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We study spectral properties of quantum radiation of ultimately short duration. In particular, we
introduce a continuous multimode squeezing operator for the description of subcycle pulses of entangled
photons generated by coherent-field driving in a thin nonlinear crystal with second-order susceptibility. We
find the ultrabroadband spectra of the emitted quantum radiation perturbatively in the strength of the
driving field. They can be related to the spectra expected in an Unruh-Davies experiment with a finite time
of acceleration. In the time domain, we describe the corresponding behavior of the normally ordered
electric field variance.
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Introduction.—In quantum optics, parametric down-
conversion (PDC) in nonlinear crystals (NXs) has been
routinely used to generate pairs of monochromatic
entangled photons [1,2]. The so-obtained squeezed states
of light have found applications in a broad range of areas
like gravitational wave detection [3,4], quantum commu-
nication systems [5–7], and precision measurements [8,9].
The active interest in squeezed states can be mainly related
to the fact that the variance of a given phase space
quadrature (a quantum-optical analogue of a canonical
variable) is lower for a squeezed state than for a coherent
state, including the vacuum state itself. In order to fulfill
Heisenberg’s uncertainty principle, the variance of the
conjugate quadrature exhibits the opposite behavior.
In recent years, theoretical and experimental efforts have

been made to describe and generate multimode squeezed
states [10–15]. Although they have already been experimen-
tally realized by a number of groups [12,15], most of the
achievements so far are limited to squeezed states with
relatively narrow spectra, where the central frequency
approximation is still valid. New developments in ultrastable
few-cycle laser sources and advanced detection techniques
have paved the way for the generation of few-cycle pulses
of midinfrared (MIR) squeezed light and the electro-optic
detection of their electric field statistics with subcycle
temporal resolution [16–18]. The subcycle features in the
noise patterns of the generated quantum fields are due to
the spatiotemporal modulation of the refractive index of
the NX induced by the driving field [18]. This is analogous
to a time-dependent metric for the space-time occupied by
the electric field, which leads to photon creation in the
perspective of a moving observer [19].
The spectral properties of ultrabroadband squeezed states

are also of particular interest because they can elucidate
connections between quantum gravitational effects and their

tabletop optical analogues. A characteristic example is the
Unruh-Davies effect [20,21], according towhich an observer
in a noninertial reference frame, moving with constant
acceleration in the vacuum of an inertial reference frame,
should detect thermal radiation. This phenomenon is closely
related to the Hawking radiation believed to be emitted at the
horizon of black holes [22].
The direct observation of these predictions is at the

present time infeasible due to technological limitations,
even if possibilities were indicated for particles in strong
laser and Coulomb fields [23–25], and thus optical counter-
parts were proposed [26–31] as a means of studying the
physics behind such effects. However, little attention has
been paid to the effects of the unavoidably finite (and often
short) duration of the effective acceleration experienced by
either the light or the detector in the suggested experiments.
In this Letter, we first introduce a squeezing operator

capable of describing the multimode states generated in
a very thin NX with χð2Þ nonlinearity when a coherent
ultrashort driving pulse is applied. The relevant experi-
mental setup is schematically shown in Fig. 1(a). Because
of the minute thickness of the crystal, phase matching can
be assumed perfect. The driving pulse induces a nonlinear
mixing cascade, with the PDC acting as a seed for the
subsequent frequency-conversion processes. The super-
position of these forms the structure of the emitted quantum
field. Next, we study its spectral properties and confirm
the ultrabroadband character of the generated pulses of
squeezed light. Moreover, perturbative calculation of the
time-dependent variance of the electric field operator links
our work with related experimental results on subcycle-
resolved sampling of the electric field statistics of quantum-
optical states [16–18]. Finally, we make a comparison of
the obtained spectra for ultrabroadband squeezed pulses
and thermal radiation, aiming to elucidate connections with
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the Unruh-Davies radiation. It turns out that the limited
lifetime of the refractive index perturbation in the crystal
results in spectra with exponentially decaying high-
frequency tails, which depend on the duration of the
perturbation. This result can be related to the diamond
temperature [32,33] derived for the Unruh-Davies effect
when the observer follows an accelerated trajectory during
a finite time interval. In our treatment, however, it is the
observed incoming vacuum state that undergoes an effec-
tive acceleration within a certain space-time zone. This is
illustrated in Fig. 1(b) for a plane wave mode of a quantum
field that simultaneously enters the crystal with the peak
of the driving field.
Squeezing operator.—Considering previously proposed

expressions for a multimode squeezing operator [11,34]
and using the convention âð−ωÞ ¼ â†ðωÞ (ω ∈ R) con-
necting creation and annihilation operators for positive and
negative frequencies [35], we introduce the following
ansatz for the form of the (continuous) multimode squeez-
ing operator:

Ŝ½ξ� ¼ exp

�
1

2
½ξ�ω1;ω2

âðω1Þâðω2Þ − ξω1;ω2
â†ðω1Þâ†ðω2Þ�

�
:

ð1Þ
Here and below, we employ a generalized Einstein con-
vention, meaning that product terms are integrated from−∞
to ∞ over all continuous variables with reoccurring natural

indices whenever such indices appear. For the unitarity of
the squeezing operator, the frequency-dependent squeezing
parameter ξω;ω0 must satisfy ξω;ω0 ¼ ξω0;ω, since then Ŝ

†½ξ� ¼
Ŝ½−ξ� and, hence, Ŝ½ξ�†Ŝ½ξ� ¼ 1. Rewriting Eq. (1) solely in
terms of positive frequencies would lead to four terms in the
integrand of the exponent. Two of them correspond to
parametric down-conversion, while the remaining two cor-
respond to frequency conversion. Note that the introduction
of negative frequencies allows us to compactify the equa-
tions, while also including contributions from frequency-
conversion processes.
In order to calculate expectation values of operators for

the states generated by Eq. (1), let us investigate how â
and â† transform under Ŝ. We utilize a common procedure
in quantum optics [36] by introducing an auxiliary operator
Ĝ½z̃; ξ� ¼ Ŝz̃½ξ� for z̃ ∈ ½0; 1�, which commutes with Ŝ½ξ�.
We then define âðz̃;ωÞ ¼ Ĝ†½z̃; ξ�âðωÞĜ½z̃; ξ� so that
âð0;ωÞ ¼ âðωÞ and âð1;ωÞ ¼ â0ðωÞ ¼ Ŝ†½ξ�âðωÞŜ½ξ�.
The commutator can be calculated using ½âðωÞ; âðω0Þ� ¼
δðωþ ω0Þ½sgnðωÞ − sgnðω0Þ�=2 for any ω;ω0 ∈ R.
Differentiating âðz̃;ωÞ with respect to z̃ and inserting the
expression for Ĝ½z̃; ξ� leads to

∂âðz̃;ωÞ
∂z̃ ¼ Ξω;ω1

âðz̃;ω1Þ;
Ξω;ω0 ¼ −sgnðωÞðξω;−ω0 − ξ�ω0;−ωÞ: ð2Þ

This integro-differential operator equation can be solved
perturbatively expanding in Ξ, resulting in the Bogoliubov
transformation:

âðz̃;ωÞ¼Uω;ω1
ðz̃Þâðω1Þ;

Uω;ω0 ðz̃Þ¼δðω−ω0Þþ z̃Ξω;ω0 þ z̃2

2!
Ξω;ω1

Ξω1;ω0 þ ���: ð3Þ

Equation (3) assures the relation âðz̃;−ωÞ ¼ â†ðz̃;ωÞ.
Spectra.—The squeezing process depends on the buildup

of electric fields within the NX, which determine the
squeezing parameter in Eq. (3). Such interacting fields
Êðz; tÞ propagating along the z axis in the crystal [see
Fig. 1(a)] can be expressed in terms of plane waves confined
to a certain transverse area [17], Êðz; tÞ ¼ Êðz;ω1Þ×
exp½−iω1ðt − nz=c0Þ�. Here c0 is the speed of light in free
space and n is the unperturbed refractive index of the
medium. It can be found [18] that due to the χð2Þ interaction
process a coherent MIR driving field of sufficiently large
amplitude EMIR ¼ hÊi with respect to the amplitude of
vacuum fluctuations [16] modulates the quantum contribu-
tion δÊ≡ Ê − EMIR as

∂δÊðz;ωÞ
∂z ¼ idω

nc0
E�
MIRðz;ω1 − ωÞδÊðz;ω1Þ: ð4Þ

driving field

driving field 
 + quantum 
     radiation

D

NX

L

z

(a) (b)

FIG. 1. (a) General sketch of the proposed experimental setup.
The classical driving field propagates through a χð2Þ nonlinear
crystal (NX) of small thickness L and unperturbed refractive
index n, generating ultrabroadband squeezed quantum light. The
outgoing light is registered by the detector D. (b) World line of
a plane wave mode of the quantum electric field within the NX
with refractive index modulated by a half-cycle pulse (HCP).
The trajectory (blue line) is given by Eq. (9) with C1 ¼ 0,
α=n2 ¼ 0.49, and nζ ¼ 12. The dotted purple straight line
indicates the trajectory of light in the absence of nonlinear
effects. After the acceleration has mostly ceased, the world line
approaches the dotted green line parallel to the purple one. The
process of acceleration is confined to a diamondlike space-time
zone (light red parallelogram) of dimensions defined by the
duration of the driving transient.
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Here d is the effective nonlinear coefficient of the NX,
considered to be dispersionless in the relevant fre-
quency range.
We can now change the variable z → z̃ ¼ z=L

in Eq. (4) and use [37] δÊðz;ωÞ ¼ isgnðωÞ×ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðℏjωj=4πϵ0c0nAÞ
p

âðz;ωÞ, where A is the normalization
area, ℏ is the reduced Planck constant, and ϵ0 is the vacuum
permittivity. If we consider that EMIRðz;ωÞ does not change
appreciably as a function of z, comparison of the result with
Eq. (2) gives

Ξω;ω0 ¼ iCsgnðω0Þ
ffiffiffiffiffiffiffiffiffiffiffi
jωω0j

p
EMIRðω − ω0Þ; ð5Þ

whereC ¼ dL=ðnc0Þ. Similar expressions have been used to
describe independent frequency-conversion and PDC proc-
esses involving light pulses with a well-defined central
frequency [13,38]. Furthermore, the considered phase
matching conditions lead to spatially distinguished signal
and idler pulses. In contrast, Eqs. (1) and (5) donot rely on the
assumption of a bandwidth much smaller than the central
frequency. There is also no separation in the propagation
direction of the outgoing photons.
Using Eqs. (3) and (5) we calculate perturbatively in d

the expectation value of the spectral photon density (SPD)
operator, ρ̂ðωÞ ¼ â†ðωÞâðωÞ, for the state jfξgωi ¼ Ŝ½ξ�j0i
resulting from the pulse-induced squeezing process [39].
It is instructive, however, to begin by analyzing continuous
wave (cw) driving with frequency ω0, EMIRðτÞ ¼
E0e−iω0τ þ E�

0e
iω0τ. Because of the infinite duration of

the cw field, the SPD diverges for any frequency of
interest. In this case, the spectral photon flux density
ϕðωÞ can be defined for a time interval Δt and calculated
[39], as is shown in Fig. 2(a). We see that PDC is
maximally probable near the degeneracy point
(ω ≈ ω0=2), while output at the drive frequency ω0 is
absent. Additionally, higher-order contributions show that
the photons generated by PDC can be up-converted to
3ω0=2 by mixing with the coherent pump field.
Next, we study two cases of pulsed driving fields. Let us

first consider an ideal half-cycle pulse (HCP) of light with
temporal profile EMIRðτÞ ¼ E0sechðΓτÞ and Fourier trans-
form EMIRðωÞ ¼ ðE0=2ΓÞsechðπω=2ΓÞ [42]. In this case
the SPD, ρðωÞ ¼ hfξgωjρ̂ðωÞjfξgωi, reads

ρðωÞ ¼ C2E2
0

π2
ω lnð1þ e−πω=ΓÞ: ð6Þ

For an ideal single-cycle pulse (SCP) of form EMIRðτÞ ¼
−E0ðΓτÞsechðΓτÞ, which corresponds to EMIRðωÞ ¼
ðπE0=4iΓÞsechðπω=2ΓÞ tanhðπω=2ΓÞ in the frequency
domain, we find

ρðωÞ ¼ C2E2
0

12
ω

�
lnð1þ e−πω=ΓÞ þ 1

2
sech2

�
πω

2Γ

��
: ð7Þ

Both Eqs. (6) and (7) show that for high frequencies the
SPD falls off as expð−πω=ΓÞ; i.e., its exponential decay is

determined by the duration of the driving field Γ−1 [see
Fig. 2(b)].
Electric field variance.—Another insight into the gener-

ated quantum field is provided by its normally ordered
variance (NOV), VðτÞ, which can be calculated as VðτÞ¼
hfξgωj∶½δÊðτÞ�2∶jfξgωi, since hfξgωj∶δÊðτÞ∶jfξgωi¼0.
Here ∶Ô∶ denotes normal ordering for an operator Ô [36].
For the first-order term in the squeezing strength r ¼ jαjζ=n
(α ¼ dE0, ζ ¼ ΓL=c0), we obtain [39]

Vð1ÞðτÞ ¼ ℏC
24πϵ0c0nA

∂3EMIRðτÞ
∂τ3 : ð8Þ

The corresponding second-order term, Vð2ÞðτÞ, was also
calculated (for details, see Ref. [39]). The resulting temporal
traces are shown in Fig. 3 for the consideredEMIR shapeswith
driving field strengths within the validity of our perturbation
approach.
The dynamics of the NOV is accessible via quantum

electro-optic sampling [16–18] when the time resolution
and sensitivity are high enough [43]. Within the range of
validity of our perturbation theory, both the NOV and the
SPD are interrelated via the shape of EMIR, motivating
corresponding experiments.
Analogue gravity and world lines of light.—The quan-

tum properties of the generated light are determined by the
effectively curved space-time that the light modes experi-
ence while traveling through the NX, dressed by the input
driving field. The metrics of such space-time can be

(a) (b)

FIG. 2. (a) Normalized spectral photon flux density in the case
of cw driving (ρ0 ¼ C2jE0j2Γ=π2, Γ ¼ ω0 for cw). Calculations
including up to second-order (blue) and fourth-order (red) terms
in α ¼ dE0 have been included. The value of the factor π4ρ0ω0=4
governing the smallness of the α4 term with respect to the α2 term
is 0.02. The dotted curve shows the average spectral photon flux
density for a measurement over a finite time interval Δt ¼ NT
with N ¼ 50, where T ¼ 2π=ω0 is the period of the driving field.
(b) Normalized spectral photon density (SPD) for the driving
HCP (dotted blue line) and SCP (solid blue line) cases in the
leading (α2) order. The exponential behavior of the spectra can be
better analyzed in a logarithmic plot, presented for the HCP case
in the inset (same high-frequency behavior as for the SCP case).
The SPD is shown in blue, while the asymptotic dotted straight
line represents a fit of the form Ae−πðω=ΓÞ.

PHYSICAL REVIEW LETTERS 122, 053604 (2019)

053604-3



extracted from the dispersion relation for the propagating
quantum electric field [44,45]. This fact allows us to derive
the null geodesic equations [46] for the respective modes
(for details, see Ref. [39]). The world lines follow the
equations

αζ

n
z
L
− sinh

�
ζ

L
ðc0t − nzÞ

�
¼ C1; ð9Þ

αζ

n
z
L
þ Chi

�				 ζL ðc0t − nzÞ
				
�

¼ C2; ð10Þ

for the HCP and SCP driving cases, respectively. The
constants C1 and C2 in these equations define the distance
of a propagating wave front relative to the center of the
driving field at the entrance of the crystal. α ¼ dE0 gives
the strength of the nonlinear perturbation, ζ ¼ ΓL=c0
determines the spatial extension of the curvature (i.e.,
acceleration) relative to the length of the crystal, and
ChiðxÞ is the hyperbolic cosine integral function [47].
The world lines for several values of C1 and C2 are shown
in Fig. 4 alongside a projection of the normalized driving
fields. The acceleration of the modes is confined to finite

regions of space-time. Moreover, the density of world lines
projected along a line perpendicular to the light rays
t − nz=c0 ¼ τ ¼ const determines the effective change in
the flow of time and thereby is connected with the temporal
profiles of the detected variance [43], as can be compre-
hended through comparison between Figs. 3(b) and 3(c)
and Figs. 4(a) and 4(b). The evolution of the modes in the
space-time curved due to a spatiotemporal varying refrac-
tive index leads to the generation of quantum radiation. It is
thus insightful to discuss our results in relation to one of the
most well-known examples of the creation of quantum light
from the vacuum through acceleration: the Unruh-Davies
effect.
Unruh-Davies radiation and the diamond temperature.—

From Planck’s law, the SPD of thermal radiation is
dominated by exp½−ðℏω=kBTÞ� at large frequencies, with
a decay dependent on the temperature T (kB is Boltzmann’s
constant). According to the Unruh-Davies effect [20,21],
for the quantum radiation detected in the reference frame of
a uniformly accelerated observer, moving in the vacuum of
an inertial observer (Minkowski vacuum), the temperature
is given by TU ¼ ℏa=ð2πkBc0Þ. Here a is the acceleration
measured in the accelerated observer’s reference frame.
In the context of an optical analogue of the Unruh-

Davies effect, the detector remains at rest while the light
follows an accelerated trajectory within a nonlinear
material with time-varying refractive index. If one employs
a crystal with χð2Þ nonlinearity as such a material, the
refractive index can be modulated by a coherent driving
[48] MIR field through the Pockels effect. To lowest order
in EMIR the acceleration of the quantum light modes within
the crystal depends on its time derivative [27]. From
Eqs. (6) and (7), however, it is possible to see that the
exponential decay depends only on its duration Γ−1.
Martinetti and Rovelli [32] considered the case of an

observer with finite lifetime T uniformly accelerated in the

(a)

(b)

(c)

FIG. 3. Dynamics of the normally ordered variance (NOV),
VðτÞ, of the emitted quantum electric field for (a) cw, (b) HCP,
and (c) SCP driving (dotted green line). Contributions up to the
first Vð1ÞðτÞ (blue line) and the second Vð1ÞðτÞ þ Vð2ÞðτÞ (red line)
order in the squeezing strength r are shown. The NOV is
normalized by V0 ¼ ℏΓ2=ð24πϵ0c0nAÞ, while time is normalized
by Γ (Γ ¼ ω0 for cw driving). r ¼ 0.07 for (a), 0.21 for (b), and
1.54 for (c).

(a) (b)

FIG. 4. World lines of the modes of quantum light propagating
through the NX for HCP (a) and SCP (b) driving. Each world line
(blue) is defined by its initial condition, which is given by a
certain event at the boundary of the crystal and correspondingly
by the amplitude of the driving field (green line) at this event.
Here α=n2 ¼ 0.49 and nζ ¼ 12 (see Ref. [39]).
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vacuum of an inertial observer. In this case the Minkowski
vacuum is observed as a thermal state with time-dependent
temperature,

T¼TUε=
h ffiffiffiffiffiffiffiffiffiffiffiffi

1þ ε2
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ε2t̃2

p i
; ε¼ 2TU=TD; ð11Þ

where t̃ ¼ 2t=T ∈ ð−1; 1Þ is the normalized lab time and
TD ¼ 2ℏ=ðπkBT Þ. Since the observer’s trajectory lies
within a space-time diamond determined by T , TD is
termed the diamond’s temperature. The minimal value Tmin
of T, in the middle of the observer’s lifetime, should play
the dominant role for the high-frequency tail of the emitted
photon spectra. For sufficiently large lifetime or acceler-
ation, ε ≫ 1 and Tmin coincides with the Unruh-Davies
temperature TU. In the opposite situation, ε ≪ 1 and
Tmin ≈ TD, given directly by the lifetime of the accelerated
observer. This result was reinforced through analysis of
a two-level detector model with a properly scaled
Hamiltonian, which for a finite measurement time reveals
that the detected temperature should be TD [33].
The analysis of the present work holds when ε is small

enough [39]. The spectra of the outgoing quantum light
in our analogue optical system should decay as
exp½−ðℏω=kBTÞ� with a temperature related to the duration
of EMIR, since it dictates the duration of the acceleration of
light within the NX. This result is reflected in Eqs. (6) and
(7) through the decay dependence on Γ. This can also be
seen qualitatively in Figs. 1(b) and 4, where curved world
lines are confined to certain space-time zones. The same
does not happen in the case of a cw driving field, since the
respective electric field has no defined time duration.
Conclusions.—We propose a generalized squeezing

operator to describe ultrabroadband squeezed pulses gen-
erated in thin χð2Þ NXs by MIR coherent driving fields. We
analyze the spectral properties of these squeezed states for
three different shapes of the driving field and connect these
results to the time-dependent NOV of the electric field
operator. Ultimately, we account for the finite duration of
the driving MIR pulses and relate our results to the
diamond’s temperature in an Unruh-Davies-like effect with
a finite lifetime for the observer.
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