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We propose and analyze a technique for producing a beam-splitting quantum gate between two modes

of a ring-resonator superconducting cavity. The cavity has two integrated superconducting quantum

interference devices (SQUIDs) that are modulated by applying an external magnetic field. The gate is

accomplished by applying a radio frequency pulse to one of the SQUIDs at the difference of the two mode

frequencies. Departures from perfect beam splitting only arise from corrections to the rotating wave

approximation; an exact calculation gives a fidelity of>0:9992. Our construction completes the toolkit for

linear-optics quantum computing in circuit quantum electrodynamics.
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A functioning quantum computer will be a machine that
builds up, in a programmable way, nonclassical correla-
tions in a multipartite quantum system. We now know that
there is a remarkable variety of approaches, beyond the
straightforward implementation of traditional quantum cir-
cuits, for achieving this function. One of these new ap-
proaches, linear-optics quantum computation (LOQC)
[1,2], has provided an intriguing path forward in traditional
quantum optics. In LOQC, all the programmable genera-
tion of entanglement is produced by simple, reliable linear
optical elements, namely, beam splitters and phase shifters
(delay lines). Nonlinear optics is only required in state
initialization and detection, in the form of single-photon
sources and detectors. These remain difficult to achieve
with high fidelity, but are more feasible than the nonlinear
Kerr gates that were originally envisioned for optical quan-
tum computation [3].

A new setting for quantum optics has arisen in circuit
QED [4]. Research in superconducting (SC) quantum de-
vices, which has led to the discovery of circuit QED, has
focused on the nonlinearity provided by the Josephson
junction. Josephson qubits have been improving rapidly,
and traditional quantum gates of reasonable fidelity have
now been reported [5]. But the observation that a
Josephson qubit can be strongly coupled to a photon in a
SC transmission line resonator [4] opens the way to LOQC
implementations using microwave rather than visible pho-
tons. Much progress is being made in circuit QED in
single-photon sources: Ref. [6] has shown the generation
of high-fidelity Fock states in SC transmission line reso-
nators by a high efficiency photon swapping between a
qubit and the resonator. Photon detection in circuit QED
becomes equivalent to high-fidelity qubit measurement,
and this capability has advanced rapidly for SC qubits.

In this Letter we show that the LOQC toolkit in circuit
QED can be completed with high-fidelity linear optical
elements. We analyze in detail here a realization of a beam

splitter; the phase shifter represents a simpler case that can
be studied in exactly the same way. We consider photonic
modes that are resident in SC resonators. A quantum
switch between SC resonators has been proposed in
Ref. [7], where a SC qubit mediates an effective second
order beam-splitter interaction in the rotating wave ap-
proximation (RWA). We look for a way to accomplish
such a gate in a high-fidelity controlled way beyond any
RWA.
In fact, we show here that high-fidelity beam splitting

can be produced in exactly the ring-resonator device ana-
lyzed by Ref. [8] [see Fig. 1(a)]. This structure has two
nearly degenerate fundamental modes, even and odd with
respect to the horizontal midline, with frequencies !1;2,

respectively. The beam-splitting action will take place
between photons in these two modes. This ring is inter-
rupted by two SQUIDs as shown. In [8] it is shown that the
nonlinearity of these SQUIDs is enough to enable non-
demolition measurements, but this nonlinearity is far too
small to make a practical traditional quantum gate such as a
CPHASE. We can neglect this nonlinearity here, and we will

exploit another control available in this device: the effec-
tive inductance of these SQUIDs can be controlled by the
external magnetic fluxes shown. This inductance couples
to the photonic modes by setting the reflection coefficient
for standing waves around the ring. It is simply by modu-
lation of the inductance of SQUID1 at the difference
frequency!1 �!2 that high-fidelity beam-splitting action
is achieved [9].
We set up an accurate analysis of the photonic dynamics

of our ring resonator by representing the rest of the ring
connected to SQUID1 as a linear, passive structure with
two-terminal impedance Zð!Þ. Note that we will consider
the flux bias of SQUID2 to be fixed, so that it functions as
an inductor with, using the parameters of [8], L0 ¼
0:19 nH. We neglect losses so that Z is purely imaginary.
For device parameters from [8], Zð!Þ can be calculated
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analytically using standard two-port theory [10]. ImZð!Þ
in the frequency range of interest is shown in Fig. 1(c).
Since we include in Z the inductance L0 representing the
average of the modulated SQUID1, the two zeros of Zð!Þ
correspond to the two mode frequencies !1;2 of the un-

modulated ring resonator.
This impedance is extremely well reproduced (dashed

line) by that of the two-pole structure in our equivalent
circuit shown in Fig. 1(b). This fit is obtained with parame-
ters L1 ¼ 5:8 nH, C1 ¼ 86 fF, L2 ¼ 7:7 nH, and C2 ¼
63 fF. It is practical for the amplitude of the parametrically
modulated inductance KðtÞ to be around 0.04 nH. We can
apply our network graph theory [11] to analyze the quan-
tum behavior of these modes of the ring resonator. The
classical time-dependent Hamiltonian that describes the
equivalent circuit Fig. 1(b) is

H ¼ X
i¼1;2

�
Q2

i

2Ci

þ �2
i

2Li

�
� KðtÞ

2

�
�1

L1

þ�2

L2

�
2
: (1)

We choose the time-dependent inductance to have the form

KðtÞ ¼ �K cosð!dtÞ. We will present calculations only for
the case where �K is switched on from zero at t ¼ 0, then
switched off again at t ¼ �. We will see that even for such
an unshaped, square modulation pulse, the desired quan-
tum gate operation can be achieved with excellent fidelity.
We find that this fidelity is insensitive to details of pulse
shaping.
We quantize Eq. (1) by imposing commutation rules

between canonically conjugate variables ½�̂i; Q̂j� ¼ i@�ij

and express them, using creation and annihilation opera-

tors ay and a, as �̂i ¼ �i

ffiffiffi
@

p ðai þ ayi Þ=
ffiffiffi
2

p
, and Q̂i ¼

�i
ffiffiffi
@

p ðai � ayi Þ=
ffiffiffi
2

p
�i, with �i ¼ ðLi=CiÞ1=4. Assuming

KðtÞ � L1;2, the Hamiltonian becomes (@ ¼ 1)

H¼ X
i¼1;2

!ia
y
i aiþfðtÞ½�ða1þay1 Þþ

1

�
ða2þay2 Þ�2: (2)

Here the two resonant harmonic frequencies are !i ¼
1=

ffiffiffiffiffiffiffiffiffiffi
LiCi

p
, � ¼ ðL3

2C2=L
3
1C1Þ1=8, and fðtÞ ¼

��1�2KðtÞ=4L1L2 � f cosð!dtÞ. We will consider driv-
ing at resonance at transition frequency!d ¼ �! ¼ !1 �
!2. For the ring resonator we will always be in the regime
�! � !1; !2.
To study the beam-splitting action created by the KðtÞ

pulse, we will calculate the time evolution of an initial state
comprising a single photon in one of the two modes

(mode 1), i.e., jc ii ¼ ay1 j0i, with j0i ¼ j0i1j0i2. We aim

for the final ‘‘beam-split’’ state jc fi ¼ 1ffiffi
2

p ðay1 � iay2 Þj0i.
We consider always a doubly rotating frame with rotation
at frequency !1;2 for modes 1; 2, respectively. We will

study a fidelity F ð�Þ ¼ jhc fjUð�Þjc iij2, which indicates

how close to ideal beam splitting our operation is. Here,
UðtÞ ¼ T exp½�i

R
t dt0Hðt0Þ� denotes the evolution op-

erator generated by the Hamiltonian Eq. (2). The use of
more general gate fidelities would not affect our
conclusions.
We present three approaches to the calculation of

F ð�Þ. First we perform a naive RWA in which only
time-independent terms in the rotating frame are re-
tained in HðtÞ. An elementary calculation gives
F RWAð�Þ ¼ ½1þ sinð2f�Þ�=2. Given the smallness of
�!, a second calculation is much more accurate, which
retains additional terms in the rotating frame that oscillate
at frequencies �! and 2�!. Then the part of the
Hamiltonian that generates the beam-splitting gate is

HBS ¼ fa1a
y
2 ð1þ e�2i�!tÞ þ H:c: (3)

The terms oscillating at frequency 2�! produce Bloch-
Siegert oscillations (BSO) [12]. For f � �! these can be
treated perturbatively [13]. By considering virtual transi-
tions via the first two sidebands shifted in energy by
�2�!, the fidelity at first order in f=�! is

F BSOð�Þ¼1

2

�
1þsinð2f�Þþ f

�!
cosð2f�Þsinð2�!�Þ

�
:

(4)
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FIG. 1 (color online). (a) Schematic representation of the
superconducting ring resonator, comprising two SC transmission
line (TL) segments coupled by two SQUIDs that can be exter-
nally controlled by two different applied magnetic fluxes. ac
modulation of SQUID1 will accomplish the action of beam
splitting between the two fundamental modes of the ring reso-
nator. The device can optionally be tuned by a stub on the
midline as shown. (b) Equivalent circuit, consisting of two
parametrically coupled LC resonators. The modulation of the
SQUID1 impedance is represented by the time-dependent in-
ductor KðtÞ. The LC circuit parameters are chosen so that the
impedance of the two parallel resonators matches the two-
terminal impedance, looking down into the AB port, of the
ring resonator, in a frequency band including the two fundamen-
tal modes. (c) The AB-port impedance of the resonator and of the
equivalent circuit. The unmodulated fundamental mode frequen-
cies !1;2 are given by the two zeros of this impedance.
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Within both the RWA and the BSO approximations, for a
pulse of duration � ¼ �=4f we attain F ¼ 1: beam split-
ting is perfect at these levels of approximation. There is a
real difference between these two points of view; in the
naive RWA the Bloch vector in the j01i � j10i space
undergoes simple circular motion, while the BSO manifest
themselves as a nutational motion of the Bloch vector
(Fig. 2). But in both cases the Bloch vector arrives exactly
at the equator. Note that in both cases the Rabi oscillation
frequency �R ¼ 2f has the simple form

�R ¼ �K

2

ffiffiffiffiffiffiffiffiffiffiffiffi
!1!2

L1L2

s
: (5)

For the parameters of our ring resonator, this gives a very
convenient value of �R=2� � 20 MHz.

Unfortunately, the actual time evolution of our
Hamiltonian does not give 100% fidelity for beam split-
ting. Parametric time-dependent modulation causes mode
squeezing; in other words, photon number is not con-
served, and our evolution does not remain confined to the
j01i � j10i Bloch sphere. To quantify this effect, we must
do a third calculation that goes beyond any rotating wave
approximation. With only a modest amount of numerical
effort, it is feasible to do an essentially exact calculation of
our gate operation. All that is required is a 4� 4 matrix

calculation of the Heisenberg operators a1;2ðtÞ and ay1;2ðtÞ
[14]. This calculation begins by using the canonically
conjugate quadratures � ¼ ðq̂1; q̂2; p̂1; p̂2ÞT that are related

to the original fluxes and charges by ð�̂1; �̂2; Q̂1; Q̂2ÞT ¼ffiffiffi
@

p
D��, with the diagonal matrix D� ¼

diagð�1; �2; 1=�1; 1=�2Þ. Because the Hamiltonian gov-
erning the evolution is quadratic, the Heisenberg equations
of motion for the quadratures � are linear,

_� ¼ �ðtÞ� ¼ 0 �
��� 4fðtÞ� 0

� �
�; (6)

where � and � are real 2� 2 matrices with � ¼
diagð!1; !2Þ, �11 ¼ �2, �22 ¼ 1=�2, and �12 ¼ �21 ¼
1. The general solution can be expressed in terms of SðtÞ ¼
T exp

R
t dt0�ðt0Þ, where SðtÞ is a 4� 4 real symplectic

matrix that satisfies STðtÞJSðtÞ ¼ J, with the 4� 4 real
antisymmetric matrix J having a 2� 2 block structure,
with J12 ¼ �J21 ¼ 1 and J11 ¼ J22 ¼ 0.
The action of the evolution operatorUðtÞ on the canoni-

cal quadratures � results in a matrix multiplication �ðtÞ ¼
UyðtÞ�UðtÞ ¼ SðtÞ� that connects the Heisenberg and the
Schrödinger representation. A similar relation holds for the

field operators ai and ayi . By defining the vector a ¼
ða1; a2; ay1 ; ay2 ÞT , the connection between the Heisenberg

and the Schrödinger representation reads as aðtÞ ¼
SðcÞðtÞa, with SðcÞðtÞ ¼ �ySðtÞ�, where � is the simple

unitary matrix of the basis change � ¼ �a.
Here we show that the real symplectic matrix SðtÞ con-

tains all the information needed to calculate the fidelity
F ð�Þ ¼ jhc fjUðtÞjc iij2 exactly. Any real symplectic ma-

trix S 2 Spð4;RÞ admits a singular value decomposition in
terms of real orthogonal symplectic matrices, S ¼ SLDSTR,
with ST�S� ¼ 1, ST�JS� ¼ J, for � ¼ L, R, and D ¼
diagð�1; �2; 1=�1; 1=�2Þ, which is unique up to a reorder-
ing of the diagonal entries of D [15]. This decomposition
of S induces a corresponding decomposition of the evolu-
tion operator UðSÞ: UðSÞ ¼ UðSLÞUðDÞUyðSRÞ. The
elements S� (� ¼ L; R) have the general 2� 2 block
form ½S��11 ¼ ½S��22 ¼ X� and ½S��12 ¼ �½S��21 ¼ Y�,
with X�, Y� real 2� 2 matrices such that U� � X� � iY�

is a unitary 2� 2 matrix [16,17].
It follows that the unitary evolution UðS�Þ associ-

ated with S� conserves the number of photons and does
not mix the creation and annihilation operators:
UyðS�ÞaiUðS�Þ ¼

P
k¼1;2½U��jkak [18]. On the other

hand, the diagonal matrix D represents an active term
that introduces squeezing in the two modes. In terms of
mode operatorsUðDÞ can be expressed using independent
squeezing operators �ið�Þ ¼ exp½�ða2i � ay2i Þ=2�:
UðDÞ ¼ Uð�1; �2Þ ¼ �1ð� ln�1Þ�2ð� ln�2Þ. Its action
on the mode annihilation operators is simply given by

�y
i ð�Þai�ið�Þ ¼ ai cosh�� ayi sinh�. These facts allow

us to write the fidelity as

F ¼ jh�fjUð�1; �2Þj0ij2; (7)

with the state j�fi ¼ ðbþ1 þ bþ2 Þj00i=
ffiffiffi
2

p þ ðb�1 þ
b�2 Þj11i=

ffiffiffi
2

p � b�1 j20i � b�2 j02i with b�j ¼ �jð�2
j �

1Þ=2�j and �j ¼ ½UR�1jð½UL�1j þ i½UL�2jÞ� for j ¼ 1; 2.

Equation (7) can now be evaluated in closed form, because
the two-mode squeezed vacuum Uð�1; �2Þj0i has an ana-
lytical expression in the Fock space via the relation [14]

01

10

0110 +

0110 - i

FIG. 2 (color online). To good approximation, the quantum
evolution is confined to the Bloch sphere defined by the j01i and
j10i states. Counterrotating terms in the Hamiltonian at fre-
quency 2�! perturb the simple Bloch-sphere (red) evolution
by terms of order f=�!. Bloch-Siegert oscillations (blue; with
cusp) cause nutation of the Bloch vector superimposed on
regular precession in the rotating frame. The device parameters
for the ring resonator are as given in the text.
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hnj�ð�Þj0i ¼ ðtanh�Þn=2
2n=2ðn! cosh�Þ1=2 Hnð0Þ; (8)

with Hnð0Þ the Hermite polynomial at the origin, which is

zero for odd n and Hnð0Þ ¼ ð�1Þn=2n!=ðn=2Þ! for even n.
Therefore, after a singular value deomposition of S the
fidelity is directly obtained as a simple function of the
quantities �i and �i.

Figure 3 shows our three calculations of the beam-
splitting fidelity as a function of pulse duration time �.
The device parameters for the ring resonator are as given
above, except that by introducing an electrical stub for
tuning as in Fig. 1(a) the frequency of the even-symmetry
mode !1=2� is lowered to around 6.93 GHz, so that
�!=2� � 260 MHz. We see that the evolution approxi-
mately follows the smooth Rabi oscillation predicted by
the naive RWA, but that there are appreciable BSO super-
imposed on this. The perturbative BSO calculation in fact
comes very close to the exact evolution for our parameters.
The exact calculation gives an extremely high value of the
fidelity: F max > 0:9992. Squeezing is very small because
the parametric modulation frequency is very slow com-
pared with the mode frequencies (�! � !1;2). For the

ring resonator without the stub this ratio is even smaller,
since then �! � 64 MHz, but this device is awkward to

use since then the BSO become very large and are no
longer well described perturbatively [19].
To summarize, we see that for a very straightforward

ring-resonator geometry, almost ideal beam splitting be-
tween two cavity modes can be readily achieved. The
calculated fidelity of 0.9992 is not realistic; other limits
such as resonator loss and 1=f noise would come into play
at this level for the present state of the art. But our result
shows that there is no intrinsic limit to accomplishing
effective beam splitting by device modulation. Finally,
we mention that an effective ‘‘delay line’’ is also readily
implemented in this device; by transiently changing the dc
bias fluxes of the two SQUIDs, in either an even or an odd
fashion, either mode may be subjected to any desired phase
shift. There will be even less intrinsic limitation on the
fidelity of these operations. Thus, we see that the toolkit for
LOQC is readily completable in SC microwave circuits.
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FIG. 3 (color online). Fidelity of the beam-splitting gate as a
function of pulse duration, using a naive rotating wave approxi-
mation (RWA), a rotating wave approximation including some
additional slow-rotating terms perturbatively, capturing the oc-
currence of Bloch-Siegert oscillations (BSO), in comparison
with the numerically exact solution. Note that since the BSO
result reproduces the exact result with large precision, the two
lines lie essentially on top of each other in the main panel and
can only be distinguished in the magnified plot (inset). Because
of its simple perturbative nature, the BSO fidelity can (and does)
exceed 1. The fidelity can be further optimized by carefully
adjusting the resonator frequencies and thus the phase of the
BSO. The device parameters for the ring resonator are as given
in the text, except that stub tuning is used to raise the mode
splitting to �! � 260 MHz.
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