2) and the (1,2,0) or (0,1,2) charge configuration regime 
of a TQD discussed above. While the lowest orbital allows 
the singlet state |s R⟩ , the triplet states | −t R⟩  and |t R0⟩  are forbid-
den in the lowest orbital due to the Pauli exclusion principle, 
hence, occupy the first excited orbital [8]. Assuming that the 
described singlet and triplet states are lowest in energy [219, 
220], higher excited singlets and triplets can be neglected 
due to fast spin conserving orbital relaxation processes [221] 
which immediately relaxes the higher state into the ground 
state. The essential difference between the HQ and the EO 
qubit are the use of a DQD instead of a TQD and the dou-
ble occupation of the right QD which includes occupation of 
higher orbital states (only in the right QD). A second singlet 
state, | =| ↓ |L sR L⟩ ⟩ ⟩ , becomes important which couples to the 
|0⟩ via tunneling and gives rise to an additional exchange split-
ting between the qubit states |0⟩ and |1⟩ allowing for electrical 
control. In total there are three relevant states, the two qubit 
states, |0⟩ and |1⟩, and the virtually occupied state |L⟩; all other 
states can be neglected in lowest order. Analogously to the 
EO qubit, the low-energy subspace Hamiltonian is approxi-
mated using a Schrieffer–Wolff transformation giving rise to 
a hybridization of the qubit states due to their coupling to the 
|L⟩ state (the formal derivation and the explicit expressions 
can be found in the supplementary material of [8] and [222]). 
In contrast to the exchange-only qubit, one is unable to find a 
pure spin Hamiltonian for the effective Hamiltonian but needs 
the t  −  J-model to describe the low-energy subspace.

Arbitrary single qubit rotations require control of two inde-
pendent axes; for the hybrid qubit, one axis of control is pro-
vided by the change of the energy splitting between the qubit 
states ωħ  while the second axis is given by transitions between 
the qubit states. Projecting the low-energy Hamiltonian on the 
qubit space, one finds in particular

ħ
ωσ σ= +H j

2
.z xqubit 

(44)

The energy gap between the qubit states is dominated by the 
orbital singlet-triplet splitting EST in the doubly occupied QD, 
thus, ω = + ≈J E EST STħ  since �| | | |J EST  (see main panel in 
figure 7). In particular one finds, ∝ +J J J3S T, where JS is sin-
glet exchange coupling due to the admixture of |0⟩ with the 
virtual state |L⟩ and JT is the triplet exchange coupling from 
the admixture of |1⟩ with |L⟩. Control over the singlet-triplet 
EST splitting by changing the gate voltages in the QD [155, 
223–225] gives rise to rotations around the z-axis, while rota-
tions around the x-axis are given by transitions between the 
qubit states which are induced by the off-diagonal terms of 

the qubit Hamiltonian, ∝ +j J JS T with ∝ ∆J t ES T S T S T, ,
2

,/( ) ( ) ( ). 
Here, tS,(T) is the tunnel amplitude and ∆ES T,( ) is the energy 
difference between the virtual state and the singlet (triplet) 
state. Therefore, either pulsing the tunnelings tS,(T) or the 
pulsing the energy differences ∆ES T,( ) give rise to adjustable 
trans itions between the qubit states. Considering Si/SiGe as 
the QD host material, sub-nanosecond ( =f 10 GHz  ) gate 
times have been predicted [8] and experimentally demon-
strated [63]. Moreover, since both tunnel couplings tS and tT 
can be tuned independently (and also independently of EST), 
thus, also the ratio =r t tS T/ , a larger set of elementary single 
qubit rotations becomes accessible. This provides a more 
‘fine-grained’ control of the qubit which reduces the number 
of the pulses needed for two-qubit gates [8, 9]. Experiments 
demonstrate π-rotations around two orthogonal axes with 
rotation times ≈πt 100 ps   and 86% (transition between states) 
and 94% (control over qubit splitting) gate fidelity [63] 
which is further improved if resonantly modulated, yielding 
93% and 96% gate fidelity in experiments [65]. In total, this 
allows for over 100 coherent exchange oscillations within the 
dephasing time T2

� in Si/SiGe quantum dot devices [64]. Most 
recently, experiments resonantly modulating the energy gap of 
the hybrid qubit identical to the RX qubit (see section 2.3.4) 
achieve a gate fidelity of 98.4% [11]. This is performed by 
optimizing the point of operation, thus mitigating the effect 
of noise sources which is is identified as charge noise. At this 
point we postpone a comprehensive study of charge noise to 
section 4.2 and only mention that one has to decrease ω ε∂ ∂/  
which naively can be done by moving further into the spin-
regime (green area in figure 7) of the hybrid qubit. This greatly 
increases the number of coherent oscillations (see figure  8) 
with the downside of increasing the gate time. Against theor-
etical predictions the best point of operation is not found by 
further increasing the detuning, but for certain values of ε that 
show a plateau for ω ε( ), thus a small susceptibility (∼ ω ε∂ ∂/ ) 
to charge noise. The highest fidelities were found at such a pla-
teau [11]. Another recent demonstration of a modified version 

Figure 7. Main panel: Energy levels of the qubit states, |0⟩ and |1⟩, 
and the virtually occupied state |L⟩ as a function of the detuning 
ε, the energy difference between QD potentials. Two tunneling 
parameters ∆1, 2( ) (between ground (excited) state of the right QD 
and the ground state of the left QD) cause avoided crossings and 
couplings between the states. The green (blue) region is called the 
spin-region (charge-region), since there the qubit states differ by 
their spin (charge). The four pulse sequences show the experiments 
performed in [11]. Inset: SEM image of a hybrid qubit from the 
Eriksson group. Reprinted with permission from [11] Copyright 
2016 by the American Physical Society.
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of the hybrid qubit with 5 electrons in a GaAs double quantum 
which operates at the (2,3)–(1,4) charge transition yields over 
10 coherent Rabi oscillations during the coherence time [10]. 
Note, that in GaAs dephasing is much faster than in silicon 
devices due to the presence of nuclear spins.

An initialization and read-out scheme requires the coupling 
of the doubly occupied QD to the lead with a significant dif-
ference in the tunneling rates between the qubit states. A large 
difference in the tunneling rates allows for a time-resolved 
measurement which yields information about the qubit state 
to be initialized or read-out. The crucial requirement, signifi-
cantly different tunneling rates, are experimentally demon-
strated in GaAs [226] and Si/SiGe [8, 227] devices. Numerical 
results predict further improvement of the coherence times 
measuring the current flow through a quantum point contact 
[228].

3. Two-qubit gates for three-spin qubits

3.1. Using short-ranged exchange

After the experimental demonstrations of arbitrary single 
qubit rotations [59, 69] the remaining challenge is the demon-
stration of universal two qubit operations in order to achieve 
universal quantum computation according to the DiVincenzo 
criteria [229]. Note that the bulk of two qubit gates are univer-
sal [230]. The set-up is the following; two three-spin qubits are 
coupled via the exchange interaction, i.e, spins in the set-up 
are coupled via a Heisenberg exchange term = ∑ ⋅S SH Ji j ij i j,  
(see equation (2)). Thus, for the discussion it does not mat-
ter whether the electrons are physically separated, i.e. in dif-
ferent QDs, and/or energetically separated, i.e. in different 
orbitals, since this only changes the explicit expressions for 
the exchange couplings between the electron spins. If not 
otherwise mentioned a linear geometry is considered where 
only spins 3 and 4 are connected (shown schematically in 
figure 9(a)).

For two spin-1

2
 qubits a simple sequence yields the two-

qubit gate (see section 1.4), however, for the case of exchange 
coupled three-spin qubits the story is more complex. The main 

problem arises from the fact that the computational two-qubit 
space, = ⊕+ +2qubit 1 2 1 2/ /H H H , represents only a subspace 
of the sector with spin quantum numbers S  =  1 and Sz  =  +1 
of the combined system. The inter-qubit exchange coupling 
leads to excursions outside the computational space during the 
pulse sequences, and thus, the possibility of leakage into the 
non-computational space. There are two distinct approaches 
to counteract the leakage which we discuss in detail; in the 
first approach, complex pulse sequences are applied in order 
to make sure that the mapping between the non-computational 
space and the qubit subspace at the end of the sequence van-
ishes [2]. In the second approach a (large) energy difference 
between the computational space and the non-computational 
space in combination with fast gates (approximately) prevents 
leakage into the non-computational subspace [15].

3.1.1. Exact gate sequences. There are many different pulse 
sequences for implementing an exact entangling gate between 
two three-spin qubits. In order to keep the expressions simple, 
we consider the time steps τ of the exchange interaction in units 
of a full swap gate, τ π= J2SWAP ħ/ , between connected spins 
in the remainder of this section. This justifies a consideration 
where all exchange couplings are identical, Jij  =  J since the 

resulting two-qubit gate ∫ σ στ = ⋅′ ′
τ

U t J texp i d 4i jij ij0
ħ( ) [ ( ) / ] 

is independent of the pulse shape of τJij( ). In the original pro-
posal, a minimal pulse sequence consisting of 19 exchange 
interactions between the spins was found numerically yielding 
a cnot-gate up to local single qubit gates [2]. The sequence 
can be implemented in 13 time steps since some exchange 
interactions can be run in parallel. However, this sequence 
yields a leakage-free entangling gate only for the subspace 
qubit while there is still leakage in the case of the subsys-
tem qubit. As a brief reminder, the subspace qubit is encoded 
in either of the two-level systems, S  =  1/2 and Sz  =  +1/2 or 
S  =  1/2 and Sz  =  −1/2, whereas the subsystem simultane-
ously uses both two-level systems S  =  1/2 and =±S 1 2z /  for 
the encoding [2, 19]. An exact cnot-gate sequence for the 
subsystem qubit consists of 22 pulses in 13 time steps [12] 
with all time steps being multiples of τ 4swap/ , where the bare 
two-qubit pulse sequence consists of 18 pulses in 11 time 

Figure 8. Rabi exchange oscillation of the probability to be in state |1⟩ as a function of time rRF for (e) a detuning ε µ= 115 eV   and  
(f) for a detuning ε µ= 161 eV  . The results show an increased number of oscillations for larger ε due to lesser susceptibility to charge noise. 
Figure taken from [11] with permission of the authors. Reprinted with permission from [11] Copyright 2016 by the American Physical Society.
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steps [13]. Allowing for simultaneously applied exchange 
pulses one can find a two-qubit gate sequence in 8 time steps. 
However, this requires precise control of all couplings indi-
vidually. It should be noted that all sequences were discov-
ered using a numerical minimization algorithm due to the very 

large Hilbert space of six spins-1

2
 (dimension 26  =  64). A full 

understanding and analytical derivation of the path through 

the Hilbert space associated with the exact cnot gate has sub-
sequently been found [14, 231].

Taking into consideration other geometries which have 
more connections (exchange couplings) between the two 
three-spin qubits, shorter and faster pulse sequences are 
possible. The shortest sequence consisting of 12 pulses in 9 
time steps was found for the unrealistic case of a fully con-
nected geometry, while one needs at least 14 pulses with the 
butterfly geometry where the center spins of each three-spin 
qubit are connected (connection between spin 2 and spin 5 in 
figure 9(a)).

Nevertheless, the mutual feature that all sequences require 
more than ten pulses makes the exact two-qubit gate somewhat 

vulnerable to a noisy exchange interaction, i.e. charge noise 
in the tunnel parameters and detuning parameters or hyperfine 
interaction due to nuclear spin. Treating the effects of nuclear 
noise requires a noise-correction scheme consisting of permu-
tations which decouple the static effects of the noise [12, 13]. In 
simple words, a single pulse is divided into several pulses such 
that each electron ‘feels’ the same nuclear fields at each given 
time step, thus, unavoidably increases the pulse sequences 
[12, 13]. The procedure is comparable to a spin echo where 
the effect of dephasing is reversed by a spin flip and can also 
be adapted for (quasi) static charge noise. However, due to the 
nature of charge noise which also consists of high frequency 
components the correction scheme is better suited for counter-
acting the effects of nuclear noise due to its slow dynamics. 
For charge noise, other techniques are usually considered, i.e. 
operating on a charge noise sweet spot. At this point we post-
pone a detailed discussion regarding the exchange interaction 
under the influence of charge noise to section 4.2.

Distinctions for spin-charge and hybrid qubit. Since the 
description of two-qubit gates has been general up to now, we 
want to inform the reader in this paragraph about some special 
distinctions regarding the SC qubit and the hybrid qubit.

The SC qubit was introduced in section 2.4 and is imple-
mented in a single QD using several orbitals (1,2,3). In a naive 
understanding, one would assume that, if two such qubits are 
placed next to each other, all orbitals would be coupled via an 
external exchange interaction with a similar strength. However, 
in a minimal coupling approach only the highest orbitals of 
two neighboring spin-charge qubits are typically coupled via 
the next neighbor exchange interaction (shown schematic illus-
tration in figure 9(b)) [7]. Since the occupation probability at 
the edge of the quantum dot increases with increasing orbital 
quantum number [232], electrons in two quantum dot couple 
first via the highest orbitals if one brings them together [7]. 
Careful adjustment of the gate potentials and the use of the non-
linear dependence of the exchange coupling with respect to the 
inter-dot distance [120], can lead to a selective coupling of only 
the uppermost orbitals with each other. Note that the resulting 
two-qubit coupling is identical to that of the EO qubit (see fig-
ure 9(b)) except for the always-on intra-dot exchange interac-
tion, thus, similar but not identical pulse sequences can be used. 
The shortest pulse sequence that implements cnot excluding 
single qubit rotations consists of a minimum of nine pulses [7].

For the hybrid qubit one can use the same argumenta-
tion as for the SC qubit. However, since the hybrid qubit has 
additional single-qubit control (schematically illustrated in  
figure 9(b)) shorter pulse sequences are feasible consisting of 
only 14 exchange pulses [8, 13, 233] summing up to an overall 
gate time on the order of nanoseconds. One possible issue for 
the implementation of exchange-based two-qubit gates for the 
hybrid qubit is leakage to the non-computational space which 
is larger than for the other implementations as the spin-charge 
and exchange-only qubit. While the occupation of these states, 
i.e. clones of the qubit state | =| | ↓s0 R L⟩ ⟩ ⟩  where |s⟩ is not the 
ground state, is suppressed for single-qubit rotations [8], this 
is not the case for inter-qubit exchange (two-qubit gate), thus 
giving rise to increased leakage.

Figure 9. (a) Schematic illustration of the coupling of two three-
spin qubits consisting of six spins (red dots) labelled numerically 
from left to right. The black circles represent the position (QD or 
orbital) of the spins in each qubit (blue box), the black dashed lines 
correspond to the intra-qubit exchange interactions, and the green 
dashed line to the inter-qubit exchange interaction (connecting spin 
3 and spin 4). We refer to this geometry as the linear geometry. 
(b) Schematic illustration of the two-qubit coupling of two spin-
charge qubits. The inter-dot exchange interaction (green) can be 
controlled by the tunnel barriers. The shortest full pulse sequence 
that implements cnot excluding single qubit rotations consists of 
nine pulses. Figure inspired by [7]. (c) Schematic illustration of 
the two-qubit coupling of two hybrid qubits (qubit 1 and qubit 2). 
The black circles represent the quantum dots of each qubit (blue 
box) which each consists of three electrons (red dots), the black 
dashed lines correspond to the intra-qubit exchange interactions, 
and the green dashed lines to the inter-qubit exchange interaction. 
The shortest full universal pulse sequence consists of 14 exchange 
pulses. Figure inspired by [8].
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3.1.2. Approximated gate sequences. Instead of maneuver-
ing on complex paths through the Hilbert space in order to 
minimize leakage into the non-computational space, one can 
use short cuts, gate sequences consisting of a single exchange 
pulse [15, 16, 234]. However, these short cuts are only feasible 
if there exists a favorably large energy gap between the com-
putational and non-computational subspaces. This energy gap 
is crucial since it reduces the amount of leakage during the 
operation depending on the size of the energy gap. It should 
also be noted that the amount of leakage can never reach 
exactly zero for a finite energy gap. Practically speaking, this 
energy gap is increased by a larger energy splitting between 
the qubit states while it is reduced by the inter-qubit exchange 
interaction [15], thus, making the RX qubit an ideal candidate 
for its two-qubit scheme due to the large and always turned-on 
exchange interaction. Another good candidate is the AEON 
qubit where the exchange interaction is always turned on or 
off. However, the AEON qubit naturally has a smaller qubit 
splitting than the RX qubit. We want to discuss two concrete 
methods for implementing two-qubit gates, the first consisting 
of a DC pulse, while in the second the exchange interaction is 
modulated by an RF signal. Both methods provide fast two-
qubit gates with suppressed (but still finite) leakage.

Considering a Heisenberg type Hamiltonian for the inter-
action between the electrons in the singly occupied QDs the 
system is described by = + +H H H HA B int where HA,B are 
the uncoupled single qubit Hamiltonians introduced in equa-
tion (34). Focusing on the relevant subspace Sz  =  1 which has 
dimension n  =  15, there are 11 leakage states [15], however, 
six states with a total spin S  =  2,3 cannot be accessed by the 
exchange interaction alone since it conserves the total spin 
[2]. However, gradients in the magnetic field and spin–orbit 
interaction can cause transitions into these additional leakage 
states. In table  1 the corresponding eigenenergies of the 11 
states are displayed. In lowest order in perturbation theory, i.e. 
�J J 1c/  with the inter-qubit coupling Jc and the intra-qubit 

coupling J, the interaction between qubit A and qubit B for a 
general geometry can be expressed as [15]

δ δ σ σ σ σ
σ σ σ σ

= + + +
+ +⊥

H J J J

J

2
,

z z A z B zz z A z B

x A x B y A yB

int 0 , , , ,

, , ,

( )/
( ) 

(45)

where σi Q,  is the i  =  x,y,z Pauli matrix acting on qubit Q  =  A,B. 
Each of the coefficients J0, δJz, Jzz, and ⊥J  is proportional to the 
inter-qubit exchange interaction Jc. The param eters strongly 
depend on the chosen geometry, e.g. for a linear geometry 
(inter-qubit coupling between QD 3 of the first qubit and QD 
1 of the second qubit) the parameters can be chosen as fol-
lows, δ =J J 1 36z c/ / , =J J 1 36zz c/ / , and = −⊥J J 1 24c/ / . It is 
very useful for the implementation of a cphase gate between 
the qubits that for large inequality between the qubit split-
tings �| − |J J Jz A z B c, ,  the degeneracy between the |01⟩ and 
|10⟩ two-qubit states is lifted, thus, one finds =⊥J 0 [15]. A 
cphase-gate can now be implemented in a single pulse for 

∫ π=′ ′
τ

t J td 4zz0
( ) / . For ≠⊥J 0 single qubit operations are 

additionally needed to ‘echo out’ the effects of the perpend-
icular interaction term [15] which is always possible [235]. 
Realistic values for the exchange interactions using the RX 

qubit encoding predict gate times τ = 21 nsgate    (τ = 63 nsgate   ) 
with a leakage error <L 1% ( <L 0.1%) [15]. Using realistic 
parameter setting for the AEON qubit the gates times are lon-
ger (τ > 100 nsgate   ) [16] due to the weaker exchange splitting. 
An improvement can be achieved by using different coupling 
geometries, especially the butterfly geometry (center QD of 
both qubits are connected) which provides the best gate times 
[15, 16]. Further improvement is obtained using different pulse 
shapes for the exchange pulse with the best having a sinusoidal 
shape, πτ τ= −J J 1 cos 2c c,0 gate[ ( / )] allowing for single-pulse 
fidelities exceeding 0.9999 for physically reasonable parameter 
settings [234]. Leakage is increased by considering a realistic 
environment consisting of charge noise and Overhauser noise 
due to nuclear spins. Recent studies show that low-frequency 
charge noise has the strongest impact on the gate fidelity [234].

The second approach uses a RF modulation of the exchange 
coupling τ τ τ τ= + −∆J J J J Jcosc c c z A z B,0 , , ,( ) ( ) ( ) [( ) ] between 
the qubits. For example, in experiments using a linear geom-
etry this would correspond to the modulation of the energy 
barrier between the two qubits. Under a rotating wave approx-
imation ( � −∆J J J J,c c z A z B,0 , , ,( )) the two-qubit interaction is 
given by [15]

σ σ σ σ σ σ= + +∆H
J J

6 24
,c

z A z B
c

x A x B y A yBint
,0

, ,
,

, , ,( ) (46)

where we used the same expressions as in the paragraph 
above. The advantage of this approach is that both control 
parameters Jc,0 and ∆Jc,  can be set individually allowing for 
more flexibility of controlling the two-qubit gate. The only 
required condition is | | <∆J Jc c, ,0 due to the positive sign for 
the exchange interaction [15].

3.2. Long-ranged two-qubit gates

At the time of writing of this review the best available option 
for error correction techniques appears to be the surface codes 
which require a two-dimensional geometry of qubits [236, 

Table 1. All 15 states in the Sz  =  1 subspace of two three-spin 
qubits with their respective eigenenergies, where Jz A B, ( ) is the 
exchange splitting between the qubit states |0⟩ and |1⟩ in qubit A 
(qubit B). For the notation we use | =| |A B A B, ⟩ ⟩ ⟩, where the leakage 

states are defined as follows; | =| = = + =|↑ ↑ ↑Q S S, , ,z3 2
3

2

3

2
⟩ ⟩ ⟩/ , 

| =| = + = |↑ ↑ ↓ +|↑ ↓ ↑ +|↓↑ ↑Q S, , , , , , 3z
3

2

1

2
⟩ ⟩ ( ⟩ ⟩ ⟩)/ , and | −0 ⟩ and 
| −1 ⟩ being the qubit states for Sz  =  −1/2 (see equation (29)). Note 
that all qubit states differ in energy from the leakage states. This 
table was adapted from [15].

Two qubit state Energy  +  EZeeman

|Q Q, ⟩, | −Q Q,3 2 ⟩/ , | −Q Q, 3 2⟩/ 0

| Q0, ⟩, | − Q0 , 3 2⟩/ −Jz,A/2

|Q, 0⟩, | −Q , 03 2 ⟩/ −Jz,B/2

|0, 0⟩ − +J J 2z A z B, ,( )/
| Q1, ⟩, | − Q1 , 3 2⟩/ −3Jz,A/2

|Q, 1⟩, | −Q , 13 2 ⟩/ −3Jz,B/2

|1, 0⟩ − +J J3 2z A z B, ,( )/
|0, 1⟩ − +J J3 2z A z B, ,( )/
|1, 1⟩ − +J J3 2z A z B, ,( )/
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237]. In realistic devices, this is a challenge since each qubit 
must be accessed by multiple (gate) electrodes limiting the 
possibility to connect one qubit with more than two other 
qubits through exchange. This makes it more realistic to use 
a linear geometry. Since the exchange interaction is limited 
to adjacent QDs, other, long-range interactions have to be 
considered to overcome this technical difficulty allowing for 
a two-dimensional array of qubits which are spatially sepa-
rated [238]. There are several proposals for the achievement 
of such an interaction, e.g. tunneling mediated by a supercon-
ductor [239, 240], coupling though surface acoustic waves 
[241–246], ferromagnets [247], superexchange mediated by an 
additional QD [163, 248–250], spatial adiabatic passage [233, 
251, 252], photon assisted tunneling [253–255], and quantum 
Hall edge states [245, 256]. The most practical ideas (up to 
date) seem to be Coulomb-based dipole-dipole coupling [6, 9, 
257–260] and cQED mediated coupling [17, 18, 114, 173, 218, 
261–263] which both use the electric dipole moment of the 
qubit, whereas in the second approach the interaction range 
is elongated by the use of a cavity as a mediator [3, 17, 18, 
167, 168]. For the capacitative coupling the relevant interac-
tion is the direct dipole-dipole coupling of the three-spin qubits 
originating from the charge difference of the qubit states pro-
posing a fast and feasible two-qubit pulsed gate [6, 9, 259, 
260] while a more realistic analysis hints possible problems 
due to charge noise [259]. Three-spin qubits have (in certain 
parameter regimes) large electric dipole moments [6, 8] which, 
combined with recent advances in superconducting microwave 
cavities, boost the vacuum coupling strength [172], making the 
three-spin qubits a good candidate for the implementation of 
cQED. There are multiple ways to implement such two-qubit 
gates which we try to discuss in the following.

Qubit-cavity interaction. Originally proposed for super-
conducting qubits [264] due to their strong dipole coupling 
strength on the order of ≈g 200 MHz   [265, 266], cQED can 
also be used for semiconductor spin qubits despite having 
a coupling strength at least one order of magnitude smaller 
[167, 168], i.e. ≈g 0.1–10 MHz   [3, 6, 17, 18] for three-spin 
qubits, due to advances in the coherence times [79] and cavity 
design [115, 172]. It is crucial to achieve a coherent coupling 
between the qubit and the cavity, therefore, a coupling which 
needs to be stronger than the relaxation and dephasing mech-
anism in each, the cavity and the qubit, which recently was 
achieved for single electron charge in a semiconductor double 
quantum dot [113, 115, 173, 263].

For the purpose of its theoretical investigation, the cavity 
can be described as a resonator (see figure 10(a)) with only a 
single mode with frequency ωph that lies nearby the resonant 
frequency of the qubit splitting ω. Thus, the cavity is described 
without loss or decoherence effects by a quantum harmonic 

oscillator with this frequency ω= +H a acav ph
1

2
ħ ( )†  [267], 

where a† (a) creates (annihilates) a photon inside the cav-
ity with the very same frequency. The corresponding energy 

of the cavity is ω= +E ncav ph ph
1

2
ħ ( ) which depends on the 

average number of photons =n a aph ⟨ ⟩† . Many protocols for 

two-qubit gates [167, 168, 264] require the cavity to be in the 
ground state, therefore, depending on the resonance frequency 
to be cooled to very low temperatures, e.g. � µT 50 eV   for a 
10 GHz   cavity, while a few protocols also work with thermally 
populated cavities [262, 268].

In the approach of cQED the qubit-cavity interaction is 
described by the minimal coupling approach which replaces 
the momentum with the generalized momentum −p p Ae→  
that includes the electromagnetic vector potential A and the 
elementary charge e [267]. In the dipole approximation near 
the resonance the coupling is

= − ⋅E dH edip (47)

where = +E a a( )†E  denotes the electric field inside the cav-
ity and d is the dipole operator of the qubit. Defining the qubit-
cavity coupling strength as the transition amplitude between 
the qubit states ≡− | ⋅ |dg e 0 1⟨ ⟩E  allows for a quantitative 
comparison [168]. In order to find the dipole operator d the 
microscopic wave functions of the three-spin qubit states are 
necessary which are in general rather difficult to obtain [192]. 
Fortunately, there are a few approximations that help to over-
come this difficulty.

In a simplified picture, where the spatial extension of the 
QD is much smaller than the wavelength of the resonator 
mode, the qubit-cavity interaction is derived from the oscil-
lation of the electrostatic gate potentials [167]. Depending 
on which gate electrode is connected to the cavity, thus, the 

Figure 10. (a) Schematic illustration of a qubit implemented in a 
triple quantum dot coupled to the cavity and the architecture for a 
(b) asymmetric and (d) symmetric qubit-cavity coupling. The center 
conductor of the superconducting transmission line resonator is on the 
potential cavV  while the outer conductors are connected to the ground 
to screen off surrounding fields. The corresponding potential (green) 
and electric field (blue) is shown for the asymmetric (c) and symmetric 
(e) arrangement as a function of the position x. Figure taken from [3] 
with permission of the authors. Reprinted with permission from [3] 
Copyright 2016 by the American Physical Society.
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architecture of the qubit-cavity system (see figures  10(b) 
and (d)), ε, εM or both provide the coupling [17]. The corre-
sponding dipole operator is =d edx x with ex being the unit 
vector in x-direction and ν= ∂ ∂d H q qx ( ) / , where the qubit 
Hamiltonian H depends on the detuning αε βε= +q M with 
α β∈, R and α β+ = 12 2 . The phenomenological parameter 
ν describes the overall interaction strength and can be derived 
from the capacitances in the hybrid (qubit and cavity) sys-
tem [167]. For β = 0 only ε is relevant (corresponds to fig-
ure 10(b)) which leads to σ=d gx xħ  with the coupling strength 
[18]

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝
⎜

⎞
⎠
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ε ε
=

∂
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+
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∂

g

g

J j1

2
3

0

2 2

 (48)

with the exchange coupling = +J J J 2l r( )/  and = −j J J 2l r( )/  
from equations  (31) and (32) and, the vacuum coupling 
strength g0 [18].

In a more realistic picture, the microscopic three-electron 
real-space wavefunctions of the states |0⟩, |1⟩, |2⟩, |3⟩, |4⟩, and 
|5⟩ from equations  (11)–(18) are constructed from the sin-
gle-electron real-space wavefunctions [120] ψ| i⟩ with i  =  1, 
2, 3 needed for the dipole matrix elements [17, 168]. Since 
these single-electron real-space wavefunctions depend on 
the experimental setup, thus the number of QDs, we show in 
this paragraph only the results for the exchange-only qubit 
implemented in a TQD. Using the formalism of orthonor-
malized Wannier orbitals [3, 17], the overlapping wavefunc-
tions ψ| i⟩ are transformed into a basis of orthonormalized 
maximally localized [269] wavefunctions φ| j⟩. Requirements 
for this transformation are a small overlap between the sin-
gle-electron wavefunctions, �ψ ψ| | |=| |S 1i j ij⟨ ⟩  with i, j  =  1, 
2, 3 [17, 120, 168]. The full expression of the dipole opera-
tor in the basis | | | | | |0 , 1 , 2 , 3 , 4 , 5{ ⟩ ⟩ ⟩ ⟩ ⟩ ⟩} can be found in [3] 
and depends solely on the transition dipole matrix elements 

φ φ= | |x dij i j⟨ ⟩ of the single-electron Wannier orbitals. In the 
next step the geometry of the qubit-cavity device is needed, 
since it enters the expression through the dependence of 
the electric field E from the position (see figures  10(c) 
and (e)). An analytical expression for the asymmetric case 
= +E eE a a x( )†  with ex being the unit vector in x-direction 

(see figure  10(c)) inside the (1, 1, 1) charge configuration 
regime is [3]
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Here, g0 is again the vacuum coupling of the cavity, al (ar) 
is the inter-dot distance between QD 1 and QD 2 (QD 2 and 
QD 3) while ξRe( ) denotes the real part of ξ. This result is 
consistent with the results in the simplified picture (see 
equation  (48)) under the assumptions =xRe 0ij( )  for ≠i j, 
= −x al11  and =x ar33  which corresponds to a vanishing over-

lap between the single-electron wavefunctions. Obviously, this 
expression consists of two parts where each corresponds to 

the qubit-cavity coupling of a DQD [168], thus, the combined 
effect of the coupling of two DQDs. For a symmetric architec-
ture where the cavity is connected to the gate electrode of QD 
2 (see figure 10(d)) the electric field is position dependent (see 

figure  10(e)), ⎡
⎣

⎤
⎦= + +

π
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−
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E ea atan d e
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where T is a dimensionless screening parameter. Practically, 
T describes sharpness of the bend in the electric potential 
(see figure 10) and needs either to be simulated or measured. 
Approximate analytic expressions exist for large screening 
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where the full expression of | ⋅ |d eg ex
2⟨ ( ) ⟩ is found in [3]. A 

comparison of the asymmetric and the symmetric coupling 
strength is seen in the top row of figure 11 which shows the 
minimal vacuum coupling needed to reach strong coupling.

Instead of focusing solely on the transition dipole 
matrix elements typically used for (transversal) two-qubit 
entanglement protocols [167, 168] one can also calcu-
late the longitudinal [109, 111] dipole matrix element 
= | ⋅ | − | ⋅ |d dg 0 0 1 1 2l (⟨ ⟩ ⟨ ⟩)/E E  used for longitudinal entan-

glement protocols [116, 217, 270, 271]. The crucial difference 
is that the first induces a transition between the qubit states 
| |0 1⟩ ↔ ⟩ through the absorption/emission of a cavity photon, 
while the longitudinal dipole matrix element only changes 
the phase of the qubit state assisted by the cavity photon. Its 
strength can be estimated by the same procedure as for the 
transverse coupling.

Under realistic settings, both couplings, the transversal and 
the longitudinal, are permanently present. However, depend-
ing on the exact position in the ε ε, M( )-space, their strength 
changes significantly, therefore, effectively turning off one kind 
of coupling [116, 218]. This resembles a sweet spot (where 
first order effects vanish) for this type of coupling (see sec-
tion 4.2). Combining all the above elements, the qubit-cavity 
Hamiltonian in its eigenbasis, up to a constant shift in energy, is

ħ ħ ( ) ( )† † †ωσ ω σ σ σ= + + + + +− +H a a g a a g a a
2

z l zph (51)

with the ladder operators σ σ σ= ±± i 2x y( )/ . This expression 
corresponds to the extended Jaynes–Cummings Hamiltonian 
[272–274] and is derived using a rotating wave approx imation, 
� ωg ph, whereby the counter-rotating terms σ+a†  and σ−a  are 

excluded since they oscillate with twice the cavity frequency 
and therefore average out [275].

Concepts for two-qubit gates. In the conventional scheme 
for a long distant coupling the qubits are entangled using 
the photons as a carrier of information [166]. This concept 
is generally applicable for all two-level systems and only 
needs a sufficiently strong qubit-cavity coupling outmatch-
ing the loss and dephasing effects [168, 264, 276]. The start-
ing situation is as follows; two three-spin qubits in the same 
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cavity that both are transversally coupled to the same cavity. 
Operating in the dispersive regime � ω ω|Ω | ≡ | − |g i ph 1,2 , 
where ωiħ  is the qubit energy splitting of qubit i  =  1,2, the 
cavity mode can be eliminated by a Schrieffer–Wolff trans-
formation [168, 264, 276] yielding the effective Hamilto-
nian [17, 18]

∑ ω σ τ σ σ σ σ= + + +
=

+ − − +H g
1

2
.

i
i i z i

1,2
, eff ,1 ,2 ,1 ,2ħ( ) ( )( )ε (52)

Here, the ladder operators σ± i,  act on qubit i, the coupling 
strength is given by = Ω +Ω Ω Ωg g geff 1 2 1 2 1 2( )/  with the 
detuning Ωi of qubit i, and iε  denotes the Stark shift of qubit 
i. After the time τ π= g2g effħ /  the two-qubit interaction yields 
the universal iswap-gate [17, 168, 277]. A sequence of two 
iswap-gates and two single-qubit rotations form a cnot-gate 
[278]. In an earlier approach, a cnot-gate gate is generated 
by the same Hamiltonian by using the two-qubit π 4/ -gate 
instead [166]. Figures  11(c) and (d) show qualitatively the 
required quality factor ω Ωph 1,2/  for a successful entangle-
ment considering dephasing due to charge noise through 
the respective detuning parameter, i.e. ε for an asymmetric 
architecture and εM for the symmetric architecture. Using 

realistic parameter settings, the iswap-gate can be performed 
in τ = 540 nsg    with a fidelity of 99% while for faster gates the 
fidelity decreases [18].

Instead of operating in the dispersive regime, a faster alter-
native scheme uses resonant driving [18]. This scheme, based 
on the Cirac–Zoller gate for trapped ions [40, 279], uses side-
band transitions [276, 280, 281] that are generated when an 
external driving field ν is included in the qubit-cavity system. 
For resonant driving between the driving field and the qubit 
transition, ν ω= , the interaction Hamiltonian in a rotating 
frame is [18]

σ σ σ= ∆ + + +Ωφ φ
+

−
−H a a g a ae e ,y0

i i( )† † (53)

where φ is the phase and ε the amplitude of the driving field, 
∆0 is the detuning between the driving field and the cavity, 
and Ω = ∆g 0/ε  is the Rabi frequency of the qubit. Switching 
into a second rotating frame of the Rabi frequency and care-
fully adjusting the detuning ∆ =± Ω20  yields ‘red’ and 
‘blue’ sideband transition Hamiltonians [18]

∓
∓σ σ= +φ φ

±
±

±H
g

a a
2

e e .i i( )†
 (54)

Figure 11. (Top row) The minimal vacuum coupling g0 needed to reach strong coupling between the qubit and the cavity under the 
assumption that qubit dephasing is the dominant loss mechanism. (Bottom row) Minimal Q-factor of the cavity needed for successful 
entanglement between two qubits in the same cavity using dispersive transversal coupling. Panels (a) and (c) show the results for 
the asymmetric architecture and with noise only in the asymmetric detuning parameter ε, while (b) and (d) show the results for the 
symmetric architecture and noise only in the symmetric detuning parameter εM. The parameters are chosen as follows; ω = 4.7 GHzph   , 

π= ×g 2 10 MHz0   , =t U0.022l , =t U0.015r , and the noise strength = −A U10q
3 2( )  where ε=q  in (a) and ε=q M in (b). The datasets 

for ϕT  are obtained from [3]. For the scale of ϕT  and g an explicit value of =U 1 meV   is used. Reprinted with permission from [3] Copyright 
2016 by the American Physical Society.
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An entangling controlled-Z gate is constructed using 
pulses of ‘red’ and ‘blue’ sideband transition gates 
φ τ φ τ≡ −± ±S H g, exp i , ħ( ) ( ( ) / ) combined with single-qubit 

rotations. One of such a pulse sequence consists of seven 
pulses providing a controlled-Z gate time τ = 270 nsg    with a 
fidelity of 99.6% for realistic parameter settings [18].

The concept of cQED with longitudinal coupling was orig-
inally developed to read out the qubit states via a microwave 
cavity [109, 111, 114], however, can also be used to entan-
gle multiple distant qubits [114, 116, 217, 270, 271]. This 
concept is generally applicable for two-level systems, does 
not rely on perturbative arguments, and solely bases on the 
parametric modulation of the longitudinal qubit-cavity cou-
pling, therefore, does not produce any residual terms in the 
Hamiltonian [217]. The starting situation is as follows; two 
three-spin qubits (two-level systems) are both longitudinally 
coupled to the same cavity (see equation (51)) while the trans-
versal coupling g  =  0. The longitudinal coupling leads to a 
small displacement of the oscillator field which can be signifi-
cantly increased by resonant driving at the cavity frequency. 
Since the resonant driving leads also to a rapid dephasing, the 
modulation drive ωm is to be chosen off-resonant that finally 
gives in the polaron frame rise to [217]

ħ ( )†∑ ω σ ω τ σ σ= + +
=

H a a g
2

,
i

i z i z z
1,2

, ph eff ,1 ,2 (55)

where σz i,  acts on qubit i whose states are split by ωiħ . The two-
qubit interaction σ σz z,1 ,2 yields, after time τ θ= | |g4g eff/ , the 
entangling controlled-phase gate = θU diag 1, 1, 1, ei[ ] suf-
ficient for universal quantum computing [217]. An 
approximate expression for the coupling strength [217] is 

ω ω ω ω ω= − − +g g gl l m meff ,1 ,2 ph ph ph/[( )( )]. While resembling 
the transversal coupling [276], the key difference is that for 
longitudinal coupling the results are exact and not only valid 
in a limited regime. Furthermore, under certain parameter 
settings, the gate starts and ends in the vacuum state of the 
cavity, therefore, the gate can be performed non-adiabati-
cally which yields, with realistic but optimistic parameter 
settings, τ = 37 nsg    with a fidelity of 99.99%. Note, that 
there is no trade-off between gate time and fidelity for this 
scheme, thus, allowing for fast gates with arbitrarily small 
errors [217]. Increased fidelity is achieved if squeezed pho-
ton states instead of coherent states are used [217]. More 
specific investigations regarding three-spin qubits allow the 
operation of such a gate on such time-scales while operated 
on a charge noise sweet spot [116]. However, all of the above 
requires a pure longitudinal coupling with no residual trans-
versal coupling.

4. Decoherence effects in three-spin qubits

The main sources of decoherence in three-spin qubits are 
magn etic noise due to nuclear spins, charge noise originating 
from random fluctuations in the host material or transmitted 
via the electric gates [5] and spin–orbit interaction. Spin–orbit 
interactions play a less important role in this review due to 
the choice of host material, typically GaAs and silicon, and 

design of the device, i.e. lateral quantum dots in a 2DEG [78, 
79] versus QDs in wires or nanotubes which usually have 
stronger spin–orbit interaction [86, 129, 282].

4.1. Magnetic noise

Since both qubit states of the three-spin qubits have identi-
cal spin quantum numbers S and Sz such three-spin qubits 
possess a natural protection against global magnetic fields 
[237]. Depending on the qubit implementation this degree of 
protection against global magnetic field fluctuations varies. 
The DFS qubit is completely immune against general collec-
tive noise which includes all noise that couples identically to 
each spin in the system [1, 2, 19, 237, 283–285]. The DFS 
Hamiltonian of a system coupled to a noise bath can then be 
expressed as = + +H H H Hsystem bath int and the interaction is 
= ∑ ⊗α α αH S Bint  where S solely acts on the system and B 

solely acts on the bath. The DFS qubit states both lie in the 
same subspace of such a αS , thus, both affected identically by 
the noise [237]. However, only global Overhauser (effective 
nuclear) fields [145, 286–288], which would require a perfect 
polarization of the nuclear spins, are considered by general 
collective noise while static and fluctuating magnetic field 
gradients between the QDs are not considered, therefore, still 
inducing leakage [23, 70] and dephasing [5, 21]. The general 
theory of DFS is already covered in a related review [237] and 
we focus in this review on the effects due to Overhauser field 
gradients.

4.1.1. Decoherence due to magnetic noise. The main comp-
onent of magnetic noise is induced by nuclear spins surround-
ing the nanostructures and coupling to the trapped electron 
spins in the QDs. These nuclear spins are present in almost 
all host materials with only a few having a nuclear spin free 
isotope, i.e. carbon (≈99%), silicon (≈95%), and germanium 
(≈91%), and unless one uses one of these materials, the nuclear 
spins interact with the trapped electrons through the hyper-
fine interaction [287, 288]. Due to their (almost) omnipresent 
nature the nuclear spins themselves and their effects on QDs 
are studied and reviewed very carefully in literature, e.g. by 
Coish and Baugh (see [145]), thus, we dispense with a repeti-
tion of the basics and focus on their effect on three-spin qubits.

Considering only the contact hyperfine interaction of the 
ground-state orbital of the QD, which requires low temper-
ature and large orbital level spacing [145, 289], the inter-
action between the three-spin qubit and a bath of nuclear 
spins is effectively described by [23] = ∑ ⋅= S BH i i iHI 1

3  with 
= ∑ ∈B IAi k i k i k, . Here, Ak,i is the hyperfine interaction constant 

of a nucleus with spin Ik interacting with the electron spin in 
QD i. In typical experiments the nuclear spins are randomly 

oriented =B 0i⟨ ⟩  with a finite standard deviation ≈Bi i
2⟨ ⟩ A  

where iA  is the average hyperfine energy [23] coupled to elec-

tron spin i. These Overhauser fields Bi can be correlated due 
to a finite overlap between the spin wavefunctions of the elec-
tron i since a nucleus in an overlapping region affects both 
electron spin. In realizations using TQD devices these corre-
lations can be small due to their small overlap. Depending on 
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the material these coupling constants iA  can be rather strong, 
e.g. µ≈ 85 eVi  A  (for a full list see [145]) for GaAs giving 
rise to effective Overhauser fields | | ≈B 5 Tj    for the unrealistic 
case of fully polarized nuclear spins. For unpolarized nuclear 
spins, however, the Overhauser fields scale with ∝ N1/  lead-
ing to typical values | | ≈B 5 mTj    for N  =  106 nuclear spins 
[145]. These Overhauser fields have two main effects on the 
three-spin qubit.

Differences in the Overhauser fields cause leakage into 
the non-computational space due to the spin non-preserving 
nature of HHI. Therefore, without an external magnetic field 
the Overhauser fields couple almost all spin states giving 
rise to leakage into nearly every state. Reverting the leak-
age requires complicated sequences of pulsed magnetic 
fields, thus, losing the benefit of the three-spin encoding [23]. 
However, subject to a large magnetic field, the EO subspace 
qubit, S  =  1/2 and Sz  =  +1/2 leaks only into a single state, the 
S  =  3/2 and Sz  =  1/2 state

| = |↑↑↓ +|↑↓↑ +|↓↑↑L
1

3
,⟩ ( ⟩ ⟩ ⟩) (56)

giving rise to an effective three-level system. It is preferable to 
work in a regime where both Zeeman energy Ez and exchange 
splitting J is significantly larger than the Overhauser fields, 
�J E, z iA , since their leakage is suppressed ∝ Ji/A . Outside 

this regime, the leakage dynamics occurs in timescales of 
nanoseconds [23].

Nuclear field gradients between the QDs make the qubit 
vulnerable to inhomogeneous broadening which cause 
dephasing of the qubit states due to the acquisition of random 
local phases. Setting up a Ramsey free induction type meas-
urement consisting of two π 2/ -pulses separated by the time 
τ can quantify dephasing. Considering Gaussian distributed 
Overhauser fields which is valid under typical experimental 
conditions [78, 145] the resulting inhomogeneous broadening 
dephasing time is given by [23, 145]

⎛

⎝
⎜

⎞

⎠
⎟∑ ν∝

=

−

T .
i

i i2
1

3
2 2

1 2/

A� (57)

Here, iA  are the standard deviations of the Overhauser fields 
in QD j while their impact is given by the weighing factors 
ν ν= = 11 3  and ν = 22 . Therefore, the dephasing times of 
three-spin qubits are roughly on the same timescales as for 

spin-1

2
 qubits ( ≈T 10 ns2  � ) assuming uncorrelated Overhauser 

fields in each dot [23].

4.1.2. Suppressing magnetic noise. Since nuclear noise has 
typically a very slow dynamics [290] dynamical decoupling 
(DD) [145, 205, 291–295] offers an efficient way to counteract 
the effects of noise. In simple words, DD decouples the noise 
from the system, e.g. through gate sequences which swap the 
electrons in such a way that each electron is exposed to the same 
noise, thus, ‘globalizing’ the random phase. Under the assump-
tion of static noise, a simple example is the permutation sequence 
which cyclicly swaps the electrons after each time interval τ. In 
this review, we focus on recent advances in DD which only use 

the exchange interaction for the decoupling sequence in agree-
ment with the concept of the EO qubit; for the general case we 
refer to [237].

The starting situation is the following; a single three-spin 
qubit implemented in a linear TQD where the electron in 
each QD is coupled to a large number of nuclear spins. The 
three-spin qubit system in the (1, 1, 1) charge configuration 
is described by the Heisenberg exchange Hamiltonian plus a 
Zeeman term including the fluctuating Overhauser fields [26]

∑σ σ σ σ σ= ⋅ + ⋅ + ⋅
=

BH
J J

4 4
.

n
n n1 2 2 3

12 23

1,2,3
 (58)

Assuming a strong Zeeman splitting the dynamics of the qubit 
is described by the qubit states and single relevant leakage 
state |L⟩ (see equation (56)).

Introduced by West and Fong [25], the DD sequence con-
sists only of operations ijSWAP  that interchange the spin of QD 
i and QD j and which are realized by the exchange interaction 
[123]. During the swap operation leakage is suppressed by 
exchange [23], thus, dephasing is only possible in the remain-
ing QD during the short time of an operation since exchange 
is completely turned on in-between the pulses [25]. Only 
sequences are considered which consists of the permutation 
=P SWAP23SWAP12 and its inverse =−P 1 SWAP12SWAP23. Under 

the assumption of Gaussian distributed noise the variance of 
the gathered phase differences, which cause the dephasing, 
can be expressed in terms of switching functions τfj ( ) with 
j  =  1, 2, 3 which are defined according to the position of the 
spin states regarding their initial position and their rescaled 

Fourier transforms ∫γ τ≡ ω ωt fd ej i

T t
j0

i ( ) [25, 26]. The result-

ing expression for the variance of the phase differences is

∫ ∑π
ω γ ω

ω
ω

∆Φ = | |
∞

=

T T
S1

d ,
j

j
2

0 1

3
2

2
⟨ ( ) ⟩ ( ) ( )

 (59)

where ωS( ) is the power density noise spectrum of the noise 
which for simplicity is assumed to be identical in each QD 
whereas the noise in each dot is uncorrelated. The cross- 
correlation of the noise depends on the system and can be 
measured, e.g. using spatial separated QDs [296]. For a sim-
ple permutation sequence and the West and Fong sequence of 
length n the switching functions take the values fi  =  −1, 0, 1 
(for the exact definitions see [25, 26]) at the times δT j where 
δj with j  =  1, ..., n are the waiting times.

There are many concepts for optimizing the waiting times 
δj the most popular being the CPMG sequence [297, 298] 
which uses equidistant time intervals δ∆ = n1j / . However, 
CPMG is not optimized for the three-spin case, thus, does not 
lead to γ = 0i  in lowest order. Until now the best concepts are 
Uhrig dynamical decoupling (UDD) [299–301] and optimized 
noise filtration dynamical decoupling (OFDD) [302] depend-
ing on the given noise. UDD requires that the Fourier trans-

forms vanish up to an order m, thus, | =γ∂
∂ = 0

q

q q 0

k
i

k

( )
 for k  =   

0, ..., m and i  =  1, 2,3. In the single spin case n  =  m pulses are 

required [299] with the analytical expressions for the wait-
ing times δ π= − +j n1 cos 1 2j [ ( /( ))]/ . For the three-spin case 
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n  =  2m pulses are required [25] while the expression for the 
waiting times are obtained from the solution of the 2m poly-
nomial functions up to order m. OFDD directly minimizes 

the int egral ∫ ω γ ω∑ | |= Td j j0

1
1

3 2( )  finding a suitable set for 

the waiting times δj. The integrals can be treated analytically, 

however, the values have to be determined using numerical 
optim ization, e.g. one can use the values for CPMG and UDD 
as starting values. A comparison of both strategies is displayed 
in figure 12 which shows the better results of OFDD for both 
considered types of noise.

4.2. Charge noise

Charge noise or electrical noise, produced by fluctuations of 
charges or electric fields, is an omnipresent phenomenon if 
any form of electric control is used in experimental setups, 
directly, e.g. electric potentials to attract/deplete electrons or 
indirectly, e.g. background charge fluctuations. Thus, this also 
includes each device based on semiconductors or metals since 
electrons, the carriers of the charge, move around freely which 
unavoidably results in fluctuations due to the discreteness of 
the electric charge. These charge fluctuations can be corre-
lated in time or space depending on the source of the noise. In 
semiconductors, the background noise is typically dominated 
by low-frequency noise or colored noise which has a spec-
tral density ω ω= γ−S A( ) , where γ is the noise exponent [177, 
178]. Noise which is induced into the qubit system through 
the gate electrodes necessary for confining and controlling the 
electrons is typically Nyquist–Johnson noise [303–306] due 
to the finite temperature and shot-noise [307] due to quanti-
zation (graininess) of electric charge. Like magnetic noise, 
charge noise also depends on the system [179, 296, 308], how-
ever, to a smaller degree than for magnetic noise from nuclear 
spins, e.g. charge noise can be enhanced in the presence of 
piezoelectric phonons and their coupling strength. Therefore, 
charge noise cannot be changed significantly if the host mat-
erial is replaced, since freely-moving electrons exist in every 
semiconductor and every device is connected to wires.

In this section, we investigate the effect of charge noise on 
three-spin qubits and look for approaches to avoid noise in the 
first order and consecutively, if this is not possible, to avoid the 
effects of such noise. The first approach is usually treated by 
working on ‘sweet spots’, points in parameter space which are 
least susceptible to noise, while the latter is usually taken by 
using dynamical decoupling techniques [295, 308, 309]. Since 
dynamical decoupling of charge noise is already presented in 
the previous section and in a related review [184], we mainly 
study the techniques for avoiding the noise in this review.

4.2.1. Decoherence due to charge noise. Electric noise affects 
the charge degrees of freedom in a quantum system, thus, allows 
for coupling through every electrically controlled parameter in 
the system. The dominant links which couple the charge noise to 
the TQD qubit are the detuning parameters, ε (detuning between 
outer QDs) and εM (detuning between center QD and mean 
of outer QDs) from equation (25), linked to the gate voltages 

underneath each QD [3, 6, 16, 20, 24, 310] (see figure 13). This 
is because these control param eters typically induce the qubit 
gates, thus, they have to be addressed fast and precisely over a 
large range which limits the amount of noise filtering [59, 67, 
69]. Furthermore, the tunneling parameters, tl and tr, also pro-
vide a significant noise contrib ution if the qubit is operated sym-
metrically by controlling the tunnel barriers between the qubits 
[96, 183] (see figure  13). Additional parameters worth being 
considered are the charging and confinement energies [200] but 
these play a less important role since they are static, allowing 
for low-pass filtering. Formally, the noisy control parameters 
are described by considering noisy parameters δ δ=q q f q( ) ( ), 
where f is some function which describes how the noisy param-
eter q is affected by the corresponding fluctuations δq. Typically, 
one assumes that the strength of charge noise is unaffected by 
the strength of the noisy parameter, thus, δ δ= +q q q q( )  [3, 6, 
16, 20, 24, 310]. While by definition the average of these fluc-
tuations vanishes, δ =q 0⟨ ⟩ , under realistic conditions there are 
no measurements yet in TQD devices of the standard devia-
tions and higher cumulants. For the detuning parameters, ε 
and εM, measurements in single QDs and DQDs indicate val-

ues of �ω µ
ω=

−S 5 eV Hz
1 Hz

1( )    
 

 in a GaAs device [175, 

311–317] and �ω µ
ω=

−S 1 eV Hz
1 Hz

1( )    
 

 in SiO and Si/

SiGe devices [318, 319]. An effective measurement of detuning 

charge noise in an isotopically purified Si/SiGe TQD indicates 

a higher value, �ω µε
ω=

−S 15 eV Hz
1 Hz

1( )   /
 

 for 1/f-noise 

Figure 12. Comparison of the infidelity 1  −  F as a function of the 
dimensionless storage time ω=′T T 1 for both noise decoupling 
strategies, Uhrig dynamical decoupling (gray) and optimized 
noise filtration dynamical decoupling (black), (a) assuming ohmic 
noise with ω ωθ ω ω ω= −S 1 1( ) ( )/  and (b) Lorentzian noise 
ω ω ω= +S 1 1 1

2( ) /( ( / ) ) noise. Here, ω1 is a sharp cut-off frequency 
for ohmic noise while ω1 is the line-width for the Lorentzian noise. 
The dashed lines correspond to the single spin case, the solid lines 
correspond to the simple permutation cycle, and the dotted lines 
correspond to the West and Fong sequence. Reprinted with permission 
from [26] Copyright 2016 by the American Physical Society.
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[69]. While these values are likely to be accurate for ε, the noise 
coupling for the symmetric detuning εM are claimed to be ten 
times smaller [310]. The fluctuations of the remaining param-
eters such as the tunnel couplings is still unknown, but the tools 
to measure these are already present [296, 309, 320]. These 
charge fluctuations affect the qubit states but, unlike magnetic 
noise, do not cause any leakage out of the qubit space due to 
the spin conserving nature of charge noise. Leakage into other 
charge states with the same spin numbers such as (1,0,2) is still 
possible but ideally suppressed by detuning.

Since these longitudinal fluctuations are random the qubit 
states acquire local phases which are by definition unknown 
resulting in a dephasing of the qubit. A simple measurement 
to track these effects is provided by a Ramsey free decay 
sequence consisting of two π 2/  pulses separated by the waiting 
time τ [321]. Starting in the state |0⟩, the first π 2/ -pulse pro-
duces a superposition of the qubit states, |+ = | +|0 1 2⟩ ( ⟩ ⟩)/ . 
After the second π 2/ -pulse the return probability into the |0⟩ 
state is given by τ τ= +P f1 Re1

2
( ) ( [ ( )]) with

τ = =φ τ φ τ−f e ei 2C
2

( ) ⟨ ⟩( ) ⟨ ( )⟩ / (60)

where φ τ( ) is the average of the acquired phase difference 

between the qubit states and φ τ C
2⟨ ( )⟩  its second cumulant. 

For the second equality Gaussian distributed charge noise is 
assumed [3, 20]. The decay exponent itself strongly depends 
on the exact noise spectral density ωS( ). Considering 1/f-noise 

one finds φ τ τ= ϕTC
2 2 2⟨ ( )⟩ /  with the pure dephasing time ϕT .

The transversal effect of charge noise causes random trans-
itions between the qubit states. However, since the time-scales 
of the transitions are rather long (milliseconds) the qubit-flip 
errors can often be neglected.

4.2.2. Sweet spots and optimal working points. The starting 
situation is: a single three-spin qubit implemented in a linear 
TQD affected by charge noise through various noisy param-
eters q. In general, the noisy Hamiltonian is = +H H H0 noise 
where ωσ=H 2z0 ħ /  is the unperturbed qubit Hamiltonian in 
its eigenbasis and

ħ [ ]δω σ δω σ δω σ= + +H z z x x y ynoise
 (61)

is in the same basis and directly follows from perturbation 
theory with the single requirement that the fluctuations are 
small compared to the energy gap. The perturbation terms, 
one longitudinal and two transversal, are given by
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δω = | | + | |g H e e H g
1

2
,x q q1, 1,(⟨ ⟩ ⟨ ⟩) (63)

δω = | | − | |g H e e H g
1

2i
,y q q1, 1,(⟨ ⟩ ⟨ ⟩) (64)

where δ= ∂
∂

H H qq q1, , ω ≡ ω∂
∂q q

, and ω ≡ ω∂
∂ ∂p q p q,

2

. For the 

approximation in the second term the perturbation is expanded 
up to second order in the fluctuations δq. Therefore, the most 
devastating effect is contributed by the longitudinal charge 
noise δωz which becomes clear when expanding the eigenen-
ergy gap
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while the transversal charge noise, δωx and δωy, contributes 
only second order and becomes smaller for large ω [3, 20]. 
Using equation  (19) and low-frequency noise ω ω=S Aq( ) / , 

where σ=Aq q
2 is the squared standard deviation of the noise, 

the Ramsey free decay pure dephasing time is [3]
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(66)

with the ratio ω ω=r U L/  of the upper cut-off frequency ωU  
and the lower cut-off frequency ωL.

With this in mind, a formal definition for ‘sweet spots’ [3, 
5, 6, 16, 20, 24, 234, 310] of order = …n 1, 2, 3,  is

∑ω δ =q 0,
q

q (67)

with the sum running over n terms since then the dominating 
terms in the expressions above vanish (see equations (62) and 
(66)) [3]. A full sweet spot is only possible if each term in 
the sum vanishes simultaneously and a sweet spot of order n 
requires that n terms are zero. This condition corresponds to 
an extremum of the qubit energy gap with respect to the noisy 
parameter q. In the following we denote sweet spots of the 
order n  =  1 and n  =  2 as single sweet spots (SSSs) and double 
sweet spots (DSSs).

Figure 13. Schematic illustration of a three-spin qubit coupled to 
charge noise. The environment mainly affects the electron spins 
directly through the gate voltages Vi with ∈i 1, 2, 3{ } of each 
quantum dot (QD) or the exchange coupling (green cloud) between 
the electron spins through the gate-controlled tunnel hopping (tl  
and tr). Reprinted with permission from [3] Copyright 2016 by the 
American Physical Society.
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For the detuning parameters, ε and εM, there are five known 
DSSs [3]. One is located in the center of the (1,1,1) charge 
configuration regime [16, 24] (see figure 14(a)), ε ε= = 0M  
(for symmetric charging energies), and the motivation behind 
the AEON qubit (see section 2.3.3). The reason for this is the 
high degree of symmetry this point possesses, being aligned 
symmetrically to the four charge configurations (1, 0, 2),  

(2, 0, 1), (1, 2, 0), and (0, 2, 1) and in the center of the  
(1, 1, 1) charge configuration regime yielding a real mini-
mum of the energy gap. The other four DSS are located each 
at the charge transitions between two neighboring asymmetric  
((1, 0, 2), (2, 0, 1), (1, 2, 0), or (0, 2, 1)) and the (1, 1, 1) 
charge configuration [3, 20]. They are approximately located at 
ε ε = − −U U U U, 0, , 0, , , 0 , , 0M( ) ( ) ( ) ( ) ( ) (see figure  14(a)) 

Figure 14. Dephasing time ϕT  given by equation (66) due to longitudinal noise as a function of the detuning parameters ε and εM. In the 
top row ((a) and (b)) we plot ϕT  resulting from charge noise in the two detuning parameters ε and εM, in the center row ((c) and (d)) we plot 
ϕT  resulting from charge noise in the two tunneling parameter tl and tr, and in the bottom row ((e) and (f)) we plot ϕT  resulting from charge 

noise from all four parameters combined, where we choose the parameter settings identical in each column. The left column shows results 
for weak tunneling and strong noise while in the right column, results for strong tunneling and weak noise are plotted. Parameters are set as 
follows; =t U0.022l , =t U0.015r , = −A U10q

3 2( )  where ε ε=q , M in (a) and (e), and = −A U10q
4 2( ) , where =q t t,l r in (c) and (e), for 

the left column and =t U0.22l , =t U0.15r , = −A U10q
5 2( )  where ε ε=q , M in (b) and (f ), and = = −A A U10t t

6 2
l r ( ) , where =q t t,l r in 

(d) and (f), for the right column. To include a large frequency bandwidth, we globally set the ratio of the lower and higher frequency cut-off 
= ×r 5 106. For the scale of ϕT  we used an explicit value of =U 1 meV  ; note that ϕT  scales inversely proportional with U. The black dots 

indicate the DSS. Reprinted with permission from [3] Copyright 2016 by the American Physical Society.
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whereby the real positions are slightly shifted due to the influ-
ence of the other charge configurations. Since these four DSSs 
possess less symmetry these positions are not minima of ω but 
correspond to saddle points [3]. Taking into account also the 
second order effects, the center DSS is clearly favorable com-
pared to the remaining four DSS (see figure 14(a)). The expla-
nation of such case, e.g. for the top DSS that corresponds to the 
2, 0, 1 1, 0, 2( ) ↔ ( ) charge trans ition, would be the large electric 

dipole moment between the (2, 0, 1) and (1, 0, 2) states provid-
ing a channel through which charge noise couples to the qubit. 
On the other hand, the center DSS possesses only a vanishing 
electric dipole moment providing a better protection [3, 16]. 
Increasing the strength of the tunnel couplings, experimentally 
achieved by lowering of the tunnel barriers, smoothens out the 
curvature, giving rise to longer dephasing times and decreasing 
difference between the DSSs (see figure 14(b)). The drawback 
of the center DSS is that its energy gap is minimal, making 
the gate operations slower. Since charge noise through εM is 
claimed to be ten times smaller [310] it can be sufficient to 
work on a SSS with respect to only ε noise combined with 
a strong exchange splitting (RX regime) [5, 6]. As exper-
imentally demonstrated, when working at a SSS, the dephas-
ing time is increased significantly, reaching µ=T 19 s2    while 
measuring a larger spectral density exponent. This indicates 
that higher order effects play the dominating role, thus, a tell-
tale sign of a sweet spot. However, this measurement includes 
also nuclear noise, making it difficult to differentiate between 
these two [5].

For noisy tunneling parameters, tl and tr, there exist no 
such DSSs where the impacts of both tunneling parameters 
are minimized simultaneously [3] (see figures 14(c) and (d)). 
Therefore, only single SSSs exist which are located at the 
charge transitions associated with the tunneling param eter, e.g. 
tl is minimized nearby the 2, 0, 1 1, 1, 1( ) ↔ ( ) charge configu-
ration [3]. With their strong impact, fluctuations in the tunnel 
couplings altogether limit the dephasing times significantly 
and even more strongly than detuning noise if both fluctuations 
are comparable in strength. Since the effect of fluctuating tun-
nel barriers on the tunnel couplings is still under invest igation, 
only qualitative conclusions are possible at this stage [3]. Such 
a qualitative comparison is shown in figures 14(e) and (f).

4.2.3. Spin-phonon relaxation. Additionally to dephasing, 
charge noise can also induce relaxation of the qubits via the 
electron–phonon interaction [22, 78, 322–324] through the 
dipole moment of the qubit [6, 18]. The phonons in the host 
material create an electrical field, e.g. polar or piezo-electric 
phonons, which couples via the electric dipole moment to the 
qubit inducing relaxation. Direct spin-flips are forbidden due 
to the dipole transition rules, however, can be mediated by 
mechanism such as spin–orbit interaction. This interaction 
depends on the lattice symmetry of the host material and is 
described for the most common materials (GaAs and silicon 
with strain in 0 0 1[ ] ( ′ẑ ) direction) by [6, 18]
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Here, µ −a k,
†  ( µ −a k, ) creates (annihilates) a phonon with wave 

vector k, polarization μ, sound speed µc , and unit polariza-
tion vector µ k,ε̂ . System material dependent parameters are the 
Volume V0 and the density of mass ρ0, while the host mat-
erial dependent parameters are the longitudinal deformation 
potential Ξl and the piezoelectric constant Ξ for GaAs, and the 
dilation and the uniaxial deformation potential (Ξd and Ξu) for 
silicon [325]. Note, the expressions for the two materials only 
differ by a single term, as there is no strain in GaAs and no 
piezoelectric phonons present in silicon.

The relaxation rates can now be calculated via Fermi’s 
golden rule [6, 18] ρ ω= Γ∼ | | | |T g H e1 1

ep
2/ ⟨ ⟩ ( ) where 

ρ ω( ) is the phonon density evaluated at the qubit energy 
gap ωħ . Within a simple model one finds for GaAs [6], 

ω ν ξΓ∼ 3
GaAs
2 4( / ) , and silicon, ω ν ξΓ∼ 5

Si
2 4( / ) , with the fitting 

parameters νGaAs,Si and the ratio between tunneling and the 
quadrupolar detuning ξ ε= −t UM/( ). These results agree 
well with exper imental and theoretical investigations [22, 
155, 326] of single and double quantum dots showing the 
dominance of piezoelectric phonons (∼ω3) for GaAs and 
their absence in silicon (∼ω5). Using realistic parameter 
settings it is estimated that these relaxation rates are small 
in GaAs [6], Γ∼ 1–100 kHz   and even smaller in Si [18], 
Γ = 1–100 Hz  . Therefore, Si is better protected due to the 
absence of piezo-electric phonons. It should, however, be 
noted that studies which include valley physics (see next 
paragraph) and their effect on the relaxation rates is still an 
open problem.

4.2.4. Nuclear spin free materials and valley degree of  
freedom. Despite the better performance of silicon an impor-
tant factor is the six-fold (valley) degeneracy of the ground-
state in bulk silicon. Applying strain raises four of the six 
valleys in energy such that there exists in silicon QDs an addi-
tional two-fold valley degeneracy which has the properties of a 
pseudo-spin [79]. This two-fold valley degeneracy can be lifted 
by interfaces in the 2DEG, however, the exact orientation and 
splitting of the valley depends on atomistic steps of the interface 
[327–335]. Additional imperfections in the cut-angle lead to a 
valley-orbit mixing [327, 328], thus, the valley degree of free-
dom is not a good quantum number anymore. This all together 
makes the valley splitting very unpredictable and difficult to 
deal with, since it opens several additional leakage channels 
due to the increased number of total states (with equivalent spin 
numbers). Further research is required to fully understand and 
control the valley splitting before it can be used constructively.

In SiMOS devices the valley splitting is controllable to some 
degree by an electric field perpendicular to the interface [63, 90, 
334–340] which pushes the electrons into the overlap changing 
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the overlap of the electron wavefunctions with the interface 
steps. There are theoretical concepts of utilizing the valley as an 
additional qubit [329, 330], however, due to the unpredictable 
nature a large valley splitting is typically preferred in experi-
ments involving silicon as the host material.

5. Perspectives

This review describes the recent experimental and theoretical 
progress and achievements in three-spin qubits that were ini-
tially proposed over a decade ago. Several realizations of the 
three-spin qubits have been discussed, such as the exchange-
only qubit, the spin-charge qubit, the hybrid qubit, the resonant 
exchange qubit, and the always-on exchange only qubit, with 
special attention to their potential to fulfill the DiVincenzo cri-
teria [36]. We organize our summary according to these five 
criteria.

 (i) Having a scalable system with well-defined qubits. 
Electron spins fulfill definitely the requirement of well-
defined qubits; thus, three-spin qubits inherit this property 
if encoded in a proper subspace which is the case. The 
requirement, however, can be violated by leakage since 
the three-spin qubit is encoded only in a subspace of the 
full three-spin space. But external global magnetic fields 
and the exchange interaction can be used to energetically 
separate the qubit space from the non-computational 
space, thus, reducing the leakage to a manageable 
quanti ty. Scalability follows from the geometry of the 
quantum dots and the gate electrodes.

 (ii) Being able to initialize a proper state such as �|00000 ⟩. 
Spin-to-charge conversion allows to initialize a state with 
a probability close to 1. Two electrons filled in a single 
dot nearly always relax into a singlet ground-state after 
a sufficiently long time depending on the experimental 
setup which afterwards can be adiabatically transformed 
into a |0⟩ state.

 (iii) Having a long decoherence time, or more precisely a 
sufficient number of gate operations while the qubit is 
coherent. Three-spin qubits possess a natural robustness 
against some noise since they are encoded in a decoher-
ence free subspace. Using isotopically purified host 
materials and operating on a charge noise sweet spot 
one can mitigate the two main sources of decoherence, 
allowing for large coherence times. The other possibility 
is to speed up the gate operations which is realized by 
utilizing the fast exchange interaction based operations.

 (iv) Having a universal set of quantum gates. Three-spin 
qubits allow for a very fast and highly precise way for 
operating single-qubit gates. Utilizing the exchange 
interaction leads to gates in sub-nanosecond time scales 
τ ≈ 200 psg   , and fidelity exceeding 99% or using resonant 
driving allows for gate times on the order of nano seconds, 
τ ≈ 2.5 nsg   . Both of these are significantly faster than qubit 
implementations using a single electron spin. However, 
fast exchange-based two-qubit gates either consist of 
complex sequences with more than 10 pulses or can leak 
into the non-computational space. Nonetheless, the large 

dipole moment of three-spin qubits makes up for this 
since it allows for fast long-ranged two-qubit interactions 
utilizing a cavity as a mediator.

 (v) Having high fidelity and qubit-specific measurements. 
Spin-to-charge conversion combined with charge-
sensitive detectors such as quantum point contacts or 
single electron transistors allow for precise and fast 
read-out schemes. Concepts using cavity quantum elec-
trodynamics also allow for fast read-out.

In summary, three-spin qubits provide a realistic path for-
ward to solid-state quantum information processing. Further 
research will be required to explore this path and address the 
challenges outlined in this review.

Acknowledgments

We acknowledge funding from ARO through Grant No. 
W911NF-15-1-0149 and the DFG through SFB 767. We also 
thank M Brooks, C Peterfalvi, and M Rancic for discussions 
contributing to this review. Special thanks also go to M Brooks 
for proof reading the manuscript.

References

	 [1]	 Bacon D, Kempe J, Lidar D A and Whaley K B 2000 
Universal fault-tolerant quantum computation on 
decoherence-free subspaces Phys. Rev. Lett. 85 1758–61

	 [2]	 DiVincenzo D P, Bacon D, Kempe J, Burkard G and 
Whaley K B 2000 Universal quantum computation with the 
exchange interaction Nature 408 339

	 [3]	 Russ M, Ginzel F and Burkard G 2016 Coupling of three-
spin qubits to their electric environment Phys. Rev. B 
94 165411

	 [4]	 Laird E A, Taylor J M, DiVincenzo D P, Marcus C M, 
Hanson M P and Gossard A C 2010 Coherent spin 
manipulation in an exchange-only qubit Phys. Rev. B 
82 075403

	 [5]	 Medford J, Beil J, Taylor J M, Rashba E I, Lu H, Gossard A C 
and Marcus C M 2013 Quantum-dot-based resonant 
exchange qubit Phys. Rev. Lett. 111 050501

	 [6]	 Taylor J M, Srinivasa V and Medford J 2013 Electrically 
protected resonant exchange qubits in triple quantum dots 
Phys. Rev. Lett. 111 050502

	 [7]	 Kyriakidis J and Burkard G 2007 Universal quantum 
computing with correlated spin-charge states Phys. Rev. B 
75 115324

	 [8]	 Shi Z et al 2012 Fast hybrid silicon double-quantum-dot qubit 
Phys. Rev. Lett. 108 140503

	 [9]	 Koh T S, Gamble J K, Friesen M, Eriksson M A and 
Coppersmith S N 2012 Pulse-gated quantum-dot hybrid 
qubit Phys. Rev. Lett. 109 250503

	[10]	 Cao G et al 2016 Tunable hybrid qubit in a GaAs double 
quantum dot Phys. Rev. Lett. 116 086801

	[11]	 Thorgrimsson B et al 2016 Mitigating the effects of charge 
noise and improving the coherence of a quantum dot hybrid 
qubit (arXiv:1611.04945)

	[12]	 Fong B H and Wandzura S M 2011 Universal quantum 
computation and leakage reduction in the 3-qubit decoherence 
free subsystem Quantum Inf. Comput. 11 1003–18

	[13]	 Setiawan F, Hui H-Y, Kestner J P, Wang X and Sarma S D 
2014 Robust two-qubit gates for exchange-coupled qubits 
Phys. Rev. B 89 085314

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevLett.85.1758
https://doi.org/10.1103/PhysRevLett.85.1758
https://doi.org/10.1103/PhysRevLett.85.1758
https://doi.org/10.1038/35042541
https://doi.org/10.1038/35042541
https://doi.org/10.1103/PhysRevB.94.165411
https://doi.org/10.1103/PhysRevB.94.165411
https://doi.org/10.1103/PhysRevB.82.075403
https://doi.org/10.1103/PhysRevB.82.075403
https://doi.org/10.1103/PhysRevLett.111.050501
https://doi.org/10.1103/PhysRevLett.111.050501
https://doi.org/10.1103/PhysRevLett.111.050502
https://doi.org/10.1103/PhysRevLett.111.050502
https://doi.org/10.1103/PhysRevB.75.115324
https://doi.org/10.1103/PhysRevB.75.115324
https://doi.org/10.1103/PhysRevLett.108.140503
https://doi.org/10.1103/PhysRevLett.108.140503
https://doi.org/10.1103/PhysRevLett.109.250503
https://doi.org/10.1103/PhysRevLett.109.250503
https://doi.org/10.1103/PhysRevLett.116.086801
https://doi.org/10.1103/PhysRevLett.116.086801
http://arxiv.org/abs/1611.04945
https://doi.org/10.1103/PhysRevB.89.085314
https://doi.org/10.1103/PhysRevB.89.085314


Topical Review

28

	[14]	 Zeuch D, Cipri R and Bonesteel N E 2014 Analytic pulse-
sequence construction for exchange-only quantum 
computation Phys. Rev. B 90 045306

	[15]	 Doherty A C and Wardrop M P 2013 Two-qubit gates for 
resonant exchange qubits Phys. Rev. Lett. 111 050503

	[16]	 Shim Y-P and Tahan C 2016 Charge-noise-insensitive gate 
operations for always-on, exchange-only qubits Phys. Rev. 
B 93 121410

	[17]	 Russ M and Burkard G 2015 Long distance coupling of 
resonant exchange qubits Phys. Rev. B 92 205412

	[18]	 Srinivasa V, Taylor J M and Tahan C 2016 Entangling 
distant resonant exchange qubits via circuit quantum 
electrodynamics Phys. Rev. B 94 205421

	[19]	 Kempe J, Bacon D, Lidar D A and Whaley K B 2001 Theory 
of decoherence-free fault-tolerant universal quantum 
computation Phys. Rev. A 63 042307

	[20]	 Russ M and Burkard G 2015 Asymmetric resonant exchange 
qubit under the influence of electrical noise Phys. Rev. B 
91 235411

	[21]	 Ladd T D 2012 Hyperfine-induced decay in triple quantum 
dots Phys. Rev. B 86 125408

	[22]	 Mehl S and DiVincenzo D P 2013 Noise analysis of qubits 
implemented in triple quantum dot systems in a Davies 
master equation approach Phys. Rev. B 87 195309

	[23]	 Hung J-T, Fei J, Friesen M and Hu X 2014 Decoherence of 
an exchange qubit by hyperfine interaction Phys. Rev. B 
90 045308

	[24]	 Fei J, Hung J-T, Koh T S, Shim Y-P, Coppersmith S N, Hu X 
and Friesen M 2015 Characterizing gate operations near 
the sweet spot of an exchange-only qubit Phys. Rev. B 
91 205434

	[25]	 West J R and Fong B H 2012 Exchange-only dynamical 
decoupling in the three-qubit decoherence free subsystem 
New J. Phys. 14 083002

	[26]	 Rohling N and Burkard G 2016 Optimizing electrically 
controlled echo sequences for the exchange-only qubit 
Phys. Rev. B 93 205434

	[27]	 Malinowski F K, Martins F, Nissen P D, Fallahi S, 
Gardner G C, Manfra M J, Marcus C M and Kuemmeth F 
2017 Symmetric operation of the resonant exchange qubit 
(arXiv:1704.01298)

	[28]	 Nielsen M and Chuang I 2000 Quantum Computation 
and Quantum Information (Cambridge Series on 
Information and the Natural Sciences) (Cambridge: 
Cambridge University Press) (https://doi.org/10.1017/
CBO9780511976667)

	[29]	 Feynman R P 1982 Simulating physics with computers Int. J. 
Theor. Phys. 21 467–88

	[30]	 Lloyd S 1996 Universal quantum simulators Science 
273 1073–8

	[31]	 Shor P W 1997 Polynomial-time algorithms for prime 
factorization and discrete logarithms on a quantum 
computer SIAM J. Comput. 26 1484

	[32]	 Rivest R L, Shamir A and Adleman L 1978 A method for 
obtaining digital signatures and public-key cryptosystems 
Commun. ACM 21 120

	[33]	 Grover L K 1996 A fast quantum mechanical algorithm for 
database search Proc. 28th Annual ACM Symp. on Theory 
of Computing (ACM, New York, NY, USA) p 212

	[34]	 Grover L K 1998 Quantum computers can search rapidly 
by using almost any transformation Phys. Rev. Lett. 
80 4329–32

	[35]	 Lloyd S 1993 A potentially realizable quantum computer 
Science 261 1569–71

	[36]	 DiVincenzo D P 2000 The physical implementation of 
quantum computation Fortsch. Phys. 48 771–83

	[37]	 Kloeffel C and Loss D 2013 Prospects for spin-based quantum 
computing in quantum dots Ann. Rev. Condens. Matter 
Phys. 4 51–81

	[38]	 Vandersypen L M K and Chuang I L 2005 Nmr techniques 
for quantum control and computation Rev. Mod. Phys. 
76 1037–69

	[39]	 Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D 
and Kimble H J 2005 Trapped atoms in cavity QED: 
coupling quantized light and matter J. Phys. B: At. Mol. 
Opt. Phys. 38 S551

	[40]	 Cirac J I and Zoller P 1995 Quantum computations with cold 
trapped ions Phys. Rev. Lett. 74 4091–4

	[41]	 Nakamura Y, Pashkin Y A and Tsai J S 1999 Coherent control 
of macroscopic quantum states in a single-cooper-pair box 
Nature 398 786–8

	[42]	 Makhlin Y, Schön G and Shnirman A 2001 Quantum-state 
engineering with Josephson-junction devices Rev. Mod. 
Phys. 73 357–400

	[43]	 Kane B E 1998 A silicon-based nuclear spin quantum 
computer Nature 393 133

	[44]	 Doherty M W, Manson N B, Delaney P, Jelezko F, Wrachtrup J 
and Hollenberg L C L 2013 The nitrogen-vacancy colour 
centre in diamond Phys. Rep. 528 1–45

	[45]	 Dobrovitski V V, Fuchs G D, Falk A L, Santori C and 
Awschalom D D 2013 Quantum control over single spins in 
diamond Ann. Rev. Condens. Matter Phys. 4 23–50

	[46]	 Weber J R, Koehl W F, Varley J B, Janotti A, Buckley B B, de 
Walle C G V and Awschalom D D 2011 Defects in sic for 
quantum computing J. Appl. Phys. 109 102417

	[47]	 Kok P, Munro W J, Nemoto K, Ralph T C, Dowling J P and 
Milburn G J 2007 Linear optical quantum computing with 
photonic qubits Rev. Mod. Phys. 79 135–74

	[48]	 Pérez-Delgado C A and Kok P 2011 Quantum computers: 
definition and implementations Phys. Rev. A 83 012303

	[49]	 Martinis J M 2015 Qubit metrology for building a fault-
tolerant quantum computer npj Quantum Inf. 1 15005

	[50]	 Gaudreau L, Studenikin S A, Sachrajda A S, Zawadzki P, 
Kam A, Lapointe J, Korkusinski M and Hawrylak P 2006 
Stability diagram of a few-electron triple dot Phys. Rev. 
Lett. 97 036807

	[51]	 Schröer D, Greentree A D, Gaudreau L, Eberl K, 
Hollenberg L C L, Kotthaus J P and Ludwig S 2007 
Electrostatically defined serial triple quantum dot charged 
with few electrons Phys. Rev. B 76 075306

	[52]	 Ihn T, Sigrist M, Ensslin K, Wegscheider W and Reinwald M 
2007 Interference in a quantum dot molecule embedded in a 
ring interferometer New J. Phys. 9 111

	[53]	 Rogge M C and Haug R J 2008 Noninvasive detection of 
molecular bonds in quantum dots Phys. Rev. B 78 153310

	[54]	 Gaudreau L, Kam A, Granger G, Studenikin S A, Zawadzki P 
and Sachrajda A S 2009 A tunable few electron triple 
quantum dot Appl. Phys. Lett. 95 193101

	[55]	 Yamahata G, Tsuchiya Y, Mizuta H, Uchida K and Oda S 2009 
Electron transport through silicon serial triple quantum dots 
Solid-State Electron. 53 779–85 (papers Selected from the 
38th European Solid-State Device Research Conf.)

	[56]	 Pierre M, Wacquez R, Roche B, Jehl X, Sanquer M, Vinet M, 
Prati E, Belli M and Fanciulli M 2009 Compact silicon 
double and triple dots realized with only two gates Appl. 
Phys. Lett. 95 242107

	[57]	 Takakura T, Pioro-Ladrière M, Obata T, Shin Y-S, Brunner R, 
Yoshida K, Taniyama T and Tarucha S 2010 Triple quantum 
dot device designed for three spin qubits Appl. Phys. Lett. 
97 212104

	[58]	 Granger G, Gaudreau L, Kam A, Pioro-Ladrière M, 
Studenikin S A, Wasilewski Z R, Zawadzki P and 
Sachrajda A S 2010 Three-dimensional transport diagram 
of a triple quantum dot Phys. Rev. B 82 075304

	[59]	 Gaudreau L, Granger G, Kam A, Aers G C, Studenikin S A, 
Zawadzki P, Pioro-Ladriere M, Wasilewski Z R and 
Sachrajda A S 2012 Coherent control of three-spin states in 
a triple quantum dot Nat. Phys. 8 54

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevB.90.045306
https://doi.org/10.1103/PhysRevB.90.045306
https://doi.org/10.1103/PhysRevLett.111.050503
https://doi.org/10.1103/PhysRevLett.111.050503
https://doi.org/10.1103/PhysRevB.93.121410
https://doi.org/10.1103/PhysRevB.93.121410
https://doi.org/10.1103/PhysRevB.92.205412
https://doi.org/10.1103/PhysRevB.92.205412
https://doi.org/10.1103/PhysRevB.94.205421
https://doi.org/10.1103/PhysRevB.94.205421
https://doi.org/10.1103/PhysRevA.63.042307
https://doi.org/10.1103/PhysRevA.63.042307
https://doi.org/10.1103/PhysRevB.91.235411
https://doi.org/10.1103/PhysRevB.91.235411
https://doi.org/10.1103/PhysRevB.86.125408
https://doi.org/10.1103/PhysRevB.86.125408
https://doi.org/10.1103/PhysRevB.87.195309
https://doi.org/10.1103/PhysRevB.87.195309
https://doi.org/10.1103/PhysRevB.90.045308
https://doi.org/10.1103/PhysRevB.90.045308
https://doi.org/10.1103/PhysRevB.91.205434
https://doi.org/10.1103/PhysRevB.91.205434
https://doi.org/10.1088/1367-2630/14/8/083002
https://doi.org/10.1088/1367-2630/14/8/083002
https://doi.org/10.1103/PhysRevB.93.205434
https://doi.org/10.1103/PhysRevB.93.205434
http://arxiv.org/abs/1704.01298
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1017/CBO9780511976667
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1007/BF02650179
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1126/science.273.5278.1073
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1137/S0097539795293172
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/359340.359342
https://doi.org/10.1145/237814.237866
https://doi.org/10.1103/PhysRevLett.80.4329
https://doi.org/10.1103/PhysRevLett.80.4329
https://doi.org/10.1103/PhysRevLett.80.4329
https://doi.org/10.1126/science.261.5128.1569
https://doi.org/10.1126/science.261.5128.1569
https://doi.org/10.1126/science.261.5128.1569
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1146/annurev-conmatphys-030212-184248
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1103/RevModPhys.76.1037
https://doi.org/10.1088/0953-4075/38/9/007
https://doi.org/10.1088/0953-4075/38/9/007
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1103/PhysRevLett.74.4091
https://doi.org/10.1038/19718
https://doi.org/10.1038/19718
https://doi.org/10.1038/19718
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1103/RevModPhys.73.357
https://doi.org/10.1038/30156
https://doi.org/10.1038/30156
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1016/j.physrep.2013.02.001
https://doi.org/10.1146/annurev-conmatphys-030212-184238
https://doi.org/10.1146/annurev-conmatphys-030212-184238
https://doi.org/10.1146/annurev-conmatphys-030212-184238
https://doi.org/10.1063/1.3578264
https://doi.org/10.1063/1.3578264
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/RevModPhys.79.135
https://doi.org/10.1103/PhysRevA.83.012303
https://doi.org/10.1103/PhysRevA.83.012303
https://doi.org/10.1038/npjqi.2015.5
https://doi.org/10.1038/npjqi.2015.5
https://doi.org/10.1103/PhysRevLett.97.036807
https://doi.org/10.1103/PhysRevLett.97.036807
https://doi.org/10.1103/PhysRevB.76.075306
https://doi.org/10.1103/PhysRevB.76.075306
https://doi.org/10.1088/1367-2630/9/5/111
https://doi.org/10.1088/1367-2630/9/5/111
https://doi.org/10.1103/PhysRevB.78.153310
https://doi.org/10.1103/PhysRevB.78.153310
https://doi.org/10.1063/1.3258663
https://doi.org/10.1063/1.3258663
https://doi.org/10.1016/j.sse.2009.03.009
https://doi.org/10.1016/j.sse.2009.03.009
https://doi.org/10.1016/j.sse.2009.03.009
https://doi.org/10.1063/1.3273857
https://doi.org/10.1063/1.3273857
https://doi.org/10.1063/1.3518919
https://doi.org/10.1063/1.3518919
https://doi.org/10.1103/PhysRevB.82.075304
https://doi.org/10.1103/PhysRevB.82.075304
https://doi.org/10.1038/nphys2149
https://doi.org/10.1038/nphys2149


Topical Review

29

	[60]	 Amaha S, Hatano T, Tamura H, Teraoka S, Kubo T, Tokura Y, 
Austing D G and Tarucha S 2012 Resonance-hybrid states 
in a triple quantum dot Phys. Rev. B 85 081301

	[61]	 Pan H, House M G, Hao X and Jiang H W 2012 Fabrication 
and characterization of a silicon metal-oxide-semiconductor 
based triple quantum dot Appl. Phys. Lett. 100 263109

	[62]	 Busl M et al 2013 Bipolar spin blockade and coherent state 
superpositions in a triple quantum dot Nat. Nanotechnol. 
8 261–5

	[63]	 Kim D et al 2014 Quantum control and process tomography 
of a semiconductor quantum dot hybrid qubit Nature 
511 70–4

	[64]	 Shi Z et al 2014 Fast coherent manipulation of three-electron 
states in a double quantum dot Nat. Commun. 5 e1500214

	[65]	 Kim D, Ward D R, Simmons C B, Savage D E, Lagally M G, 
Friesen M, Coppersmith S N and Eriksson M A 2015 High-
fidelity resonant gating of a silicon-based quantum dot 
hybrid qubit Npj Quantum Inf. 1 15004

	[66]	 Aers G C, Studenikin S A, Granger G, Kam A, Zawadzki P, 
Wasilewski Z R and Sachrajda A S 2012 Coherent 
exchange and double beam splitter oscillations in a triple 
quantum dot Phys. Rev. B 86 045316

	[67]	 Medford J, Beil J, Taylor J M, Bartlett S D, Doherty A C, 
Rashba E I, DiVincenzo D P, Lu H, Gossard A C and 
Marcus C M 2013 Self-consistent measurement and 
state tomography of an exchange-only spin qubit Nat. 
Nanotechnol. 8 654

	[68]	 Sanchez R, Granger G, Gaudreau L, Kam A, Pioro-
Ladriere M, Studenikin S A, Zawadzki P, Sachrajda A S 
and Platero G 2014 Long-range spin transfer in triple 
quantum dots Phys. Rev. Lett. 112 176803

	[69]	 Eng K et al 2015 Isotopically enhanced triple-quantum-dot 
qubit Sci. Adv. 1 e1500214

	[70]	 Poulin-Lamarre G, Thorgrimson J, Studenikin S A, Aers G C, 
Kam A, Zawadzki P, Wasilewski Z R and Sachrajda A S 
2015 Three-spin coherent oscillations and interference 
Phys. Rev. B 91 125417

	[71]	 Scarola V W, Park K and Sarma S D 2004 Chirality in 
quantum computation with spin cluster qubits Phys. Rev. 
Lett. 93 120503

	[72]	 Scarola V W and Sarma S D 2005 Exchange gate in solid-
state spin-quantum computation: the applicability of the 
Heisenberg model Phys. Rev. A 71 032340

	[73]	 Hsieh C-Y, Rene A and Hawrylak P 2012 Herzberg circuit and 
berry’s phase in chirality-based coded qubit in a triangular 
triple quantum dot Phys. Rev. B 86 115312

	[74]	 Łuczak J and Bułka B R 2012 Entanglement in a three spin 
system controlled by electric and magnetic fields J. Phys.: 
Condens. Matter 24 375303

	[75]	 Urbaniak M, Tooski S B, Ramšak A and Bułka B R 2014 
Thermal entanglement in a triple quantum dot system Eur. 
Phys. J. B 86 505

	[76]	 Tooski S B, Bułka B R, Žitko R and Ramšak A 2014 
Entanglement switching via the kondo effect in triple 
quantum dots Eur. Phys. J. B 87 145

	[77]	 Łuczak J and Bułka B R 2014 Readout and dynamics of a 
qubit built on three quantum dots Phys. Rev. B 90 165427

	[78]	 Hanson R, Kouwenhoven L P, Petta J R, Tarucha S and 
Vandersypen L M K 2007 Spins in few-electron quantum 
dots Rev. Mod. Phys. 79 1217

	[79]	 Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, 
Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N 
and Eriksson M A 2013 Silicon quantum electronics Rev. 
Mod. Phys. 85 961

	[80]	 Recher P, Nilsson J, Burkard G and Trauzettel B 2009 
Bound states and magnetic field induced valley splitting 
in gate-tunable graphene quantum dots Phys. Rev. B 
79 085407

	 [81]	 Churchill H O H, Kuemmeth F, Harlow J W, Bestwick A J, 
Rashba E I, Flensberg K, Stwertka C H, Taychatanapat T, 
Watson S K and Marcus C M 2009 Relaxation and 
dephasing in a two-electron 13c nanotube double quantum 
dot Phys. Rev. Lett. 102 166802

	 [82]	 Reynoso A A and Flensberg K 2011 Dephasing and 
hyperfine interaction in carbon nanotube double quantum 
dots: the clean limit Phys. Rev. B 84 205449

	 [83]	 Reynoso A A and Flensberg K 2012 Dephasing and 
hyperfine interaction in carbon nanotubes double quantum 
dots: disordered case Phys. Rev. B 85 195441

	 [84]	 Song X-X et al 2015 A gate defined quantum dot on 
the two-dimensional transition metal dichalcogenide 
semiconductor WSe2 Nanoscale 7 16867–73

	 [85]	 Song X-X, Zhang Z-Z, You J, Liu D, Li H-O, Cao G, Xiao M 
and Guo G-P 2015 Temperature dependence of coulomb 
oscillations in a few-layer two-dimensional WS2 quantum 
dot Sci. Rep. 5 16113

	 [86]	 Laird E A, Kuemmeth F, Steele G A, Grove-Rasmussen K, 
Nygård J, Flensberg K and Kouwenhoven L P 2015 
Quantum transport in carbon nanotubes Rev. Mod. Phys. 
87 703–64

	 [87]	 Wang K, Taniguchi T, Watanabe K and Kim P 2016 
Engineering quantum confinement in semiconducting van 
der Waals heterostructure (arXiv:1610.02929)

	 [88]	 Angus S J, Ferguson A J, Dzurak A S and Clark R G 2007 
Gate-defined quantum dots in intrinsic silicon Nano Lett. 
7 2051–5

	 [89]	 Jones C, Gyure M F, Ladd T D, Fogarty M A, Morello A 
and Dzurak A S 2016 A logical qubit in a linear array of 
semiconductor quantum dots (arXiv:1608.06335)

	 [90]	 Yang C H, Rossi A, Ruskov R, Lai N S, Mohiyaddin F A, 
Lee S, Tahan C, Klimeck G, Morello A and Dzurak A S 
2013 Spin-valley lifetimes in a silicon quantum dot with 
tunable valley splitting Nat. Commun. 4 2069

	 [91]	 Veldhorst M et al 2014 An addressable quantum dot qubit with 
fault-tolerant control-fidelity Nat. Nanotechnol. 9 981–5

	 [92]	 Muhonen J T et al 2014 Storing quantum information for 
30 seconds in a nanoelectronic device Nat. Nanotechnol. 
9 986–91

	 [93]	 Morello A 2015 Silicon quantum dots: fine-tuning to 
maturity Nanotechnology 26 502501

	 [94]	 Borselli M G et al 2015 Undoped accumulation-mode  
Si/SiGe quantum dots Nanotechnology 26 375202

	 [95]	 Zajac D M, Hazard T M, Mi X, Wang K and Petta J R 2015 
A reconfigurable gate architecture for Si/SiGe quantum 
dots Appl. Phys. Lett. 106 223507

	 [96]	 Reed M D et al 2016 Reduced sensitivity to charge noise in 
semiconductor spin qubits via symmetric operation Phys. 
Rev. Lett. 116 110402

	 [97]	 Ward D R, Kim D, Savage D E, Lagally M G, Foote R H, 
Friesen M, Coppersmith S N and Eriksson M A 2016 
State-conditional coherent charge qubit oscillations in a 
Si/SiGe quadruple quantum dot npj Quantum Inf. 2 16032

	 [98]	 Knapp T J et al 2016 Characterization of a gate-defined 
double quantum dot in a Si/SiGe nanomembrane 
Nanotechnology 27 154002

	 [99]	 Zajac D M, Hazard T M, Mi X, Nielsen E and Petta J R 
2016 Scalable gate architecture for densely packed 
semiconductor spin qubits Phys. Rev. Applied 6 054013

	[100]	 Itoh K M and Watanabe H 2014 Isotope engineering of 
silicon and diamond for quantum computing and sensing 
applications MRS Commun. 4 143–57

	[101]	 Kawakami E, Scarlino P, Ward D R, Braakman F R, 
Savage D E, Lagally M G, Friesen M, Coppersmith S N, 
Eriksson M A and Vandersypen L M K 2014 Electrical 
control of a long-lived spin qubit in a Si/SiGe quantum dot 
Nat. Nanotechnol. 9 666–70

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevB.85.081301
https://doi.org/10.1103/PhysRevB.85.081301
https://doi.org/10.1063/1.4731275
https://doi.org/10.1063/1.4731275
https://doi.org/10.1038/nnano.2013.7
https://doi.org/10.1038/nnano.2013.7
https://doi.org/10.1038/nnano.2013.7
https://doi.org/10.1038/nature13407
https://doi.org/10.1038/nature13407
https://doi.org/10.1038/nature13407
https://doi.org/10.1038/ncomms4020
https://doi.org/10.1038/ncomms4020
https://doi.org/10.1038/npjqi.2015.4
https://doi.org/10.1038/npjqi.2015.4
https://doi.org/10.1103/PhysRevB.86.045316
https://doi.org/10.1103/PhysRevB.86.045316
https://doi.org/10.1038/nnano.2013.168
https://doi.org/10.1038/nnano.2013.168
https://doi.org/10.1103/PhysRevLett.112.176803
https://doi.org/10.1103/PhysRevLett.112.176803
https://doi.org/10.1126/sciadv.1500214
https://doi.org/10.1126/sciadv.1500214
https://doi.org/10.1103/PhysRevB.91.125417
https://doi.org/10.1103/PhysRevB.91.125417
https://doi.org/10.1103/PhysRevLett.93.120503
https://doi.org/10.1103/PhysRevLett.93.120503
https://doi.org/10.1103/PhysRevA.71.032340
https://doi.org/10.1103/PhysRevA.71.032340
https://doi.org/10.1103/PhysRevB.86.115312
https://doi.org/10.1103/PhysRevB.86.115312
https://doi.org/10.1088/0953-8984/24/37/375303
https://doi.org/10.1088/0953-8984/24/37/375303
https://doi.org/10.1140/epjb/e2013-40761-3
https://doi.org/10.1140/epjb/e2013-40761-3
https://doi.org/10.1140/epjb/e2014-41025-6
https://doi.org/10.1140/epjb/e2014-41025-6
https://doi.org/10.1103/PhysRevB.90.165427
https://doi.org/10.1103/PhysRevB.90.165427
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.79.1217
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/PhysRevB.79.085407
https://doi.org/10.1103/PhysRevB.79.085407
https://doi.org/10.1103/PhysRevLett.102.166802
https://doi.org/10.1103/PhysRevLett.102.166802
https://doi.org/10.1103/PhysRevB.84.205449
https://doi.org/10.1103/PhysRevB.84.205449
https://doi.org/10.1103/PhysRevB.85.195441
https://doi.org/10.1103/PhysRevB.85.195441
https://doi.org/10.1039/C5NR04961J
https://doi.org/10.1039/C5NR04961J
https://doi.org/10.1039/C5NR04961J
https://doi.org/10.1038/srep16113
https://doi.org/10.1038/srep16113
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1103/RevModPhys.87.703
https://doi.org/10.1103/RevModPhys.87.703
http://arxiv.org/abs/1610.02929
https://doi.org/10.1021/nl070949k
https://doi.org/10.1021/nl070949k
https://doi.org/10.1021/nl070949k
http://arxiv.org/abs/1608.06335
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1038/nnano.2014.211
https://doi.org/10.1038/nnano.2014.211
https://doi.org/10.1038/nnano.2014.211
https://doi.org/10.1088/0957-4484/26/50/502501
https://doi.org/10.1088/0957-4484/26/50/502501
https://doi.org/10.1088/0957-4484/26/37/375202
https://doi.org/10.1088/0957-4484/26/37/375202
https://doi.org/10.1063/1.4922249
https://doi.org/10.1063/1.4922249
https://doi.org/10.1103/PhysRevLett.116.110402
https://doi.org/10.1103/PhysRevLett.116.110402
https://doi.org/10.1038/npjqi.2016.32
https://doi.org/10.1038/npjqi.2016.32
https://doi.org/10.1088/0957-4484/27/15/154002
https://doi.org/10.1088/0957-4484/27/15/154002
https://doi.org/10.1103/PhysRevApplied.6.054013
https://doi.org/10.1103/PhysRevApplied.6.054013
https://doi.org/10.1557/mrc.2014.32
https://doi.org/10.1557/mrc.2014.32
https://doi.org/10.1557/mrc.2014.32
https://doi.org/10.1038/nnano.2014.153
https://doi.org/10.1038/nnano.2014.153
https://doi.org/10.1038/nnano.2014.153


Topical Review

30

	[102]	 Field M, Smith C G, Pepper M, Ritchie D A, Frost J E F, 
Jones G A C and Hasko D G 1993 Measurements of 
coulomb blockade with a noninvasive voltage probe  
Phys. Rev. Lett. 70 1311–4

	[103]	 Barthel C, Reilly D J, Marcus C M, Hanson M P and 
Gossard A C 2009 Rapid single-shot measurement of a 
singlet-triplet qubit Phys. Rev. Lett. 103 160503

	[104]	 Devoret M H and Schoelkopf R J 2000 Amplifying quantum 
signals with the single-electron transistor Nature 
406 1039–46

	[105]	 Barthel C, Kjærgaard M, Medford J, Stopa M, Marcus C M, 
Hanson M P and Gossard A C 2010 Fast sensing of 
double-dot charge arrangement and spin state with a radio-
frequency sensor quantum dot Phys. Rev. B 81 161308

	[106]	 House M G, Bartlett I, Pakkiam P, Koch M, Peretz E, van 
der Heijden J, Kobayashi T, Rogge S and Simmons M Y 
2016 High-sensitivity charge detection with a single-lead 
quantum dot for scalable quantum computation Phys. Rev. 
Appl. 6 044016

	[107]	 House M G, Peretz E, Keizer J G, Hile S J and 
Simmons M Y 2014 Single-charge detection by an atomic 
precision tunnel junction Appl. Phys. Lett. 104 113111

	[108]	 Delbecq M R, Schmitt V, Parmentier F D, Roch N, 
Viennot J J, Fève G, Huard B, Mora C, Cottet A and 
Kontos T 2011 Coupling a quantum dot, fermionic 
leads and a microwave cavity on a chip Phys. Rev. Lett. 
107 256804

	[109]	 Kerman A J 2013 Quantum information processing using 
quasiclassical electromagnetic interactions between qubits 
and electrical resonators New J. Phys. 15 123011

	[110]	 Gonzalez-Zalba M F, Barraud S, Ferguson A J and Betz A C 
2015 Probing the limits of gate-based charge sensing Nat. 
Commun. 6 6084

	[111]	 Didier N, Bourassa J and Blais A 2015 Fast quantum 
nondemolition readout by parametric modulation of 
longitudinal qubit-oscillator interaction Phys. Rev. Lett. 
115 203601

	[112]	 Burkard G and Petta J R 2016 Dispersive readout of valley 
splittings in cavity-coupled silicon quantum dots Phys. 
Rev. B 94 195305

	[113]	 Mi X, Cady J V, Zajac D M, Stehlik J, Edge L F and 
Petta J R 2017 Circuit quantum electrodynamics 
architecture for gate-defined quantum dots in silicon Appl. 
Phys. Lett. 4 043502

	[114]	 Beaudoin F, Blais A and Coish W A 2017 Hamiltonian 
engineering for robust quantum state transfer and qubit 
readout in cavity QED New J. Phys. 19 023041

	[115]	 Stockklauser A et al 2017 Strong coupling cavity QED 
with gate-defined double quantum dots enabled by a high 
impedance resonator Phys. Rev. X 7 011030

	[116]	 Ruskov R and Tahan C 2017 Quantum-limited measurement 
of spin qubits via curvature coupling to a cavity 
(arXiv:1704.05876)

	[117]	 Mi X, Peterfalvi C G, Burkard G and Petta J R 2017 High 
resolution valley spectroscopy of Si quantum dots 
(arXiv:1704.06312)

	[118]	 Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, 
Lukin M D, Marcus C M, Hanson M P and Gossard A C 
2005 Coherent manipulation of coupled electron spins in 
semiconductor quantum dots Science 309 2180

	[119]	 Hubbard J 1963 Electron correlations in narrow energy bands 
Proc. R. Soc. Lond. A 276 238

	[120]	 Burkard G, Loss D and DiVincenzo D P 1999 Coupled 
quantum dots as quantum gates Phys. Rev. B 59 2070

	[121]	 Schrieffer J R and Wolff P A 1966 Relation between the 
Anderson and Kondo Hamiltonians Phys. Rev. 149 491–2

	[122]	 Bravyi S, Divincenzo D P and Loss D 2011 Schrieffer–Wolff 
transformation for quantum many-body systems Ann. 
Phys. 326 2793

	[123]	 Loss D and DiVincenzo D P 1998 Quantum computation 
with quantum dots Phys. Rev. A 57 120

	[124]	 Koppens F H L, Buizert C, Tielrooij K J, Vink I T, 
Nowack K C, Meunier T, Kouwenhoven L P and 
Vandersypen L M K 2006 Driven coherent oscillations of 
a single electron spin in a quantum dot Nature 442 766

	[125]	 Golovach V N, Borhani M and Loss D 2006 Electric-dipole-
induced spin resonance in quantum dots Phys. Rev. B 
74 165319

	[126]	 Nowack K C, Koppens F H L, Nazarov Y V and 
Vandersypen L M K 2007 Coherent control of a single 
electron spin with electric fields Science 318 1430

	[127]	 Khomitsky D V, Gulyaev L V and Sherman E Y 2012 Spin 
dynamics in a strongly driven system: very slow rabi 
oscillations Phys. Rev. B 85 125312

	[128]	 Li R, You J Q, Sun C P and Nori F 2013 Controlling 
a nanowire spin–orbit qubit via electric-dipole spin 
resonance Phys. Rev. Lett. 111 086805

	[129]	 Nadj-Perge S, Frolov S M, Bakkers E P A M and 
Kouwenhoven L P 2010 Spin–orbit qubit in a 
semiconductor nanowire Nature 468 1084–7

	[130]	 Tokura Y, van der Wiel W G, Obata T and Tarucha S 2006 
Coherent single electron spin control in a slanting zeeman 
field Phys. Rev. Lett. 96 047202

	[131]	 Obata T, Pioro-Ladrière M, Tokura Y, Shin Y-S, Kubo T, 
Yoshida K, Taniyama T and Tarucha S 2010 Coherent 
manipulation of individual electron spin in a double 
quantum dot integrated with a micromagnet Phys. Rev. B 
81 085317

	[132]	 Laird E A, Barthel C, Rashba E I, Marcus C M, Hanson M P 
and Gossard A C 2007 Hyperfine-mediated gate-driven 
electron spin resonance Phys. Rev. Lett. 99 246601

	[133]	 Pioro-Ladriere M, Obata T, Tokura Y, Shin Y S, Kubo T, 
Yoshida K, Taniyama T and Tarucha S 2008 Electrically 
driven single-electron spin resonance in a slanting zeeman 
field Nat. Phys. 4 776–9

	[134]	 Brunner R, Shin Y-S, Obata T, Pioro-Ladrière M, Kubo T, 
Yoshida K, Taniyama T, Tokura Y and Tarucha S 2011 
Two-qubit gate of combined single-spin rotation and 
interdot spin exchange in a double quantum dot Phys. Rev. 
Lett. 107 146801

	[135]	 Elzerman J M, Hanson R, Willems van Beveren L H, 
Witkamp B, Vandersypen L M K and Kouwenhoven L P 
2004 Single-shot read-out of an individual electron spin in 
a quantum dot Nature 430 431

	[136]	 Foletti S, Bluhm H, Mahalu D, Umansky V and Yacoby A 
2009 Universal quantum control of two-electron spin 
quantum bits using dynamic nuclear polarization Nat. 
Phys. 5 903

	[137]	 Culcer D, Hu X and Das Sarma S 2009 Dephasing of 
Si spin qubits due to charge noise Appl. Phys. Lett. 
95 073102

	[138]	 Vion D, Aassime A, Cottet A, Joyez P, Pothier H, Urbina C, 
Esteve D and Devoret M H 2002 Manipulating the 
quantum state of an electrical circuit Science 296 886

	[139]	 Paladino E, Galperin Y M, Falci G and Altshuler B L 2014 
1/f noise: implications for solid-state quantum information 
Rev. Mod. Phys. 86 361–418

	[140]	 Gong B, Wang L, Tu T, Li C-F and Guo G-C 2016 Robust 
universal gates for quantum-dot spin qubits using tunable 
adiabatic passages Phys. Rev. A 94 032311

	[141]	 Chirolli L and Burkard G 2008 Decoherence in solid-state 
qubits Adv. Phys. 57 225–85

	[142]	 Merkulov I A, Efros A L and Rosen M 2002 Electron spin 
relaxation by nuclei in semiconductor quantum dots Phys. 
Rev. B 65 205309

	[143]	 Coish W A and Loss D 2004 Hyperfine interaction in a 
quantum dot: non-markovian electron spin dynamics Phys. 
Rev. B 70 195340

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/PhysRevLett.70.1311
https://doi.org/10.1103/PhysRevLett.103.160503
https://doi.org/10.1103/PhysRevLett.103.160503
https://doi.org/10.1038/35023253
https://doi.org/10.1038/35023253
https://doi.org/10.1038/35023253
https://doi.org/10.1103/PhysRevB.81.161308
https://doi.org/10.1103/PhysRevB.81.161308
https://doi.org/10.1103/PhysRevApplied.6.044016
https://doi.org/10.1103/PhysRevApplied.6.044016
https://doi.org/10.1063/1.4869032
https://doi.org/10.1063/1.4869032
https://doi.org/10.1103/PhysRevLett.107.256804
https://doi.org/10.1103/PhysRevLett.107.256804
https://doi.org/10.1088/1367-2630/15/12/123011
https://doi.org/10.1088/1367-2630/15/12/123011
https://doi.org/10.1038/ncomms7084
https://doi.org/10.1038/ncomms7084
https://doi.org/10.1103/PhysRevLett.115.203601
https://doi.org/10.1103/PhysRevLett.115.203601
https://doi.org/10.1103/PhysRevB.94.195305
https://doi.org/10.1103/PhysRevB.94.195305
https://doi.org/10.1063/1.4974536
https://doi.org/10.1063/1.4974536
https://doi.org/10.1088/1367-2630/aa5d33
https://doi.org/10.1088/1367-2630/aa5d33
https://doi.org/10.1103/PhysRevX.7.011030
https://doi.org/10.1103/PhysRevX.7.011030
http://arxiv.org/abs/1704.05876
http://arxiv.org/abs/1704.06312
https://doi.org/10.1126/science.1116955
https://doi.org/10.1126/science.1116955
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1103/PhysRevB.59.2070
https://doi.org/10.1103/PhysRevB.59.2070
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1103/PhysRev.149.491
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1103/PhysRevA.57.120
https://doi.org/10.1038/nature05065
https://doi.org/10.1038/nature05065
https://doi.org/10.1103/PhysRevB.74.165319
https://doi.org/10.1103/PhysRevB.74.165319
https://doi.org/10.1126/science.1148092
https://doi.org/10.1126/science.1148092
https://doi.org/10.1103/PhysRevB.85.125312
https://doi.org/10.1103/PhysRevB.85.125312
https://doi.org/10.1103/PhysRevLett.111.086805
https://doi.org/10.1103/PhysRevLett.111.086805
https://doi.org/10.1038/nature09682
https://doi.org/10.1038/nature09682
https://doi.org/10.1038/nature09682
https://doi.org/10.1103/PhysRevLett.96.047202
https://doi.org/10.1103/PhysRevLett.96.047202
https://doi.org/10.1103/PhysRevB.81.085317
https://doi.org/10.1103/PhysRevB.81.085317
https://doi.org/10.1103/PhysRevLett.99.246601
https://doi.org/10.1103/PhysRevLett.99.246601
https://doi.org/10.1038/nphys1053
https://doi.org/10.1038/nphys1053
https://doi.org/10.1038/nphys1053
https://doi.org/10.1103/PhysRevLett.107.146801
https://doi.org/10.1103/PhysRevLett.107.146801
https://doi.org/10.1038/nature02693
https://doi.org/10.1038/nature02693
https://doi.org/10.1038/nphys1424
https://doi.org/10.1038/nphys1424
https://doi.org/10.1063/1.3194778
https://doi.org/10.1063/1.3194778
https://doi.org/10.1126/science.1069372
https://doi.org/10.1126/science.1069372
https://doi.org/10.1103/RevModPhys.86.361
https://doi.org/10.1103/RevModPhys.86.361
https://doi.org/10.1103/RevModPhys.86.361
https://doi.org/10.1103/PhysRevA.94.032311
https://doi.org/10.1103/PhysRevA.94.032311
https://doi.org/10.1080/00018730802218067
https://doi.org/10.1080/00018730802218067
https://doi.org/10.1080/00018730802218067
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.65.205309
https://doi.org/10.1103/PhysRevB.70.195340
https://doi.org/10.1103/PhysRevB.70.195340


Topical Review

31

	[144]	 Fischer J, Trif M, Coish W and Loss D 2009 Spin 
interactions, relaxation and decoherence in quantum dots 
Solid State Commun. 149 1443–50

	[145]	 Coish W A and Baugh J 2009 Nuclear spins in 
nanostructures Phys. Status Solidi b 246 2203–15

	[146]	 Khaetskii A V and Nazarov Y V 2001 Spin-flip transitions 
between zeeman sublevels in semiconductor quantum dots 
Phys. Rev. B 64 125316

	[147]	 Golovach V N, Khaetskii A and Loss D 2004 Phonon-
induced decay of the electron spin in quantum dots Phys. 
Rev. Lett. 93 016601

	[148]	 Sherman E Y and Lockwood D J 2005 Spin relaxation in 
quantum dots with random spin–orbit coupling Phys. Rev. 
B 72 125340

	[149]	 Bulaev D V and Loss D 2005 Spin relaxation and 
anticrossing in quantum dots: Rashba versus Dresselhaus 
spin–orbit coupling Phys. Rev. B 71 205324

	[150]	 Fal’ko V I, Altshuler B L and Tsyplyatyev O 2005 
Anisotropy of spin splitting and spin relaxation in lateral 
quantum dots Phys. Rev. Lett. 95 076603

	[151]	 Prada M and Pfannkuche D 2017 Anisotropy of spin 
coherence in high mobility quantum wells with arbitrary 
magnetic fields Phys. Rev. B 95 045421

	[152]	 Koppens F H L, Nowack K C and Vandersypen L M K 2008 
Spin echo of a single electron spin in a quantum dot  
Phys. Rev. Lett. 100 236802

	[153]	 Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, 
Umansky V and Yacoby A 2011 Dephasing time of GaAs 
electron-spin qubits coupled to a nuclear bath exceeding 
200 μs Nat. Phys. 7 109

	[154]	 Malinowski F K et al 2017 Notch filtering the nuclear 
environment of a spin qubit Nat. Nanotechnol. 12 16–20

	[155]	 Amasha S, MacLean K, Radu I P, Zumbühl D M, 
Kastner M A, Hanson M P and Gossard A C 2008 
Electrical control of spin relaxation in a quantum dot Phys. 
Rev. Lett. 100 046803

	[156]	 Levy J 2002 Universal quantum computation with spin-1/2 
pairs and Heisenberg exchange Phys. Rev. Lett. 89 147902

	[157]	 Klinovaja J, Stepanenko D, Halperin B I and Loss D 2012 
Exchange-based CNOT gates for singlet-triplet qubits with 
spin–orbit interaction Phys. Rev. B 86 085423

	[158]	 Wardrop M P and Doherty A C 2014 Exchange-based  
two-qubit gate for singlet-triplet qubits Phys. Rev. B 
90 045418

	[159]	 Taylor J M, Engel H-A, Dur W, Yacoby A, Marcus C M, 
Zoller P and Lukin M D 2005 Fault-tolerant architecture 
for quantum computation using electrically controlled 
semiconductor spins Nat. Phys. 1 177

	[160]	 Coish W A and Loss D 2005 Singlet-triplet decoherence due 
to nuclear spins in a double quantum dot Phys. Rev. B 
72 125337

	[161]	 Stepanenko D and Burkard G 2007 Quantum gates between 
capacitively coupled double quantum dot two-spin qubits 
Phys. Rev. B 75 085324

	[162]	 Calderon-Vargas F A and Kestner J P 2015 Directly 
accessible entangling gates for capacitively coupled 
singlet-triplet qubits Phys. Rev. B 91 035301

	[163]	 Mehl S, Bluhm H and DiVincenzo D P 2014 Two-qubit 
couplings of singlet-triplet qubits mediated by one 
quantum state Phys. Rev. B 90 045404

	[164]	 Shulman M D, Dial O E, Harvey S P, Bluhm H, Umansky V 
and Yacoby A 2012 Demonstration of entanglement of 
electrostatically coupled singlet-triplet qubits Science 336 202

	[165]	 Srinivasa V and Taylor J M 2015 Capacitively coupled 
singlet-triplet qubits in the double charge resonant regime 
Phys. Rev. B 92 235301

	[166]	 Imamoglu A, Awschalom D D, Burkard G, DiVincenzo D P, 
Loss D, Sherwin M and Small A 1999 Quantum 
information processing using quantum dot spins and cavity 
qed Phys. Rev. Lett. 83 4204

	[167]	 Childress L, Sørensen A S and Lukin M D 2004 Mesoscopic 
cavity quantum electrodynamics with quantum dots  
Phys. Rev. A 69 042302

	[168]	 Burkard G and Imamoglu A 2006 Ultra-long-distance 
interaction between spin qubits Phys. Rev. B 74 041307

	[169]	 Hu X, Liu Y-X and Nori F 2012 Strong coupling of a spin 
qubit to a superconducting stripline cavity Phys. Rev. B 
86 035314

	[170]	 Petersson K D, McFaul L W, Schroer M D, Jung M, 
Taylor J M, Houck A A and Petta J R 2012 Circuit 
quantum electrodynamics with a spin qubit Nature 
490 380

	[171]	 Viennot J J, Dartiailh M C, Cottet A and Kontos T 2015 
Coherent coupling of a single spin to microwave cavity 
photons Science 349 408–11

	[172]	 Samkharadze N, Bruno A, Scarlino P, Zheng G, 
DiVincenzo D P, DiCarlo L and Vandersypen L M K 
2016 High-kinetic-inductance superconducting nanowire 
resonators for circuit QED in a magnetic field Phys. Rev. 
Appl. 5 044004

	[173]	 Bruhat L E, Cubaynes T, Viennot J J, Dartiailh M C, 
Desjardins M M, Cottet A and Kontos T 2016 Strong 
coupling between an electron in a quantum dot circuit and 
a photon in a cavity (arXiv:1612.05214)

	[174]	 Kogan S 1996 Electronic Noise and Fluctuations in Solids 
(Cambridge: Cambridge University Press)

	[175]	 Jung S W, Fujisawa T, Hirayama Y and Jeong Y H 2004 
Background charge fluctuation in a GaAs quantum dot 
device Appl. Phys. Lett. 85 768

	[176]	 Müller J, von Molnár S, Ohno Y and Ohno H 2006 
Decomposition of 1/f noise in −al ga As GaAsx x1 /  Hall 
devices Phys. Rev. Lett. 96 186601

	[177]	 Dutta P and Horn P M 1981 Low-frequency fluctuations in 

solids: 
f

1 noise Rev. Mod. Phys. 53 497–516

	[178]	 Weissman M B 1988 
f

1 noise and other slow, nonexponential 

kinetics in condensed matter Rev. Mod. Phys. 60 537–71
	[179]	 Beaudoin F and Coish W A 2015 Microscopic models for 

charge-noise-induced dephasing of solid-state qubits Phys. 
Rev. B 91 165432

	[180]	 Ramon G and Hu X 2010 Decoherence of spin qubits due 
to a nearby charge fluctuator in gate-defined double dots 
Phys. Rev. B 81 045304

	[181]	 Ramon G 2011 Electrically controlled quantum gates for 
two-spin qubits in two double quantum dots Phys. Rev. B 
84 155329

	[182]	 Hiltunen T, Bluhm H, Mehl S and Harju A 2015 Charge-
noise tolerant exchange gates of singlet-triplet qubits in 
asymmetric double quantum dots Phys. Rev. B 91 075301

	[183]	 Martins F, Malinowski F K, Nissen P D, Barnes E, Fallahi S, 
Gardner G C, Manfra M J, Marcus C M and Kuemmeth F 
2016 Noise suppression using symmetric exchange gates 
in spin qubits Phys. Rev. Lett. 116 116801

	[184]	 Lidar D A 2014 Review of Decoherence-Free Subspaces, 
Noiseless Subsystems and Dynamical Decoupling (New 
York: Wiley) pp 295–354

	[185]	 Buchachenko A L and Berdinsky V L 2002 Electron spin 
catalysis Chem. Rev. 102 603

	[186]	 Waugh F R, Berry M J, Mar D J, Westervelt R M, 
Campman K L and Gossard A C 1995 Single-electron 
charging in double and triple quantum dots with tunable 
coupling Phys. Rev. Lett. 75 705–8

	[187]	 Usukura J, Saiga Y and Hirashima D S 2005 Three-electron 
systems in quantum nanostructures: ground state transition 
from a spin-doublet state to a spin-quartet state J. Phys. 
Soc. Japan 74 1231–9

	[188]	 Korkusinski M, Gimenez I P, Hawrylak P, Gaudreau L, 
Studenikin S A and Sachrajda A S 2007 Topological 
hunds rules and the electronic properties of a triple lateral 
quantum dot molecule Phys. Rev. B 75 115301

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1016/j.ssc.2009.04.033
https://doi.org/10.1016/j.ssc.2009.04.033
https://doi.org/10.1016/j.ssc.2009.04.033
https://doi.org/10.1002/pssb.200945229
https://doi.org/10.1002/pssb.200945229
https://doi.org/10.1002/pssb.200945229
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevB.64.125316
https://doi.org/10.1103/PhysRevLett.93.016601
https://doi.org/10.1103/PhysRevLett.93.016601
https://doi.org/10.1103/PhysRevB.72.125340
https://doi.org/10.1103/PhysRevB.72.125340
https://doi.org/10.1103/PhysRevB.71.205324
https://doi.org/10.1103/PhysRevB.71.205324
https://doi.org/10.1103/PhysRevLett.95.076603
https://doi.org/10.1103/PhysRevLett.95.076603
https://doi.org/10.1103/PhysRevB.95.045421
https://doi.org/10.1103/PhysRevB.95.045421
https://doi.org/10.1103/PhysRevLett.100.236802
https://doi.org/10.1103/PhysRevLett.100.236802
https://doi.org/10.1038/nphys1856
https://doi.org/10.1038/nphys1856
https://doi.org/10.1038/nnano.2016.170
https://doi.org/10.1038/nnano.2016.170
https://doi.org/10.1038/nnano.2016.170
https://doi.org/10.1103/PhysRevLett.100.046803
https://doi.org/10.1103/PhysRevLett.100.046803
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1103/PhysRevLett.89.147902
https://doi.org/10.1103/PhysRevB.86.085423
https://doi.org/10.1103/PhysRevB.86.085423
https://doi.org/10.1103/PhysRevB.90.045418
https://doi.org/10.1103/PhysRevB.90.045418
https://doi.org/10.1038/nphys174
https://doi.org/10.1038/nphys174
https://doi.org/10.1103/PhysRevB.72.125337
https://doi.org/10.1103/PhysRevB.72.125337
https://doi.org/10.1103/PhysRevB.75.085324
https://doi.org/10.1103/PhysRevB.75.085324
https://doi.org/10.1103/PhysRevB.91.035301
https://doi.org/10.1103/PhysRevB.91.035301
https://doi.org/10.1103/PhysRevB.90.045404
https://doi.org/10.1103/PhysRevB.90.045404
https://doi.org/10.1126/science.1217692
https://doi.org/10.1126/science.1217692
https://doi.org/10.1103/PhysRevB.92.235301
https://doi.org/10.1103/PhysRevB.92.235301
https://doi.org/10.1103/PhysRevLett.83.4204
https://doi.org/10.1103/PhysRevLett.83.4204
https://doi.org/10.1103/PhysRevA.69.042302
https://doi.org/10.1103/PhysRevA.69.042302
https://doi.org/10.1103/PhysRevB.74.041307
https://doi.org/10.1103/PhysRevB.74.041307
https://doi.org/10.1103/PhysRevB.86.035314
https://doi.org/10.1103/PhysRevB.86.035314
https://doi.org/10.1038/nature11559
https://doi.org/10.1038/nature11559
https://doi.org/10.1126/science.aaa3786
https://doi.org/10.1126/science.aaa3786
https://doi.org/10.1126/science.aaa3786
https://doi.org/10.1103/PhysRevApplied.5.044004
https://doi.org/10.1103/PhysRevApplied.5.044004
http://arxiv.org/abs/1612.05214
https://doi.org/10.1063/1.1777802
https://doi.org/10.1063/1.1777802
https://doi.org/10.1103/PhysRevLett.96.186601
https://doi.org/10.1103/PhysRevLett.96.186601
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.53.497
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/RevModPhys.60.537
https://doi.org/10.1103/PhysRevB.91.165432
https://doi.org/10.1103/PhysRevB.91.165432
https://doi.org/10.1103/PhysRevB.81.045304
https://doi.org/10.1103/PhysRevB.81.045304
https://doi.org/10.1103/PhysRevB.84.155329
https://doi.org/10.1103/PhysRevB.84.155329
https://doi.org/10.1103/PhysRevB.91.075301
https://doi.org/10.1103/PhysRevB.91.075301
https://doi.org/10.1103/PhysRevLett.116.116801
https://doi.org/10.1103/PhysRevLett.116.116801
https://doi.org/10.1021/cr010370l
https://doi.org/10.1021/cr010370l
https://doi.org/10.1103/PhysRevLett.75.705
https://doi.org/10.1103/PhysRevLett.75.705
https://doi.org/10.1103/PhysRevLett.75.705
https://doi.org/10.1143/JPSJ.74.1231
https://doi.org/10.1143/JPSJ.74.1231
https://doi.org/10.1143/JPSJ.74.1231
https://doi.org/10.1103/PhysRevB.75.115301
https://doi.org/10.1103/PhysRevB.75.115301


Topical Review

32

	[189]	 Delgado F, Shim Y-P, Korkusinski M and Hawrylak P 2007 
Theory of spin, electronic and transport properties of the 
lateral triple quantum dot molecule in a magnetic field 
Phys. Rev. B 76 115332

	[190]	 Li Y, Yannouleas C and Landman U 2007 Three-electron 
anisotropic quantum dots in variable magnetic fields: 
exact results for excitation spectra, spin structures and 
entanglement Phys. Rev. B 76 245310

	[191]	Hsieh C-Y and Hawrylak P 2010 Quantum circuits 
based on coded qubits encoded in chirality of electron 
spin complexes in triple quantum dots Phys. Rev. B 
82 205311

	[192]	 Hsieh C-Y, Shim Y-P, Korkusinski M and Hawrylak P 2012 
Physics of lateral triple quantum-dot molecules with 
controlled electron numbers Rep. Prog. Phys. 75 114501

	[193]	 van der Wiel W G, De Franceschi S, Elzerman J M, 
Fujisawa T, Tarucha S and Kouwenhoven L P 2002 
Electron transport through double quantum dots Rev. Mod. 
Phys. 75 1–22

	[194]	 Vidan A, Westervelt R M, Stopa M, Hanson M and 
Gossard A C 2005 Charging and spin effects in triple dot 
artificial molecules J. Supercond. 18 223–7

	[195]	 Rogge M C and Haug R J 2009 The three dimensionality 
of triple quantum dot stability diagrams New J. Phys. 
11 113037

	[196]	 Seo M, Choi H K, Lee S-Y, Kim N, Chung Y, Sim H-S, 
Umansky V and Mahalu D 2013 Charge frustration in a 
triangular triple quantum dot Phys. Rev. Lett. 110 046803

	[197]	 Broome M A, Gorman S K, Keizer J G, Watson T F, Hile S J, 
Baker W J and Simmons M Y 2016 Mapping the chemical 
potential landscape of a triple quantum dot Phys. Rev. B 
94 054314

	[198]	 Nguyen K T et al 2013 Charge sensed Pauli blockade in a 
metal-oxide-semiconductor lateral double quantum dot 
Nano Lett. 13 5785–90

	[199]	 Powell I E 2014 Simulating charge stability diagrams 
for double and triple quantum dot systems (private 
communication) www.pa.ucla.edu/sites/default/files/files/
REU/Papers%202014/powell.pdf

	[200]	 Russ M and Burkard G Fluctuating charging energies in 
three-spin qubits unpublished

	[201]	 Mizel A and Lidar D A 2004 Three- and four-body 
interactions in spin-based quantum computers Phys. Rev. 
Lett. 92 077903

	[202]	 Hawrylak P and Korkusinski M 2005 Voltage-controlled 
coded qubit based on electron spin Solid State Commun. 
136 508–12

	[203]	 Ren Y, Wang L, Liu Z and Wu M 2014 Energy spectra of 
three electrons in SiGe/Si/SiGe laterally coupled triple 
quantum dots Physica E: Low-Dimens. Syst. Nanostruct. 
63 329–36

	[204]	 Kawano Y and Ozawa M 2006 Quantum gates generated 
by rotationally invariant operators in a decoherence-free 
subsystem Phys. Rev. A 73 012339

	[205]	 Lee B, Witzel W M and Das Sarma S 2008 Universal pulse 
sequence to minimize spin dephasing in the central spin 
decoherence problem Phys. Rev. Lett. 100 160505

	[206]	 Hickman G T, Wang X, Kestner J P and Das Sarma S 2013 
Dynamically corrected gates for an exchange-only qubit 
Phys. Rev. B 88 161303

	[207]	 Takakura T, Noiri A, Obata T, Otsuka T, Yoneda J, Yoshida K 
and Tarucha S 2014 Single to quadruple quantum dots 
with tunable tunnel couplings Appl. Phys. Lett. 104 
113109

	[208]	 Rashba E I 2008 Theory of electric dipole spin resonance in 
quantum dots: mean field theory with gaussian fluctuations 
and beyond Phys. Rev. B 78 195302

	[209]	 Gordon J P and Bowers K D 1958 Microwave spin echoes 
from donor electrons in silicon Phys. Rev. Lett. 1 368–70

	[210]	 Chiba M and Hirai A 1972 Electron spin echo decay 
behaviours of phosphorus doped silicon J. Phys. Soc. 
Japan 33 730–8

	[211]	 Tezuka H, Stegner A R, Tyryshkin A M, Shankar S, 
Thewalt M L W, Lyon S A, Itoh K M and Brandt M S 
2010 Electron paramagnetic resonance of boron acceptors 
in isotopically purified silicon Phys. Rev. B 81 161203

	[212]	 Alexander S and Anderson P W 1964 Interaction between 
localized states in metals Phys. Rev. 133 A1594–603

	[213]	 Stöhr J and Siegmann H C 2006 From fundamentals to 
nanoscale dynamics Magnetism (Springer Series in 
Solid-State Sciences) (Berlin: Springer) (https://doi.
org/10.1007/978-3-540-30283-4)

	[214]	 Kostyrko T and Bułka B R 2011 Canonical perturbation 
theory for inhomogeneous systems of interacting fermions 
Phys. Rev. B 84 035123

	[215]	 Trif M, Troiani F, Stepanenko D and Loss D 2008 Spin-
electric coupling in molecular magnets Phys. Rev. Lett. 
101 217201

	[216]	 Kyriakidis J and Penney S J 2005 Coherent rotations of a 
single spin-based qubit in a single quantum dot at fixed 
zeeman energy Phys. Rev. B 71 125332

	[217]	 Royer B, Grimsmo A L, Didier N and Blais A 2016 Fast 
and high-fidelity entangling gate through parametrically 
modulated longitudinal coupling 1 11

	[218]	 Beaudoin F, Lachance-Quirion D, Coish W A and Pioro-
Ladrière M 2016 Coupling a single electron spin to 
a microwave resonator: controlling transverse and 
longitudinal couplings Nanotechnology 27 464003

	[219]	 Borselli M G et al 2011 Measurement of valley splitting in 
high-symmetry Si/SiGe quantum dots Appl. Phys. Lett. 98 
123118

	[220]	 Liu Z, Wang L and Shen K 2012 Energy spectra of three 
electrons in Si/SiGe single and vertically coupled double 
quantum dots Phys. Rev. B 85 045311

	[221]	 Tahan C and Joynt R 2014 Relaxation of excited spin, orbital 
and valley qubit states in ideal silicon quantum dots Phys. 
Rev. B 89 075302

	[222]	 Ferraro E, De Michielis M, Mazzeo G, Fanciulli M and 
Prati E 2014 Effective Hamiltonian for the hybrid double 
quantum dot qubit Quantum Inf. Process. 13 1155–73

	[223]	 Shi Z, Simmons C B, Prance J R, King Gamble J, Friesen M, 
Savage D E, Lagally M G, Coppersmith S N and 
Eriksson M A 2011 Tunable singlet-triplet splitting in a few-
electron Si/SiGe quantum dot Appl. Phys. Lett. 99 233108

	[224]	 Boykin T B, Klimeck G, Friesen M, Coppersmith S N, von 
Allmen P, Oyafuso F and Lee S 2004 Valley splitting in 
low-density quantum-confined heterostructures studied 
using tight-binding models Phys. Rev. B 70 165325

	[225]	 Saraiva A L, Calderón M J, Hu X, Das Sarma S and 
Koiller B 2009 Physical mechanisms of interface-mediated 
intervalley coupling in Si Phys. Rev. B 80 081305

	[226]	 Hanson R, van Beveren L H W, Vink I T, Elzerman J M, 
Naber W J M, Koppens F H L, Kouwenhoven L P and 
Vandersypen L M K 2005 Single-shot readout of electron 
spin states in a quantum dot using spin-dependent tunnel 
rates Phys. Rev. Lett. 94 196802

	[227]	 Simmons C B et al 2011 Tunable spin loading and T1 of a 
silicon spin qubit measured by single-shot readout Phys. 
Rev. Lett. 106 156804

	[228]	 Lei Y, Wen Y and Fang-Wei W 2014 Hybrid double-dot qubit 
measurement with a quantum point contact Chin. Phys. B 
23 100303

	[229]	 DiVincenzo D P 1995 Two-bit gates are universal for 
quantum computation Phys. Rev. A 51 1015

	[230]	 Lloyd S 1995 Almost any quantum logic gate is universal 
Phys. Rev. Lett. 75 346–9

	[231]	 Zeuch D and Bonesteel N E 2016 Simple derivation of the 
fong-wandzura pulse sequence Phys. Rev. A 93 010303

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevB.76.115332
https://doi.org/10.1103/PhysRevB.76.115332
https://doi.org/10.1103/PhysRevB.76.245310
https://doi.org/10.1103/PhysRevB.76.245310
https://doi.org/10.1103/PhysRevB.82.205311
https://doi.org/10.1103/PhysRevB.82.205311
https://doi.org/10.1088/0034-4885/75/11/114501
https://doi.org/10.1088/0034-4885/75/11/114501
https://doi.org/10.1103/RevModPhys.75.1
https://doi.org/10.1103/RevModPhys.75.1
https://doi.org/10.1103/RevModPhys.75.1
https://doi.org/10.1007/s10948-005-3373-8
https://doi.org/10.1007/s10948-005-3373-8
https://doi.org/10.1007/s10948-005-3373-8
https://doi.org/10.1088/1367-2630/11/11/113037
https://doi.org/10.1088/1367-2630/11/11/113037
https://doi.org/10.1103/PhysRevLett.110.046803
https://doi.org/10.1103/PhysRevLett.110.046803
https://doi.org/10.1103/PhysRevB.94.054314
https://doi.org/10.1103/PhysRevB.94.054314
https://doi.org/10.1021/nl4020759
https://doi.org/10.1021/nl4020759
https://doi.org/10.1021/nl4020759
http://www.pa.ucla.edu/sites/default/files/files/REU/Papers%202014/powell.pdf
http://www.pa.ucla.edu/sites/default/files/files/REU/Papers%202014/powell.pdf
https://doi.org/10.1103/PhysRevLett.92.077903
https://doi.org/10.1103/PhysRevLett.92.077903
https://doi.org/10.1016/j.ssc.2005.09.026
https://doi.org/10.1016/j.ssc.2005.09.026
https://doi.org/10.1016/j.ssc.2005.09.026
https://doi.org/10.1016/j.physe.2014.06.012
https://doi.org/10.1016/j.physe.2014.06.012
https://doi.org/10.1016/j.physe.2014.06.012
https://doi.org/10.1103/PhysRevA.73.012339
https://doi.org/10.1103/PhysRevA.73.012339
https://doi.org/10.1103/PhysRevLett.100.160505
https://doi.org/10.1103/PhysRevLett.100.160505
https://doi.org/10.1103/PhysRevB.88.161303
https://doi.org/10.1103/PhysRevB.88.161303
https://doi.org/10.1063/1.4869108
https://doi.org/10.1063/1.4869108
https://doi.org/10.1103/PhysRevB.78.195302
https://doi.org/10.1103/PhysRevB.78.195302
https://doi.org/10.1103/PhysRevLett.1.368
https://doi.org/10.1103/PhysRevLett.1.368
https://doi.org/10.1103/PhysRevLett.1.368
https://doi.org/10.1143/JPSJ.33.730
https://doi.org/10.1143/JPSJ.33.730
https://doi.org/10.1143/JPSJ.33.730
https://doi.org/10.1103/PhysRevB.81.161203
https://doi.org/10.1103/PhysRevB.81.161203
https://doi.org/10.1103/PhysRev.133.A1594
https://doi.org/10.1103/PhysRev.133.A1594
https://doi.org/10.1103/PhysRev.133.A1594
https://doi.org/10.1007/978-3-540-30283-4
https://doi.org/10.1007/978-3-540-30283-4
https://doi.org/10.1103/PhysRevB.84.035123
https://doi.org/10.1103/PhysRevB.84.035123
https://doi.org/10.1103/PhysRevLett.101.217201
https://doi.org/10.1103/PhysRevLett.101.217201
https://doi.org/10.1103/PhysRevB.71.125332
https://doi.org/10.1103/PhysRevB.71.125332
https://doi.org/10.22331/q-2017-05-11-11
https://doi.org/10.22331/q-2017-05-11-11
https://doi.org/10.1088/0957-4484/27/46/464003
https://doi.org/10.1088/0957-4484/27/46/464003
https://doi.org/10.1063/1.3569717
https://doi.org/10.1063/1.3569717
https://doi.org/10.1103/PhysRevB.85.045311
https://doi.org/10.1103/PhysRevB.85.045311
https://doi.org/10.1103/PhysRevB.89.075302
https://doi.org/10.1103/PhysRevB.89.075302
https://doi.org/10.1007/s11128-013-0718-2
https://doi.org/10.1007/s11128-013-0718-2
https://doi.org/10.1007/s11128-013-0718-2
https://doi.org/10.1063/1.3666232
https://doi.org/10.1063/1.3666232
https://doi.org/10.1103/PhysRevB.70.165325
https://doi.org/10.1103/PhysRevB.70.165325
https://doi.org/10.1103/PhysRevB.80.081305
https://doi.org/10.1103/PhysRevB.80.081305
https://doi.org/10.1103/PhysRevLett.94.196802
https://doi.org/10.1103/PhysRevLett.94.196802
https://doi.org/10.1103/PhysRevLett.106.156804
https://doi.org/10.1103/PhysRevLett.106.156804
https://doi.org/10.1088/1674-1056/23/10/100303
https://doi.org/10.1088/1674-1056/23/10/100303
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevA.51.1015
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1103/PhysRevLett.75.346
https://doi.org/10.1103/PhysRevA.93.010303
https://doi.org/10.1103/PhysRevA.93.010303


Topical Review

33

	[232]	 Kouwenhoven L, Austing D G and Tarucha S 2001 Few-
electron quantum dots Rep. Prog. Phys. 64 701

	[233]	 Ferraro E, De Michielis M, Fanciulli M and Prati E 2015 
Coherent tunneling by adiabatic passage of an exchange-
only spin qubit in a double quantum dot chain Phys. Rev. B 
91 075435

	[234]	 Wardrop M P and Doherty A C 2016 Characterization of 
an exchange-based two-qubit gate for resonant exchange 
qubits Phys. Rev. B 93 075436

	[235]	 Zhang J, Vala J, Sastry S and Whaley K B 2003 Geometric 
theory of nonlocal two-qubit operations Phys. Rev. A 
67 042313

	[236]	 Fowler A G, Mariantoni M, Martinis J M and Cleland A N 
2012 Surface codes: towards practical large-scale quantum 
computation Phys. Rev. A 86 032324

	[237]	 Lidar D and Brun T 2013 Quantum Error Correction 
(Cambridge: Cambridge University Press) (https:doi.
org/10.1017/CBO9781139034807)

	[238]	 Brecht T, Pfaff W, Wang C, Chu Y, Frunzio L, Devoret M H 
and Schoelkopf R J 2016 Multilayer microwave integrated 
quantum circuits for scalable quantum computing npj 
Quantum Inf. 2 16002

	[239]	 Leijnse M and Flensberg K 2013 Coupling spin qubits via 
superconductors Phys. Rev. Lett. 111 060501

	[240]	 Hassler F, Catelani G and Bluhm H 2015 Exchange 
interaction of two spin qubits mediated by a 
superconductor Phys. Rev. B 92 235401

	[241]	 Stotz J A H, Hey R, Santos P V and Ploog K H 2005 
Coherent spin transport through dynamic quantum dots 
Nat. Mater. 4 585–8

	[242]	 Hermelin S, Takada S, Yamamoto M, Tarucha S, Wieck A D, 
Saminadayar L, Bauerle C and Meunier T 2011 Electrons 
surfing on a sound wave as a platform for quantum optics 
with flying electrons Nature 477 435–8

	[243]	 McNeil R P G, Kataoka M, Ford C J B, Barnes C H W, 
Anderson D, Jones G A C, Farrer I and Ritchie D A 
2011 On-demand single-electron transfer between distant 
quantum dots Nature 477 439–42

	[244]	 Schuetz M J A, Kessler E M, Giedke G, Vandersypen L M K, 
Lukin M D and Cirac J I 2015 Universal quantum transducers 
based on surface acoustic waves Phys. Rev. X 5 031031

	[245]	 Benito M, Schuetz M J A, Cirac J I, Platero G and Giedke G 
2016 Dissipative long-range entanglement generation 
between electronic spins Phys. Rev. B 94 115404

	[246]	 Bertrand B, Hermelin S, Takada S, Yamamoto M, Tarucha S, 
Ludwig A, Wieck A D, Bäuerle C and Meunier T 2016 
Fast spin information transfer between distant quantum 
dots using individual electrons Nat. Nanotechnol. 
11 672–6

	[247]	 Trifunovic L, Pedrocchi F L and Loss D 2013 Long-distance 
entanglement of spin qubits via ferromagnet Phys. Rev. X 
3 041023

	[248]	 Braakman F R, Barthelemy P, Reichl C, Wegscheider W and 
Vandersypen L M K 2013 Long-distance coherent coupling 
in a quantum dot array Nat. Nanotechnol. 8 432–7

	[249]	 Sánchez R, Gallego-Marcos F and Platero G 2014 
Superexchange blockade in triple quantum dots Phys. Rev. 
B 89 161402

	[250]	 Srinivasa V, Xu H and Taylor J M 2015 Tunable spin-qubit 
coupling mediated by a multielectron quantum dot Phys. 
Rev. Lett. 114 226803

	[251]	 Kuo D M T and Chang Y-C 2014 Long-distance coherent 
tunneling effect on the charge and heat currents in serially 
coupled triple quantum dots Phys. Rev. B 89 115416

	[252]	 Menchon-Enrich R, Benseny A, Ahufinger V, Greentree A D, 
Busch T and Mompart J 2016 Spatial adiabatic passage: a 
review of recent progress Rep. Prog. Phys. 79 074401

	[253]	 Braakman F R, Danon J, Schreiber L R, Wegscheider W and 
Vandersypen L M K 2014 Dynamics of spin-flip photon-
assisted tunneling Phys. Rev. B 89 075417

	[254]	 Gallego-Marcos F, Snchez R and Platero G 2015 Photon 
assisted long-range tunneling J. Appl. Phys. 117 112808

	[255]	 Stano P, Klinovaja J, Braakman F R, Vandersypen L M K and 
Loss D 2015 Fast long-distance control of spin qubits by 
photon-assisted cotunneling Phys. Rev. B 92 075302

	[256]	 Yang G, Hsu C-H, Stano P, Klinovaja J and Loss D 2016 
Long-distance entanglement of spin qubits via quantum 
hall edge states Phys. Rev. B 93 075301

	[257]	 Pal A, Rashba E I and Halperin B I 2014 Driven nonlinear 
dynamics of two coupled exchange-only qubits Phys. Rev. 
X 4 011012

	[258]	 Pal A, Rashba E I and Halperin B I 2015 Exact CNOT gates 
with a single nonlocal rotation for quantum-dot qubits 
Phys. Rev. B 92 125409

	[259]	 Mehl S 2015 Two-qubit pulse gate for the three-electron 
double quantum dot qubit Phys. Rev. B 91 035430

	[260]	 Serina M, Trifunovic L, Kloeffel C and Loss D 2016 Long-
range interaction between charge and spin qubits in 
quantum dots (arXiv:1601.03564)

	[261]	 Puri S and Blais A 2016 High-fidelity resonator-induced 
phase gate with single-mode squeezing Phys. Rev. Lett. 
116 180501

	[262]	 Schuetz M J A, Giedke G, Vandersypen L M K and Cirac J I 
2017 High-fidelity hot gates for generic spin-resonator 
systems Phys. Rev. A 95 052335

	[263]	 Viennot J J, Delbecq M R, Bruhat L E, Dartiailh M C, 
Desjardins M M, Baillergeau M, Cottet A and Kontos T 
2016 Towards hybrid circuit quantum electrodynamics 
with quantum dots C. R. Phys. 17 705–17 (quantum 
microwaves / Micro-ondes quantiques)

	[264]	 Blais A, Huang R-S, Wallraff A, Girvin S M and 
Schoelkopf R J 2004 Cavity quantum electrodynamics 
for superconducting electrical circuits: an architecture for 
quantum computation Phys. Rev. A 69 062320

	[265]	 Schoelkopf R J and Girvin S M 2008 Wiring up quantum 
systems Nature 451 664–9

	[266]	 Houck A A, Tureci H E and Koch J 2012 On-chip quantum 
simulation with superconducting circuits Nat. Phys. 
8 292–9

	[267]	 Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 
2007 Photons and Atoms: Introduction to Quantum 
Electrodynamics (New York: Wiley) (https:doi.
org/10.1002/9783527618422.ch)

	[268]	 Sørensen A and Mølmer K 2000 Entanglement and quantum 
computation with ions in thermal motion Phys. Rev. A 
62 022311

	[269]	 Marzari N, Mostofi A A, Yates J R, Souza I and Vanderbilt D 
2012 Maximally localized Wannier functions: theory and 
applications Rev. Mod. Phys. 84 1419

	[270]	 Billangeon P-M, Tsai J S and Nakamura Y 2015 Circuit-
QED-based scalable architectures for quantum information 
processing with superconducting qubits Phys. Rev. B 
91 094517

	[271]	 Richer S and DiVincenzo D 2016 Circuit design 
implementing longitudinal coupling: a scalable scheme for 
superconducting qubits Phys. Rev. B 93 134501

	[272]	 Jaynes E and Cummings F 1963 Comparison of quantum 
and semiclassical radiation theories with application to the 
beam maser Proc. IEEE 51 89

	[273]	 Cummings F W 1965 Stimulated emission of radiation in a 
single mode Phys. Rev. 140 A1051–6

	[274]	 Shore B W and Knight P L 1993 The Jaynes–Cummings 
model J. Mod. Opt. 40 1195–238

	[275]	 Wu Y and Yang X 2007 Strong-coupling theory of 
periodically driven two-level systems Phys. Rev. Lett. 
98 013601

	[276]	 Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, 
Devoret M H and Schoelkopf R J 2007 Quantum-
information processing with circuit quantum 
electrodynamics Phys. Rev. A 75 032329

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1088/0034-4885/64/6/201
https://doi.org/10.1103/PhysRevB.91.075435
https://doi.org/10.1103/PhysRevB.91.075435
https://doi.org/10.1103/PhysRevB.93.075436
https://doi.org/10.1103/PhysRevB.93.075436
https://doi.org/10.1103/PhysRevA.67.042313
https://doi.org/10.1103/PhysRevA.67.042313
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1103/PhysRevA.86.032324
https://doi.org/10.1017/CBO9781139034807
https://doi.org/10.1017/CBO9781139034807
https://doi.org/10.1038/npjqi.2016.2
https://doi.org/10.1038/npjqi.2016.2
https://doi.org/10.1103/PhysRevLett.111.060501
https://doi.org/10.1103/PhysRevLett.111.060501
https://doi.org/10.1103/PhysRevB.92.235401
https://doi.org/10.1103/PhysRevB.92.235401
https://doi.org/10.1038/nmat1430
https://doi.org/10.1038/nmat1430
https://doi.org/10.1038/nmat1430
https://doi.org/10.1038/nature10416
https://doi.org/10.1038/nature10416
https://doi.org/10.1038/nature10416
https://doi.org/10.1038/nature10444
https://doi.org/10.1038/nature10444
https://doi.org/10.1038/nature10444
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevX.5.031031
https://doi.org/10.1103/PhysRevB.94.115404
https://doi.org/10.1103/PhysRevB.94.115404
https://doi.org/10.1038/nnano.2016.82
https://doi.org/10.1038/nnano.2016.82
https://doi.org/10.1038/nnano.2016.82
https://doi.org/10.1103/PhysRevX.3.041023
https://doi.org/10.1103/PhysRevX.3.041023
https://doi.org/10.1038/nnano.2013.67
https://doi.org/10.1038/nnano.2013.67
https://doi.org/10.1038/nnano.2013.67
https://doi.org/10.1103/PhysRevB.89.161402
https://doi.org/10.1103/PhysRevB.89.161402
https://doi.org/10.1103/PhysRevLett.114.226803
https://doi.org/10.1103/PhysRevLett.114.226803
https://doi.org/10.1103/PhysRevB.89.115416
https://doi.org/10.1103/PhysRevB.89.115416
https://doi.org/10.1088/0034-4885/79/7/074401
https://doi.org/10.1088/0034-4885/79/7/074401
https://doi.org/10.1103/PhysRevB.89.075417
https://doi.org/10.1103/PhysRevB.89.075417
https://doi.org/10.1063/1.4913834
https://doi.org/10.1063/1.4913834
https://doi.org/10.1103/PhysRevB.92.075302
https://doi.org/10.1103/PhysRevB.92.075302
https://doi.org/10.1103/PhysRevB.93.075301
https://doi.org/10.1103/PhysRevB.93.075301
https://doi.org/10.1103/PhysRevX.4.011012
https://doi.org/10.1103/PhysRevX.4.011012
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.92.125409
https://doi.org/10.1103/PhysRevB.91.035430
https://doi.org/10.1103/PhysRevB.91.035430
http://arxiv.org/abs/1601.03564
https://doi.org/10.1103/PhysRevLett.116.180501
https://doi.org/10.1103/PhysRevLett.116.180501
https://doi.org/10.1103/PhysRevA.95.052335
https://doi.org/10.1103/PhysRevA.95.052335
https://doi.org/10.1016/j.crhy.2016.07.008
https://doi.org/10.1016/j.crhy.2016.07.008
https://doi.org/10.1016/j.crhy.2016.07.008
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1103/PhysRevA.69.062320
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/451664a
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1038/nphys2251
https://doi.org/10.1002/9783527618422.ch
https://doi.org/10.1002/9783527618422.ch
https://doi.org/10.1103/PhysRevA.62.022311
https://doi.org/10.1103/PhysRevA.62.022311
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1103/PhysRevB.91.094517
https://doi.org/10.1103/PhysRevB.91.094517
https://doi.org/10.1103/PhysRevB.93.134501
https://doi.org/10.1103/PhysRevB.93.134501
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1103/PhysRev.140.A1051
https://doi.org/10.1103/PhysRev.140.A1051
https://doi.org/10.1103/PhysRev.140.A1051
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1080/09500349314551321
https://doi.org/10.1103/PhysRevLett.98.013601
https://doi.org/10.1103/PhysRevLett.98.013601
https://doi.org/10.1103/PhysRevA.75.032329
https://doi.org/10.1103/PhysRevA.75.032329


Topical Review

34

	[277]	 Schuch N and Siewert J 2003 Natural two-qubit gate for 
quantum computation using the XY interaction Phys. Rev. 
A 67 032301

	[278]	 Tanamoto T, Maruyama K, Liu Y-X, Hu X and Nori F 2008 
Efficient purification protocols using iSWAP gates in 
solid-state qubits Phys. Rev. A 78 062313

	[279]	 Childs A M and Chuang I L 2000 Universal quantum 
computation with two-level trapped ions Phys. Rev. A 
63 012306

	[280]	 Wallraff A, Schuster D I, Blais A, Gambetta J M, Schreier J, 
Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 
2007 Sideband transitions and two-tone spectroscopy of 
a superconducting qubit strongly coupled to an on-chip 
cavity Phys. Rev. Lett. 99 050501

	[281]	 Leek P J, Filipp S, Maurer P, Baur M, Bianchetti R, Fink J M, 
Göppl M, Steffen L and Wallraff A 2009 Using sideband 
transitions for two-qubit operations in superconducting 
circuits Phys. Rev. B 79 180511

	[282]	 Sapmaz S, Jarillo-Herrero P, Kouwenhoven L P and van 
der Zant H S J 2006 Quantum dots in carbon nanotubes 
Semicond. Sci. Technol. 21 S52

	[283]	 Zanardi P and Rasetti M 1997 Error avoiding quantum codes 
Mod. Phys. Lett. B 11 1085–93

	[284]	 Lidar D A, Chuang I L and Whaley K B 1998 Decoherence-
free subspaces for quantum computation Phys. Rev. Lett. 
81 2594–7

	[285]	 Viola L, Knill E and Lloyd S 2000 Dynamical generation of 
noiseless quantum subsystems Phys. Rev. Lett. 85 3520–3

	[286]	 Overhauser A W 1953 Polarization of nuclei in metals Phys. 
Rev. 92 411–5

	[287]	 Abragam A 1961 The Principles of Nuclear Magnetism (Int. 
Series of Monographs on Physics) (Oxford: Clarendon)

	[288]	 Slichter C P 1990 Principles of Magnetic Resonance 
(Springer Series in Solid-State Sciences) (Berlin: Springer) 
(https://doi.org/10.1007/978-3-662-09441-9)

	[289]	 Hung J-T, Cywiński L, Hu X and Das Sarma S 2013 
Hyperfine interaction induced dephasing of coupled spin 
qubits in semiconductor double quantum dots Phys. Rev. B 
88 085314

	[290]	 Delbecq M R et al 2016 Quantum dephasing in a gated GaAs 
triple quantum dot due to nonergodic noise Phys. Rev. Lett. 
116 046802

	[291]	 Falci G, D’Arrigo A, Mastellone A and Paladino E 2004 
Dynamical suppression of telegraph and 1/f noise due to 
quantum bistable fluctuators Phys. Rev. A 70 040101

	[292]	 Faoro L and Viola L 2004 Dynamical suppression of 1/f noise 
processes in qubit systems Phys. Rev. Lett. 92 117905

	[293]	 Rebentrost P, Serban I, Schulte-Herbrüggen T and 
Wilhelm F K 2009 Optimal control of a qubit coupled 
to a non-Markovian environment Phys. Rev. Lett. 
102 090401

	[294]	 Du J, Rong X, Zhao N, Wang Y, Yang J and Liu R B 2009 
Preserving electron spin coherence in solids by optimal 
dynamical decoupling Nature 461 1265–8

	[295]	 Green T J, Sastrawan J, Uys H and Biercuk M J 2013 
Arbitrary quantum control of qubits in the presence of 
universal noise New J. Phys. 15 095004

	[296]	 Szańkowski P, Trippenbach M and Cywiński L 2016 
Spectroscopy of cross correlations of environmental noises 
with two qubits Phys. Rev. A 94 012109

	[297]	 Carr H Y and Purcell E M 1954 Effects of diffusion on free 
precession in nuclear magnetic resonance experiments 
Phys. Rev. 94 630–8

	[298]	 Meiboom S and Gill D 1958 Modified spin echo method 
for measuring nuclear relaxation times Rev. Sci. Instrum. 
29 688–91

	[299]	 Uhrig G S 2007 Keeping a quantum bit alive by optimized 
π-pulse sequences Phys. Rev. Lett. 98 100504

	[300]	 Uhrig G S 2008 Exact results on dynamical decoupling by 
pulses in quantum information processes New J. Phys. 
10 083024

	[301]	 Uhrig G S 2009 Concatenated control sequences based on 
optimized dynamic decoupling Phys. Rev. Lett. 102 120502

	[302]	 Uys H, Biercuk M J and Bollinger J J 2009 Optimized noise 
filtration through dynamical decoupling Phys. Rev. Lett. 
103 040501

	[303]	 Johnson J B 1928 Thermal agitation of electricity in 
conductors Phys. Rev. 32 97

	[304]	 Nyquist H 1928 Thermal agitation of electric charge in 
conductors Phys. Rev. 32 110

	[305]	 Langsjoen L S, Poudel A, Vavilov M G and Joynt R 2012 
Qubit relaxation from evanescent-wave Johnson noise 
Phys. Rev. A 86 010301

	[306]	 Poudel A, Langsjoen L S, Vavilov M G and Joynt R 2013 
Relaxation in quantum dots due to evanescent-wave 
Johnson noise Phys. Rev. B 87 045301

	[307]	 Schottky W 1918 Über spontane stromschwankungen in 
verschiedenen elektrizitätsleitern Ann. Phys. 362 541–67

	[308]	 Ramon G 2015 Non-gaussian signatures and collective 
effects in charge noise affecting a dynamically decoupled 
qubit Phys. Rev. B 92 155422

	[309]	 Cywiński L 2014 Dynamical-decoupling noise spectroscopy 
at an optimal working point of a qubit Phys. Rev. A 
90 042307

	[310]	 Friesen M, Eriksson M A and Coppersmith S N 2016 A 
decoherence-free subspace for charge: the quadrupole 
qubit (arXiv:1605.01797)

	[311]	 Li Y P, Tsui D C, Heremans J J, Simmons J A and 
Weimann G W 1990 Low frequency noise in transport 
through quantum point contacts Appl. Phys. Lett. 57 774–6

	[312]	 Dekker C, Scholten A J, Liefrink F, Eppenga R, van 
Houten H and Foxon C T 1991 Spontaneous resistance 
switching and low-frequency noise in quantum point 
contacts Phys. Rev. Lett. 66 2148–51

	[313]	 Sakamoto T, Nakamura Y and Nakamura K 1995 
Distributions of single carrier traps in −GaAs Al Ga Asx x1/  
heterostructures Appl. Phys. Lett. 67 2220–2

	[314]	 Kurdak C, Chen C-J, Tsui D C, Parihar S, Lyon S and 
Weimann G W 1997 Resistance fluctuations in 

/ −GaAs Al Ga Asx x1  quantum point contact and hall bar 
structures Phys. Rev. B 56 9813–8

	[315]	 Hayashi T, Fujisawa T, Cheong H D, Jeong Y H and 
Hirayama Y 2003 Coherent manipulation of electronic 
states in a double quantum dot Phys. Rev. Lett.  
91 226804

	[316]	 Buizert C, Koppens F H L, Pioro-Ladrière M, Tranitz H-P, 
Vink I T, Tarucha S, Wegscheider W and Vandersypen L M K 
2008 In situ reduction of charge noise in / −GaAs Al Ga Asx x1  
Schottky-gated devices Phys. Rev. Lett. 101 226603

	[317]	 Petersson K, Petta J, Lu H and Gossard A 2010 Quantum 
coherence in a one-electron semiconductor charge qubit 
Phys. Rev. Lett. 105 246804

	[318]	 Takeda K, Obata T, Fukuoka Y, Akhtar W M, Kamioka J, 
Kodera T, Oda S and Tarucha S 2013 Characterization and 
suppression of low-frequency noise in Si/SiGe quantum point 
contacts and quantum dots Appl. Phys. Lett. 102 123113

	[319]	 Freeman B M, Schoenfield J S and Jiang H 2013 Comparison of 
low frequency charge noise in identically patterned Si/SiO2 
and Si/SiGe quantum dots Appl. Phys. Lett. 108 253108

	[320]	 Dial O E, Shulman M D, Harvey S P, Bluhm H, Umansky V 
and Yacoby A 2013 Charge noise spectroscopy using 
coherent exchange oscillations in a singlet-triplet qubit 
Phys. Rev. Lett. 110 146804

	[321]	 Taylor J and Lukin M 2006 Dephasing of quantum bits by 
a quasi-static mesoscopic environment Quantum Inf. 
Process. 5 503

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevA.67.032301
https://doi.org/10.1103/PhysRevA.67.032301
https://doi.org/10.1103/PhysRevA.78.062313
https://doi.org/10.1103/PhysRevA.78.062313
https://doi.org/10.1103/PhysRevA.63.012306
https://doi.org/10.1103/PhysRevA.63.012306
https://doi.org/10.1103/PhysRevLett.99.050501
https://doi.org/10.1103/PhysRevLett.99.050501
https://doi.org/10.1103/PhysRevB.79.180511
https://doi.org/10.1103/PhysRevB.79.180511
https://doi.org/10.1088/0268-1242/21/11/S08
https://doi.org/10.1088/0268-1242/21/11/S08
https://doi.org/10.1142/S0217984997001304
https://doi.org/10.1142/S0217984997001304
https://doi.org/10.1142/S0217984997001304
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.81.2594
https://doi.org/10.1103/PhysRevLett.85.3520
https://doi.org/10.1103/PhysRevLett.85.3520
https://doi.org/10.1103/PhysRevLett.85.3520
https://doi.org/10.1103/PhysRev.92.411
https://doi.org/10.1103/PhysRev.92.411
https://doi.org/10.1103/PhysRev.92.411
https://doi.org/10.1007/978-3-662-09441-9
https://doi.org/10.1103/PhysRevB.88.085314
https://doi.org/10.1103/PhysRevB.88.085314
https://doi.org/10.1103/PhysRevLett.116.046802
https://doi.org/10.1103/PhysRevLett.116.046802
https://doi.org/10.1103/PhysRevA.70.040101
https://doi.org/10.1103/PhysRevA.70.040101
https://doi.org/10.1103/PhysRevLett.92.117905
https://doi.org/10.1103/PhysRevLett.92.117905
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1103/PhysRevLett.102.090401
https://doi.org/10.1038/nature08470
https://doi.org/10.1038/nature08470
https://doi.org/10.1038/nature08470
https://doi.org/10.1088/1367-2630/15/9/095004
https://doi.org/10.1088/1367-2630/15/9/095004
https://doi.org/10.1103/PhysRevA.94.012109
https://doi.org/10.1103/PhysRevA.94.012109
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1103/PhysRev.94.630
https://doi.org/10.1063/1.1716296
https://doi.org/10.1063/1.1716296
https://doi.org/10.1063/1.1716296
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1103/PhysRevLett.98.100504
https://doi.org/10.1088/1367-2630/10/8/083024
https://doi.org/10.1088/1367-2630/10/8/083024
https://doi.org/10.1103/PhysRevLett.102.120502
https://doi.org/10.1103/PhysRevLett.102.120502
https://doi.org/10.1103/PhysRevLett.103.040501
https://doi.org/10.1103/PhysRevLett.103.040501
https://doi.org/10.1103/PhysRev.32.97
https://doi.org/10.1103/PhysRev.32.97
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRev.32.110
https://doi.org/10.1103/PhysRevA.86.010301
https://doi.org/10.1103/PhysRevA.86.010301
https://doi.org/10.1103/PhysRevB.87.045301
https://doi.org/10.1103/PhysRevB.87.045301
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1002/andp.19183622304
https://doi.org/10.1103/PhysRevB.92.155422
https://doi.org/10.1103/PhysRevB.92.155422
https://doi.org/10.1103/PhysRevA.90.042307
https://doi.org/10.1103/PhysRevA.90.042307
http://arxiv.org/abs/1605.01797
https://doi.org/10.1063/1.104094
https://doi.org/10.1063/1.104094
https://doi.org/10.1063/1.104094
https://doi.org/10.1103/PhysRevLett.66.2148
https://doi.org/10.1103/PhysRevLett.66.2148
https://doi.org/10.1103/PhysRevLett.66.2148
https://doi.org/10.1063/1.115109
https://doi.org/10.1063/1.115109
https://doi.org/10.1063/1.115109
https://doi.org/10.1103/PhysRevB.56.9813
https://doi.org/10.1103/PhysRevB.56.9813
https://doi.org/10.1103/PhysRevB.56.9813
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.91.226804
https://doi.org/10.1103/PhysRevLett.101.226603
https://doi.org/10.1103/PhysRevLett.101.226603
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1103/PhysRevLett.105.246804
https://doi.org/10.1063/1.4799287
https://doi.org/10.1063/1.4799287
https://doi.org/10.1063/1.4954700
https://doi.org/10.1063/1.4954700
https://doi.org/10.1103/PhysRevLett.110.146804
https://doi.org/10.1103/PhysRevLett.110.146804
https://doi.org/10.1007/s11128-006-0036-z
https://doi.org/10.1007/s11128-006-0036-z


Topical Review

35

	[322]	 Hu X 2011 Two-spin dephasing by electron-phonon 
interaction in semiconductor double quantum dots Phys. 
Rev. B 83 165322

	[323]	 Gamble J K, Friesen M, Coppersmith S N and Hu X 2012 
Two-electron dephasing in single Si and GaAs quantum 
dots Phys. Rev. B 86 035302

	[324]	 Huang P and Hu X 2014 Electron spin relaxation due to 
charge noise Phys. Rev. B 89 195302

	[325]	 Yu P 2010 Fundamentals of Semiconductors: Physics and 
Materials Properties (Berlin: Springer)

	[326]	 Maune B M et al 2012 Coherent singlet-triplet oscillations in 
a silicon-based double quantum dot Nature 481 344

	[327]	 Culcer D, Cywiński L, Li Q, Hu X and Das Sarma S 2009 
Realizing singlet-triplet qubits in multivalley Si quantum 
dots Phys. Rev. B 80 205302

	[328]	 Culcer D, Cywiński L, Li Q, Hu X and Das Sarma S 2010 
Quantum dot spin qubits in silicon: multivalley physics 
Phys. Rev. B 82 155312

	[329]	 Rohling N and Burkard G 2012 Universal quantum computing 
with spin and valley states New J. Phys. 14 083008

	[330]	 Rohling N, Russ M and Burkard G 2014 Hybrid spin and 
valley quantum computing with singlet-triplet qubits  
Phys. Rev. Lett. 113 176801

	[331]	 Veldhorst M, Ruskov R, Yang C H, Hwang J C C, 
Hudson F E, Flatté M E, Tahan C, Itoh K M, Morello A 
and Dzurak A S 2015 Spin–orbit coupling and operation 
of multivalley spin qubits Phys. Rev. B 92 201401

	[332]	 Rančić M J and Burkard G 2016 Electric dipole spin 
resonance in systems with a valley-dependent g factor 
Phys. Rev. B 93 205433

	[333]	 Boross P, Széchenyi G, Culcer D and Pályi A 2016 Control 
of valley dynamics in silicon quantum dots in the presence 
of an interface step Phys. Rev. B 94 035438

	[334]	 Zimmerman N, Huang P and Culcer D 2016 Valley phase, 
interface roughness and voltage control and coherent 
manipulation in Si quantum dots (arXiv:1608.06881)

	[335]	 King Gamble J et al 2016 Valley splitting of single-electron 
Si MOs quantum dots Appl. Phys. Lett. 109 253101

	[336]	 Saraiva A L, Calder M J, Capaz R B, Hu X, Das Sarma S and 
Koiller B 2011 Intervalley coupling for interface-bound 
electrons in silicon: an effective mass study Phys. Rev. B 
84 155320

	[337]	 Lim W H, Yang C H, Zwanenburg F A and Dzurak A S 2011 
Spin filling of valley–orbit states in a silicon quantum dot 
Nanotechnology 22 335704

	[338]	 Wu Y and Culcer D 2012 Coherent electrical rotations of 
valley states in Si quantum dots using the phase of the 
valley-orbit coupling Phys. Rev. B 86 035321

	[339]	 Culcer D, Saraiva A L, Koiller B, Hu X and Das Sarma S 
2012 Valley-based noise-resistant quantum computation 
using Si quantum dots Phys. Rev. Lett. 108 126804

	[340]	 Hao X, Ruskov R, Xiao M, Tahan C and Jiang H 2014 
Electron spin resonance and spin–valley physics in a 
silicon double quantum dot Nat. Commun. 5 3860

J. Phys.: Condens. Matter 29 (2017) 393001

https://doi.org/10.1103/PhysRevB.83.165322
https://doi.org/10.1103/PhysRevB.83.165322
https://doi.org/10.1103/PhysRevB.86.035302
https://doi.org/10.1103/PhysRevB.86.035302
https://doi.org/10.1103/PhysRevB.89.195302
https://doi.org/10.1103/PhysRevB.89.195302
https://doi.org/10.1038/nature10707
https://doi.org/10.1038/nature10707
https://doi.org/10.1103/PhysRevB.80.205302
https://doi.org/10.1103/PhysRevB.80.205302
https://doi.org/10.1103/PhysRevB.82.155312
https://doi.org/10.1103/PhysRevB.82.155312
https://doi.org/10.1088/1367-2630/14/8/083008
https://doi.org/10.1088/1367-2630/14/8/083008
https://doi.org/10.1103/PhysRevLett.113.176801
https://doi.org/10.1103/PhysRevLett.113.176801
https://doi.org/10.1103/PhysRevB.92.201401
https://doi.org/10.1103/PhysRevB.92.201401
https://doi.org/10.1103/PhysRevB.93.205433
https://doi.org/10.1103/PhysRevB.93.205433
https://doi.org/10.1103/PhysRevB.94.035438
https://doi.org/10.1103/PhysRevB.94.035438
http://arxiv.org/abs/1608.06881
https://doi.org/10.1063/1.4972514
https://doi.org/10.1063/1.4972514
https://doi.org/10.1103/PhysRevB.84.155320
https://doi.org/10.1103/PhysRevB.84.155320
https://doi.org/10.1088/0957-4484/22/33/335704
https://doi.org/10.1088/0957-4484/22/33/335704
https://doi.org/10.1103/PhysRevB.86.035321
https://doi.org/10.1103/PhysRevB.86.035321
https://doi.org/10.1103/PhysRevLett.108.126804
https://doi.org/10.1103/PhysRevLett.108.126804
https://doi.org/10.1038/ncomms4860
https://doi.org/10.1038/ncomms4860

