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We study the relaxation of a single electron spin in a circular gate-tunable quantum dot in gapped graphene.
Direct coupling of the electron spin to out-of-plane phonons via the intrinsic spin-orbit coupling leads to a
relaxation time T1 which is independent of the B field at low fields. We also find that Rashba spin-orbit induced
admixture of opposite spin states in combination with the emission of in-plane phonons provides various
further relaxation channels via deformation potential and bond-length change. In the absence of valley mixing,
spin relaxation takes place within each valley separately and thus time-reversal symmetry is effectively broken,
therefore inhibiting the Van Vleck cancellation at B=0 known from GaAs quantum dots. Both the absence of
the Van Vleck cancellation as well as the out-of-plane phonons lead to a behavior of the spin-relaxation rate at
low magnetic fields which is markedly different from the known results for GaAs. For low-B fields, we find
that the rate is constant in B and then crosses over to �B2 or �B4 at higher fields.
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I. INTRODUCTION

The electronic spin degree of freedom is under intense
investigation as a possible implementation of a qubit.1 While
the feasibility of all required operations has been experimen-
tally demonstrated for GaAs quantum dots �QDs�,2 the deco-
herence caused by the surrounding nuclear spins in the host
material remains challenging. Regarding the use of the elec-
tron spin as a qubit in quantum computation devices, spin
decoherence and relaxation are limiting factors. In general, a
necessary condition for a working qubit is that the time re-
quired to perform an operation is significantly shorter than
the decoherence and relaxation times. Motivated by this, the
implementation of qubits in QDs in graphene has been
proposed.3 Graphene consisting of natural carbon comprises
99% of the carbon isotope 12C which has no nuclear spin,
hence the hyperfine interaction is expected to play only a
minor role. Furthermore, spin-orbit interaction �SOI� in
graphene is expected to be relatively weak and therefore long
decoherence times are expected. However, for spins local-
ized in QDs in carbon nanotubes, SOI has turned out to be
unexpectedly strong4,5 due to curvature-induced effects. It
has also been shown theoretically that Van Hove singularities
in the phonon density of states in one dimension can lead to
strong variations in the spin-relaxation rate.6 It is therefore
important to investigate the spin-relaxation time in graphene
QDs. The form of the SOI in graphene, both intrinsic and
Rashba type, has been derived from symmetry arguments7 as
well as tight-binding calculations.8,9 It was predicted that the
spin-relaxation rate of extended states depends on various
parameters such as curvature or electric field.8,10 Further-
more, there have also been experimental11 and theoretical12

studies on spin relaxation of extended states in graphene.
In this paper we determine theoretically the spin-

relaxation time T1 for an electron confined to a circular QD
in gapped graphene as a function of the external magnetic
field B. It has been predicted previously that such QDs can
be formed with electrostatic confinement in either single-
layer graphene with a substrate-induced band gap or bilayer
graphene with an electrically controlled gap.13 At B=0, the

states in these QDs have a twofold valley degeneracy which
can be lifted in a perpendicular magnetic field. Being a cen-
trosymmetric crystal, phonons in graphene do not couple pi-
ezoelectrically, thus leaving three possible electron-phonon
coupling �EPC� mechanisms: deformation potential, bond-
length change, and direct spin-phonon coupling. From these
EPC mechanisms, we derive two spin-relaxation mecha-
nisms. One such mechanism involves the admixture of states
of opposite spin and excited orbitals into the dot eigenstates
due to SOI, in combination with energy relaxation via pho-
non emission.14,15 It turns out that to lowest order in the EPC,
this only involves in-plane phonons coupled via the deforma-
tion potential and bond-length change. The second mecha-
nism directly couples the spin to out-of-plane phonons via
curvature-induced SOI. For comparison, in a parabolic GaAs
QD, a strong dependence �B5 has been predicted for both
mechanisms.14 Relaxation times in the millisecond range at a
field B=1 T have been predicted and even longer T1 exceed-
ing one second have been experimentally verified.16 The pre-
diction for graphene QDs looks markedly different because
of the absence of the Van Vleck cancellation for spin qubits
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FIG. 1. �Color online� �a� The two states of a spin qubit �blue
solid arrows� reside in the same valley, as opposed to a Kramers
qubit �empty red arrows�, formed by a Kramers pair related by
time-reversal symmetry �T�. While in single-valley semiconductors
such as GaAs these two cases are identical, in graphene the Kram-
ers qubit involves states in different valleys �K and K��. �b� The
B-field orientation is given with spherical coordinates � and �B

relative to the normal to the graphene plane. The propagation direc-
tion of the emitted phonon �red wavy arrow� is described by the
angle �q.
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in a single valley as opposed to “Kramers qubits” �see Fig.
1�a��, as well as the absence of piezophonons and the two-
dimensional �2D� nature of phonons.

II. MODEL

To study spin relaxation in a circular and gate-tunable QD
in single-layer graphene, we assume the host graphene layer
to be sufficiently large to ensure that the edges do not induce
intervalley mixing. The QD can be described with the
Hamiltonian,13

H0 = vF�p + eA�� · � +
1

2
g�BB · s + U�r� + ���z, �1�

where the first term is the well-known Dirac Hamiltonian for
graphene17 in the presence of a vector potential A� with
B�=��A�= �0,0 ,B cos �� being the perpendicular compo-
nent of an arbitrarily oriented B field �Fig. 1�b��. The second
and third terms describe the Zeeman coupling of the electron
spin to the total B field and the smooth and finite circularly
symmetric confinement potential U�r�=U0��r−R�. Due to
the two-dimensional electron gas �2DEG� living on the very
surface and therefore very close to the top gates such a po-
tential can be created much better in graphene than in
GaAs.18

The last term opens a band gap 2� which can, e.g., arise
due to the influence of a BN or SiC substrate, or a monolayer
of intercalated Au on Ru�0001�.19–21 Here, �= 	1 denote the
K and K� valleys. In the absence of valley scattering, we can
restrict ourselves to a single valley, e.g., �=+1. Weak inter-
valley coupling can arise from atomic defects or
boundaries,17 or from the hyperfine interaction with the re-
maining 13C atoms.22

The eigenstates �n ,s��0� of H0 in Eq. �1� with energy En
+sg�BB /2 are simultaneously eigenstates of the total angular
momentum j�Z+ 1

2 , i.e., orbital quantum number and pseu-
dospin with spinor wave functions �in the K valley�,

�r,��n;s� = 
n�r,�� = ei�j−1/2��� �A
j,��r�

�B
j,��r�e−i� 	 . �2�

The spinor components ��
j,��r� can be given in closed form

for a steplike potential U�r� as introduces above,13 however
the eigenenergies En have to be evaluated numerically. Each
eigenstate is characterized by a pair �n ,s�, where s= ↑ , ↓
= 	1 is the spin and where n= �� , j� has a radial and angular
momentum part.

III. IN-PLANE PHONONS

In order to study processes based on the admixture
mechanism, we begin with the Hamiltonian H=H0+HSO
+HEPC, where H0 describes the graphene QD without SOI as
explained above, HSO describes the SOI, and HEPC describes
EPC. The effect of the SOI is to weakly mix the eigenstates
Eq. �2�. In this manner, e.g., the QD ground state, say, �n
= �0,1 /2� ,↑��0� acquires components of the excited states
�n� ,↓��0� with n�= ��� , j���n and opposite spin, to first order
in HSO,

�n↑� = �n↑��0� + 

n��n

�0��n�↓�HSO�n↑��0�

En − En� −
1

2
g�BB

�n�↓��0� �3�

and similarly for �n↓�. With this admixed state the spin-
conserving EPC can cause spin relaxation,

�n↑�HEPC�n↓�

� �HEPC�nn
↑↓

= 

n��n � �HSO�nn�

↑↓ �HEPC�n�n

En − En� −
1

2
g�BB

+
�HEPC�nn��HSO�n�n

↑↓

En − En� +
1

2
g�BB
 .

�4�

For sufficiently small B fields this can be expanded around
B=0. In the case of GaAs, the expression �4� vanishes for
B=0 due to the symmetry �HSO�nm

↑↓ =−�HSO�mn
↑↓ and

�HEPC�nm= �HEPC�mn. This Van Vleck cancellation14,15 is one
of the reasons for the high power of B that appears in the
spin-relaxation rate in GaAs QDs and can be traced back to
the time-reversal invariance of H and its eigenstates, i.e., the
fact that both SOI and EPC preserve time-reversal invari-
ance. In particular, the spin relaxation takes place from one
state, say, �n↑�, to its partner �n↓� within a Kramers pair,
which are linked by time reversal.

In our case, the states �n↑� and �n↓� lie in the same valley
and therefore do not form a Kramers pair �see Fig. 1�a��. The
time-reversed partner of �n↑� is �n↓��, where the prime de-
notes the opposite valley. Since neither the EPC nor the SOI
lead to intervalley mixing, spin relaxation is effectively con-
strained to a single valley. Therefore the selection of spin
qubit states within the same valley breaks time-reversal sym-
metry and leads to the absence of the Van Vleck cancellation.
We now proceed to the evaluation of the matrix elements of
the SOI and the EPC in Eq. �4� in order to calculate the
spin-relaxation rate.

We divide the SOI Hamiltonian into its intrinsic and
Rahsba terms,7

HSO = Hi + HR = �i��zsz + �R���xsy − �ysx� , �5�

where �i and si denote the Pauli matrices acting on the pseu-
dospin and real spin. We use a spin quantization axis aligned
with the external B field �see Fig. 1�b�� and corresponding
spinors �↑B� and �↓B� and obtain

fx � �↑B�sx�↓B� = cos2�

2
− e−2i�B sin2�

2
, �6�

fy � �↑B�sy�↓B� = − i�cos2�

2
+ e−2i�B sin2�

2
	 . �7�

First we consider HR and calculate its matrix elements with
states �n↑B� and �n�↓B�. The two spin states we use are or-
thogonal, i.e., �↑B �↓B�=0 but they are not sz eigenstates. In
principle, this allows both the intrinsic and Rashba SOI to
provide a relaxation channel in the admixture mechanism.
However, due to the circular symmetry of the dot, selection
rules for j apply. In the case of HR only dipole transitions
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��j− j��=1� are allowed, whereas the matrix element of Hi
gives rise to selection rules j= j� which turns out to be in-
compatible with the selection rule �j− j��=1 for the EPC.

The matrix element of HR can be written as

�HR�nn�
↑↓ = 2
�R�fy�� j j�+1Nnn�

AB + � j j�−1Nn�n
AB �

− ifx�� j j�+1Nnn�
AB − � j j�−1Nn�n

AB �� , �8�

where Nnn�
AB =�drr�A

n�B
n�. The matrix element �HR�nn�

↑↓ is nei-
ther symmetric nor antisymmetric in contrast to the case of
GaAs where an antisymmetry leads to Van Vleck cancella-
tion.

We consider two different EPC mechanisms which corre-
spond to different changes in the lattice induced by phonons.
The deformation potential is caused by an area change in the
unit cell, whereas the bond-length change mechanism corre-
sponds to a modified hopping probability.23,24 Because we
work in the low-energy regime, we only consider acoustic
phonons. In principle, there are six possible relaxation chan-
nels: �i� longitudinal-acoustic �LA�, transversal-acoustic
�TA�, transversal out-of-plane �ZA� phonons, and �ii� defor-
mation potential �g1� and bond-length change �g2� mecha-
nisms. In lowest order in the atomic displacement, the EPC
has the form23,24

HEPC =
q

�A��q,�
�g1a1 g2a2

�

g2a2 g1a1
	�eiqrb† − e−iqrb� �9�

with a1= i and a2= ie2i�q for LA phonons, and a2=e2i�q and
a1=0 for TA phonons, and A the area of the graphene sheet.
The vanishing of a1 is due to the fact that in the regime of
linear atomic displacements the coupling of the TA mode is a
two-phonon process. Here, we restrict our considerations to
one-phonon processes. For a B field of B=1 T and a sound
velocity of s=2�104 m /s,25 we obtain from g�BB=�sq a
phonon wavelength of ��300 nm which is an order of
magnitude larger than a typical QD size of 25 nm,3 thus
justifying the use of the dipole approximation for typical
laboratory fields.

For the matrix element for LA phonon coupling via the
deformation potential we find

�HEPC
LA �nn� = −

g1
q3/2Mnn�
�A�sLA

�� j j�+1e−i�q + � j j�−1ei�q� �10�

with Mnn�=�drr2��A
n��A

n�+�B
n��B

n��. The dependence on the
phonon-emission angle �q disappears upon summation over
final states. For the TA phonons we find that the coupling via
the deformation potential is a two-phonon process which will
not be discussed here.

The bond-length change mechanism leads to similar re-
sults for both LA and TA phonons,

�HEPC�nn� = Diq
1/2�� j j�+1e−2i�qNnn�

AB
	 � j j�−1ei2�qNn�n

AB �

�11�

with DLA=−i2
g2 /�A�sLA and DTA=2
g2 /�A�sTA, and
where the plus �minus� sign corresponds to LA �TA�. In lin-
ear order in the atomic displacement the ZA mode is decou-

pled from the other modes. The Hamiltonian �9� cannot ac-
count for a coupling to the out-of-plane mode.

With the matrix elements derived above, we can write the
transition rates using Fermi’s golden rule as

1

T1
� � = 2
A� d2q

�2
�2 ��HEPC�nn
↑↓�2��sq − g�BB� . �12�

For all mechanisms we find the same dependence on the
orientation of the B field,

f��� = cos4��/2� + sin4��/2� = �3 + cos�2���/4. �13�

We find for the relaxation rate from the deformation poten-
tial,

�g1

LA =
16
4g1

2�R
2

�

�g�BB�4

sLA
6 f���

�� 

n��n

Mnn�Rnn��� j j�+1Nnn�
AB + � j j�−1Nn�n

AB ��2
�14�

while for the bond-length change mechanism, we have

�g2

LA,TA =
64
4g2

2�R
2

�

�g�BB�2

sLA,TA
4 f���

�� 

n��n

Rnn��� j j�+1�Nnn�
AB �2 + � j j�−1�Nn�n

AB �2��2

�15�

with Rnn�= �En−En��
−1. For numerical evaluation, we assume

a QD size of R=25 nm and �=10�, where �=v /R is the
average level distance. The depth of the quantum well is also

LA, g1; �B4
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FIG. 2. �Color online� Log-log plot of the spin-relaxation time
T1 as a function of an external B field perpendicular to the plane
��=0� defined by the graphene sheet. The radius of the dot is R
=25 nm and �=U0=260 meV. The individual relaxation channels
are the coupling to LA in-plane phonons via deformation potential
�g1� and the coupling to LA and TA phonons via bond-length
change �g2�. Also shown are the direct coupling to the out-of-plane
phonons with quadratic �ZA� and linear �ZA�� dispersion. The red
dotted, blue dashed, and solid black lines represent the sum of all
four processes. For the red �blue� curve, a quadratic �linear� disper-
sion relation is assumed, while for the black curve a crossover from
linear to quadratic is assumed �see text�. Inset: dependence of the
relaxation rate on the inclination angle � of the B field.
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set to U0=10�. The Rashba SOI constant can be adjusted by
an external electric field8 or by using different types of sub-
strates. We chose a value of �R=48 �eV to calculate the
relaxation times displayed in Fig. 2. For the EPC constants
we assume g1=30 eV and g2=1.5 eV.23 We use as sound
velocities sLA=1.95�104 m /s and sTA=1.22�104 m /s.25

The overlap integrals Nnn�
AB and Mnn� are calculated numeri-

cally. The sum over n� runs over all states, including the
continuum. As shown in Table I, the contributions from
higher levels vanish quickly so that we only take the first
three levels into account. The relaxation rate T1=1 /� is plot-
ted in Fig. 2.

IV. DIRECT SPIN-PHONON COUPLING

In flat graphene the acoustic phonons with perpendicular
�ZA� polarization are decoupled from the in-plane modes
�LA, TA�. We extend the SOI Hamiltonian �5� for the case of
a graphene layer which is curved due to ZA phonons. For
displacements much smaller than the wavelength the normal
vector of the graphene plane can be written as n̂�z�� ẑ
+�uz�x ,y�, where uz�x ,y� is the displacement field represent-
ing the ZA phonons. Rotating the spin matrices into the local
frame determined by the normal vector n̂�z� we obtain in
linear order in u�z� a generalized SOI Hamiltonian HSO=Hi
+HR with

Hi = Hi
�0� + �i��xuzsx + �yuzsy��z� , �16�

HR = HR
�0� + �R�− �y�xuz + ��x�yuz�sz, �17�

where Hi
�0� and HR

�0� are the SOI Hamiltonians for flat
graphene given in Eq. �5�. We evaluate these expressions for
transverse out-of-plane �ZA� phonons, with a quadratic dis-
persion relation �q=�q2, where �=�� /� with �=1.1 eV
the bending rigidity and �=7.5�10−7 kg /m2 the mass area
density.25,26 The EPC Hamiltonian is then obtained by sub-
stituting the displacement operator for the ZA phonons uz

=�1 /A��q�eiq·rb†+e−iq·rb� into Eqs. �16� and �17�. For the
intrinsic SOI we obtain the matrix element,

�Hi�nn
↑↓ = i�i

�1/A��q�n��ze
iq·r�n��qx�↑�sx�↓� + qy�↑�sy�↓�� .

�18�

When evaluating the orbital matrix element only the lowest
order in the dipole approximation contributes. All higher or-

ders contain a factor �ei�q which averages to zero when the
integration over �q is carried out.

Finally, Fermi’s golden rule is used to find the relaxation
rate,

�ZA =
2
2�i

2

��2 f����� drr���A
n �2 − ��B

n �2��2

, �19�

which depends only on B via the matrix element. For the
numerical evaluation we use �i=12 �eV �Ref. 9� and sZA
=1.59�103 m /s.25 The same calculation for the Rashba
SOI yields vanishing matrix elements and therefore no addi-
tional contribution. In some cases, boundary conditions may
lead to a linear dispersion relation for the out-of-plane �ZA��
phonons. This contribution is �B2 but is negligible compared
to the in-plane phonon contributions as seen in Fig. 2. We
also calculate the case in which the dispersion relation is of
the form ��=�sq+��q2. In order to show the crossover
behavior of T1 in the regime where both quadratic and linear-
dispersion relation play an equal role, we have assumed a
sound velocity of sZA=0.25�103 m /s.

V. CONCLUSION

We have calculated the electron-spin-relaxation time T1 in
a gate-tunable graphene QD arising from the combination of
SOI and EPC. We have restricted ourselves to the zero-
temperature case, i.e., pure phonon emission which is realis-
tic at 0.1 T and 100 mK and higher temperatures for larger
fields. We have taken into account two mechanisms: admix-
ture mechanism and direct spin-phonon coupling. Due to se-
lection rules in a circular QD, the admixture mechanism only
leads to spin relaxation in combination with the Rashba SOI.
The deformation-potential EPC with LA phonons leads to a
spin-relaxation rate scaling as B4 �Fig. 2� while the bond-
length change EPC with both LA and TA phonons results in
B2 dependencies. The relatively low powers compared to
GaAs QDs can be traced back to the absence of the Van
Vleck cancellation, in combination with the 2D phonon den-
sity of states. The direct coupling of electronic spins to ZA
phonons only leads to spin relaxation in combination with
the intrinsic SOI whose rate does not depend on the applied
B field �in lowest order� and thus leads to a B-field depen-
dence at low fields which is markedly different from that in
GaAs QD.
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TABLE I. Individual relaxation rates in units of per second for
LA phonons via the deformation potential at B=1 T. For higher
quantum numbers �, the rate decreases quickly.

�=1 �=2 �=3

j=−0.5 1.1�104 2.6�10−2 1.3�10−3

j=1.5 1.6�104 1.2�101 9.3�10−2
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