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Proposal for a cavity-induced measurement of the exchange coupling in quantum dots
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In spin qubit arrays the exchange coupling can be harnessed to implement two-qubit gates and to realize
intermediate-range qubit connectivity along a spin bus. In this work, we propose a scheme to characterize the
exchange coupling between electrons in adjacent quantum dots. We investigate theoretically the transmission
of a microwave resonator coupled to a triple quantum dot occupied by two electrons. We assume that the right
quantum dot (QD) is always occupied by one electron while the second electron can tunnel between the left
and center QDs. If the two electrons are in adjacent dots they interact via the exchange coupling. By means of
analytical calculations we show that the transmission profile of the resonator directly reveals the value of the
exchange coupling strength between two electrons. From perturbation theory up to second order we conclude
that the exchange can still be identified in the presence of magnetic gradients. A valley splitting comparable to
the interdot tunnel coupling will lead to further modifications of the cavity transmission dips that also depend on
the valley phases.
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I. INTRODUCTION

Spin qubits in quantum dots (QDs) [1] promise to be
an excellent quantum information platform. The choice of
silicon as host material with its abundant nuclear spin-
free 28Si isotope has granted remarkably long coherence
times [2,3]. Two-qubit gates can be performed utilizing
the exchange coupling between electrons in neighboring
QDs [1,4–7]. The exchange coupling can also serve as a
backbone of intermediate-range qubit interaction via a spin
bus [8–12] and allows to advance beyond the original pro-
posal of a natural spin-1/2 qubit [13]. multispin qubits
in exchange-coupled quantum dots [13–19] are more com-
plex but provide benefits in terms of stability and control.
Typical ways to characterize the exchange interaction in a
given device include transport experiments [20,21], spin-
funnel measurements [15,22], and other types of gate-based
spectroscopy [12,23].

The integration of spin qubits into circuit quantum elec-
trodynamics architectures [24] has further advanced the
scalability of QD implementations [25–28]. The electric
dipole coupling can establish a coherent interface between
microwave resonator photons and the charge [29] and
spin [30–33] degree of freedom of a confined electron in
a double quantum dot (DQD). This allows coupling be-
tween distant qubits [34–38]. Furthermore, by injecting a
probe field into the resonator and monitoring the output field
it is possible to read out the qubit state [39–45] and to
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investigate the electronic energy spectrum [46,47]. In par-
ticular, resonators coupled to silicon QDs can successfully
aid the characterization of the valley Hamiltonian [48–54]
which is hard to access otherwise. The valley degree of
freedom is a potential complication for silicon spin qubits
due to the sixfold-degenerate conduction band minimum of
silicon [55,56]. The QD confinement potential partially lifts
the degeneracy into the additional valley pseudospin and a
split-off manifold with higher energy [57–60]. The valley
Hamiltonian strongly depends on the microscopic environ-
ment [61–63]. The hybridization of valley, orbital, and spin
states [51] may give rise to unwanted effects such as enhanced
relaxation near the spin-valley hotspot [64–67], lifted Pauli
blockade [52,68], or an altered probability distribution of spin
measurements [69].

This raises the question whether microwave cavity trans-
mission can be used to probe the exchange coupling between
neighboring quantum dots. At the surface, it appears that the
answer is negative because, despite its many advantages, a
coupled microwave resonator is not well suited to measure
the exchange coupling between two electrons in a DQD. This
is because the exchange interaction emerges deep in the (1,1)
charge sector where the electron number is fixed and charge
transitions between the two QDs are extremely unlikely. The
electric dipole of a DQD in this regime and hence the coupling
to the cavity field are extremely low.

In this paper, we show that in fact the exchange coupling
can be probed by a cavity in a triple quantum dot (TQD).
We study theoretically the transmission of a microwave res-
onator coupled to a TQD occupied by two electrons close
to the (1, 0, 1) ↔ (0, 1, 1) charge transition (Fig. 1). Here,
(nl , nr, nc) denote the numbers of electrons in the left (l),
center (c), and right (r) QDs. In the (0,1,1) configuration the
short-ranged exchange interaction couples the two electrons
and splits the spin singlet and triplet states in energy. The
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FIG. 1. Schematic depiction of the system. (a) Energy levels of
the TQD. The on-site potentials are assumed to be set such that
the right dot (r) is permanently occupied by one electron while a
second electron can tunnel between the left (l) and center (c) dots.
In the (0,1,1) charge configuration the exchange energy J between
singlet and triplet states emerges due to the wavefunction overlap.
The single-electron physics of the TQD is characterized by Zeeman
splittings Bl , Bc, and Br , tunneling tlc, and energy detunings ε and
δ. (b) Sketch of a microwave resonator with embedded TQD. The
electric field couples to the dipole moment associated with the charge
transition (1, 0, 1) ↔ (0, 1, 1). (c) Energy levels of the TQD as a
function of δ near the charge transition. Dashed gray lines are plot-
ted with J = 5 μeV, tlc = 15 μeV, Bext = 20 μeV, ε = 100 μeV,
and without magnetic gradients. The dashed colored lines include
a longitudinal gradient of bzl = 2bzc = 4 μeV which hybridizes the
singlet and T0 states (indicated in green). The solid curves addi-
tionally include a transverse gradient bxl = 2bxc = 10 μeV which
introduces spin-flip processes. Thus, the polarized triplets T± are
shifted in energy and further avoided crossings are opened (indicated
in blue).

resonator transmission T exhibits a response to the avoided
level crossings of the charge transition. We show that it is
possible to extract the exchange coupling J from the cavity
response during a sweep of the left dot potential. We further
derive the effect of an inhomogeneous magnetic field on T and
show that the measurement scheme also works in the presence
of a lifted valley degeneracy.

This article is organized as follows. In Sec. II we introduce
the model for the coupled TQD and resonator. In Sec. III we
describe the cavity-induced measurement of the exchange in-
teraction. In Secs. IV and V, we discuss the effect of magnetic
gradients and a lifted valley degeneracy on the transmission
profile. In Sec. VI we summarize our results.

II. CAVITY-COUPLED TQD MODEL

To model the TQD we introduce the Hamiltonian HTQD

which incorporates the electrostatic potential Hel, the interdot
tunneling Ht , and the Zeeman effect H j

z in the left ( j = l),
center ( j = c), and right ( j = r) QDs. In all three dots only
the lowest orbital is considered. Explicitly,

Hel =
∑

j=c,l,r

(
Ejn j + U2 j

2
n j (n j − 1)

)
+ U1(nlnc + ncnr ),

(1)
where n j = ∑

σ c†
jσ c jσ denotes the total occupation number

operator in QD j and c(†)
jσ annihilates (creates) an electron with

spin σ in QD j. The potentials Ej can be tuned electrically.
The Coulomb repulsion between electrons in adjacent dots,
U1, and in the same dot, U2 j , are determined by the interdot
distance and the QD radius.

Tunneling between QDs is included with

Ht =
∑

σ

tlc(c†
lσ ccσ + H.c.) + tcr (c†

cσ crσ + H.c.). (2)

Here, tlc(cr) is the tunneling matrix element between the left
and center (center and right) QD and H.c. denotes the Her-
mitian conjugate. Note that Ht includes only spin conserving
tunneling. Spin-orbit interaction (SOI) can lead to spin-flip
tunneling [70,71]; this is commented on in Sec. IV B.

In QD j, the spin Hamiltonian is of the form H j
z = B j · S j ,

where S j is the spin operator at site j. The local magnetic
fields B j are given in energy units [70] and comprise a homo-
geneous external field Bext ẑ along the z axis and potentially
an inhomogeneous contribution from a static Overhauser field
or a micromagnet [3,70]. To quantify the inhomogeneity we
define the longitudinal (bz j) and transverse (bx j) magnetic
field differences for j = l, c, and α = x, z,

bα j = (B j − Br )α. (3)

For the remainder of this work we assume that Ej , j =
l, c, r, are adjusted such that two electrons are confined to
the TQD. Furthermore, we define ε = Ec − Er and δ = El −
Ec − U1 and assume that the TQD is operated in the regime
|δ| � |ε| + U1 � U2c,U2r . Using the notation (nl , nc, nr ) for
the charge configuration, the operating regime allows two
stable charge configurations, (1,0,1) and (0,1,1); i.e., the right
QD is always occupied by one electron while the second
electron can be either in the left or center QD. States with
doubly occupied QDs, (0,2,0) and (0,0,2), are split off by a
large spectral gap of the order U2c(r) − U1 and have very low
occupation probability. Consequently, the Hamiltonian can
be reduced to the low-energy subspace of states with single
occupation. This can be accomplished by a Schrieffer-Wolff
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transformation [72,73] and results in [6]

H ′
TQD =

[
J

(
Sc · Sr − 1

4

)
+ Bc · Sc

]
11 − τz

2

+ (δ + Bl · Sl )
11 + τz

2
+ tlcτx + Br · Sr, (4)

where τz = |1, 0, 1〉〈1, 0, 1| − |0, 1, 1〉〈0, 1, 1| is the Pauli z
operator and τx = |1, 0, 1〉〈0, 1, 1| + H.c. is the Pauli x op-
erator for the two available charge configurations. In the
low-energy subspace U1 is but an offset of the left dot potential
δ and the two-electron dynamics is captured in the exchange
energy

J = 2t2
cr (U2c + U2r − 2U1)

(U2c − U1 + ε)(U2r − U1 − ε)
. (5)

The energy level diagram of H ′
TQD near the (1, 0, 1) ↔

(0, 1, 1) charge transition is depicted in Fig. 1(c).
The charge states (1,1,0) and (2,0,0) are neglected en-

tirely in the derivation of H ′
TQD. This is justified only if

U1 � ε, δ; otherwise a small correction arises. Virtual tun-
neling into these states gives rise to a shift δ → δs = δ +
2t2

cr/(U1 + ε + δ). Furthermore, there is a superexchange cou-
pling Js between the electrons in the outer dots which is in
leading order ∝ t2

lct
2
cr/UcU 2

1 which is typically much smaller
than J .

The resonator is modeled as a single-mode harmonic os-
cillator, Hres = ω0a†a with annihilation (creation) operator
a(†), choosing h̄ = 1. The electric field E couples to the
dipole er of the DQD via Hdip = eE · r [74,75] where e is
the electron charge. In the present case this can also be
written as Hdip = 2g0(a + a†)τz with g0 = eE0r0. The ma-
trix elements include the projection E0 of the electric field
E to the DQD axis and the distance r0 between the left
and center QDs. The interaction must also be transformed
into the low-energy subspace, but if |ε| + U1 � U2c,U2r

then H ′
dip ≈ Hdip.

A comprehensive sketch of the system is shown in Fig. 1.
We consider a setup where, additionally, a coherent driving
field

Hp = i
√

κ1
(
aine−iωpt a† − a∗

ineiωpt a
)

(6)

with frequency ωp and amplitude |ain| enters the cavity
through port 1 [see Fig. 1(b)]. At port 2 the transmitted field
aout is measured. Port i = 1, 2 has the leakage rate κi; the total
cavity leakage rate is κ = κ1 + κ2. The total Hamiltonian is
then

H = H ′
TQD + Hres + H ′

dip + Hp. (7)

Input-output theory [76] is used to compute the station-
ary state of the output field aout = √

κ2a and the normalized
transmission T = |aout/ain|2 of the resonator, following the
lines of Refs. [48,77]. The Hamiltonian is transformed
into the eigenbasis of H ′

TQD, defined by UTQDH ′
TQDU †

TQD =
diag(E1, E2, . . .), En � En+1, and further into a rotating frame
to remove the time dependence from Hp. We apply a rotating
wave approximation (RWA). We choose a rotating frame that
allows to observe transitions between states adjacent in en-
ergy. Solving the quantum Langevin equations for a and the

TQD ladder operators yields [48]

aout

ain
= −i

√
κ1κ2

ω0 − ωp − iκ/2 + 2g0
∑

n dn,n+1χn,n+1
, (8)

χn,n+1 = −2g0dn+1,n(pn − pn+1)

En+1 − En − ωp − iγ /2
, (9)

where γ is the dephasing rate of the DQD states and dnm

are the matrix elements of d = UTQDτzU
†
TQD. From Eq. (9)

it follows that the cavity transmission shows a dip if the
TQD is tuned to an avoided crossing (AC) whose splitting
matches ωp.

The TQD is assumed to have the finite temperature
Tdot, with the thermal population pn = exp(−En/kBTdot )/∑

j exp(−Ej/kBTdot ) in the nth eigenstate of HDQD. Here, kB

is the Boltzmann constant.

III. PROPOSED TRANSMISSION-BASED
MEASUREMENT OF THE EXCHANGE

It is well known that some Hamiltonian parameters that
govern the single-electron dynamics in a quantum dot system
can be extracted from the cavity transmission T [48–54]. It
is desirable to have a similarly simple way to characterize
the exchange J between two electrons in adjacent QDs in
the (0,1,1) charge configuration. As discussed in Appendix A
the transmission in the (0,1,1) regime with tlc = 0 carries
information about the exchange J that can be classically
measured. However, there the cavity response has a visibility
of � 10−5 under realistic conditions since the dipole mo-
ment of the electron charge is very small in this regime, due
to the small contribution of the (0,2,0) and (0,0,2) charge
states.

To evade the problem of the small dipole moment we
propose to sweep the electrostatic potential δ of the left dot
through the (1, 0, 1) ↔ (0, 1, 1) charge transition. The dipole
moment of this transition allows for a sufficiently visible
cavity response which depends on the two-electron spin state.
This allows to extract the energy splitting of J between the
(0,1,1) singlet and unpolarized triplet states, |Scr〉 and |T cr

0 〉.
We first discuss the case without magnetic gradients, bz,l =

bz,c = 0, bx,l = bx,c = 0. Here, it is straightforward to derive
T explicitly from Eqs. (8) and (9), as shown in Appendix B.
The cavity response has two contributions, one due to the
tunneling between the singlet states at the two sites, the other
due to the tunneling between the triplet states. As a function
of δ and tlc the responses exhibit the characteristic arc shape
of an AC [Fig. 2(a)]. During a sweep of the left dot potential
δ two pairs of resonances are thus observed at

δ1± = −J ±
√

ω2
p − 4t2

lc, (10)

δ2± = ±
√

ω2
p − 4t2

lc. (11)

Due to the finite exchange J the transition between the singlets
is shifted, directly revealing the value of J [Eq. (10)]. This is
illustrated by the gold (J = 0) and orange (J 
= 0) curves in
Fig. 2(b).

In this simple case we envision an experiment where 1 − T
is measured as a function of δ. From this profile the peaks
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FIG. 2. Basic principle of the exchange measurement scheme.
(a) During sweeps of δ and tlc the avoided crossings of singlet and
triplet states give rise to absorption probabilities 1 − T which are
split by the exchange J . The plot shows the example of vanishing
gradients, J = 5 μeV, Bext = 30 μeV, ε = 100 μeV, Tdot = 0.75 K,
ωp = ω0 = 30 μeV, g0 = 0.2 μeV, and γ = 0.5 μeV, κ1 = κ2 =
0.0128 μeV. (b) Linecuts through panel (a) at tlc = 13.5 μeV (dotted
line) illustrate the effects of J and magnetic gradients bzl = 2bzc = 4
μeV and bxl = 2bxc = 5 μeV. For clarity, the curves are displaced
by 0.5 each. The splitting of the T± responses due to bxl (c) cannot
be resolved with this setting (dark red and black curves). The three
lowest curves are obtained from numerical diagonalization of H ′

TQD.

δ1 and δ2 can be inferred and taking the distance between
adjacent peaks J = δ2± − δ1± can be directly read from the
data independent from tlc and an offset of ε. Alternatively,
the distance between the outermost peaks can be inferred,
δ2+ − δ1−. This difference is not independent from tlc and
ωp; thus a single-parameter fit of a measurement series as a
function of tlc can be useful to minimize the uncertainty.

Note that the two arcs intersect at (δ, tlc) =(−J/2, 1
4

√
4ω2

p − J2
)
. If 2tlc ≈ ωp � J is chosen the

transmission dips are hard to resolve individually. Thus,
we recommend to choose 2tlc < ωp for the measurement.
Without the gradients no spin-flip processes are present and
thus Bext enters only via the populations. We recommend to
choose kBTdot � Bext for a significant population in the singlet
state.

The result of this section is based on the Hamiltonian
Eq. (4) which relies on the assumption that the electrons

cannot interact unless they occupy adjacent QDs. Realisti-
cally, it is possible that a superexchange Js couples electrons
occupying the left and right dots, e.g., due to virtual tun-
neling to the (1,1,0) and (2,0,0) charge states. Repeating the
previous derivation with such a small Js we find that in this
case the difference between the exchange coupling is mea-
sured: The transition between the singlets is visible at δ1s± ≈
−(J − Js

4 ) ±
√

ω2
p − 4t2

lc and the response associated with the

triplet states remains at δ2± ≈ ±
√

ω2
p − 4t2

lc.

IV. DISCUSSION OF MAGNETIC GRADIENTS

In quantum information applications it may be required
to include a micromagnet into the QD device to perform
fast gate operations [4–6,33,78] or to realize spin-photon
coupling [30–32]. A longitudinal gradient bzl , bzc mixes the
singlet and unpolarized triplet states T0 while a transverse gra-
dient bxl , bxc allows spin-flip transitions to the spin-polarized
triplets T±.

A. Longitudinal magnetic gradient

To discuss the role of the longitudinal gradient we assume
bxl = bxc = 0 and treat bzl/J, bzc/J as a perturbation of H ′

TQD,
Eq. (4). We apply nondegenerate perturbation theory to de-
rive the corrections up to second order. Two prime effects of
bzl , bzc are found.

Due to the refined energy splitting between the S and T0

states the response from the tunneling of the singlets is shifted
to

δ′
1± ≈ −J ±

√
ω2

p − 4t2
lc + 2b2

zl

J
− b2

zc

J
− 2bzl bzc

J
, (12)

and the tunneling of the T0 states is now observed at

δ′
2± ≈ ±

√
ω2

p − 4t2
lc − 2b2

zl

J
+ b2

zc

J
+ 2bzl bzc

J
. (13)

The responses due to the tunneling of the T± states are not
affected and still appear as specified by Eq. (11).

Furthermore, additional transmission dips can be observed,
stemming from S-T0 transitions. These appear near

δ′
3± ≈ −J

2
±

(
2b2

zl

J
− b2

zc

J
− 2bzl bzc

J

+ |J + 2ωp|
2

√
1 + (2bzl + bzc)2 − (2tlc − bzc)2

ωp(J + ωp)

)
,

(14)

δ′
4± ≈ −J

2
±

(
2b2

zl

J
− b2

zc

J
− 2bzl bzc

J

+ |J − 2ωp|
2

√
1+ (bzl + bzc)2+ (2tlc+ bzc)2

ωp(J− ωp)

)
. (15)

Both effects are visible in the example of Fig. 2(b) (light red
curve).
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The example in Fig. 2(b) also highlights that a longitudinal
magnetic gradient can potentially be detrimental. If∣∣∣∣J

2
− 2b2

zl

J
+ b2

zc

J
+ 2bzl bzc

J

∣∣∣∣ � γ /2, (16)

the responses from singlet and triplet states cannot be distin-
guished clearly.

We envision a reliable identification of the exchange cou-
pling with longitudinal gradient by measuring 1 − T as a
function of δ for different values of tlc. From each of these
traces the position of the outermost peaks δ′

3± can be in-
ferred. Provided that bzl , bzc are known, a single-parameter
fit of δ′

3+ − δ′
3− to the distance between the two peaks as a

function of tlc reveals J . The limitation to this protocol is the
requirement to clearly distinguish the outermost peaks from
the others and it fails if |δ′

3− − δ′
1−| � γ /2. Note that in this

case a superexchange Js will lead to a small correction of δ′
2±.

To first order the correction will be ∝ Js.
The longitudinal gradient can be measured beforehand by

measuring the Zeeman splitting in each dot and taking their
differences, according to Eq. (3). Alternatively, a multiparam-
eter fit of δ′

3+ − δ′
3− to the data can be used to simultaneously

estimate J and the gradient, if enough data points are
provided.

B. Transverse magnetic gradient

Similarly to Sec. IV A, here, we assume that bzl = bzc = 0
and treat bxl , bxc with second-order nondegenerate perturba-
tion theory. The resulting expressions are expanded around
the charge transition, assuming (bxc − bxl )2 � ω2

p − 4t2
lc.

Due to the admixture of T± states the responses due to the
tunneling of the singlets is shifted as a function of Bext to

δ′′
1± ≈ −J ±

[(
ωp + 4tlc(bxc − bxl )2

(
4B2

ext + J2 − 16t2
lc

)
(
4B2

ext + J2 − 16t2
lc

)2 − (4BextJ )2

)2

− 4t2
lc

]1/2

(17)

while the tunneling of the T± states is now observed in sepa-
rate transmission dips at

δ′′
2± ≈ ±

√(
ωp + 2(bxc − bbz )2tlc

(J ± 2Bext )2 − (4tlc)2

)2

− 4t2
lc. (18)

The response due to the tunneling of the T0 triplet is not
affected in this case and remains as given by Eq. (11). Note
that the corrections in Eqs. (17) and (18) become singular
for Bext = ±2tlc ± J/2. There, the nondegenerate perturbation
theory breaks down.

Furthermore, bxl , bxc allow for a number of additional
spin-flip transitions. The associated dipole moments are ∝
(bxl/2Bext )2, however. Thus, we propose to choose a large
magnetic field Bext � 2tlc for the measurement. This elim-
inates undesired responses and makes sure the analytical
results from perturbation theory can be applied.

The effects of the transverse magnetic gradient alone and
in conjunction with the longitudinal gradient are shown in
Fig. 2(b) (dark red and black curves). In this example Eqs. (17)
and (18) are only a coarse approximation since Bext is close to
2tlc + J .

If both gradients, longitudinal and transverse, are present,
the same experimental procedure as with only the longitudinal
gradient (Sec. IV A) can be applied since the correction to the
additional features is negligible. In the case of a transverse
gradient alone the exchange J can still be found by inferring
the distance between the outermost peaks, δ′′

1− and δ′′
2−, and a

single-parameter fit to our equations if bxl and bxc are known.
This can result in an enhanced uncertainty of J , however,
if the peaks from the two polarized triplets are merged into
one broadened peak as in Fig. 2(b), i.e., if their separation is
comparable to or smaller than γ /2.

The required knowledge about bxl and bxc can be esti-
mated in a preceding experiment where the spin-flip tunneling
between the QDs is measured in the weak-coupling regime

with a single electron [79]. The case with bxl and bxc alone
is expected to be irrelevant for realistic applications with a
micromagnet, however.

Another physical process that can introduce spin-flip pro-
cesses is SOI [66,71,80,81]. To include these processes we
use a modified Hamiltonian HTQD → HSOI

TQD [Eq. (4)] with
complex spin-flip tunneling terms fi j ,

Ht → HSOI
t =

∑
σ,σ ′

[δσ ′σ tlcc†
lσ ccσ + (1− δσ ′σ ) flcc†

lσ ccσ ′ + H.c.]

+ [(lc) → (cr)]. (19)

By treating fi j as perturbation and including terms up to
second order we find that the effect of the SOI is of similar
form as the transverse magnetic gradient. The explicit expres-
sions are presented in Appendix C. Note that in the presence
of the spin-flip terms J is not given by Eq. (5). The SOI can
furthermore contribute to the position-dependent part of the
spin splitting [82]. This effect can be directly incorporated into
bzl , bzc.

V. VALLEY DEGREE OF FREEDOM

For spin qubits realized in silicon the valley pseu-
dospin [57–60] can be described with a pseudospin operator
V j with ladder operators Vj± = Vjx ± iVjy. In each singly
occupied dot j the valley Hamiltonian is given by H j

v =
� jeiϕ jVj+ + H.c. [68,83]. The valley splitting � j and phase
ϕ j can differ between the dots [61–63]. In the valley eigenba-
sis of all dots the valley phase differences δϕlc = (ϕl − ϕc)/2
and δϕcr = (ϕc − ϕr )/2 can be viewed as the angles between
the valley pseudospins in adjacent dots and we parametrize
the ratio of valley conserving (ti j cos δϕi j) and valley-flip tun-
neling (ti j sin δϕi j) between these dots [48,50].
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The low-energy Hamiltonian is analogous to Eq. (4):

H ′v
TQD = Hv

(101)
11 + τz

2
+ Hv

(011)
11 − τz

2
+ tlcτx, (20)

Hv
(101) = δ +

∑
j=l,r

(
B j · S j + H j

v

)
. (21)

The exchange contribution in Hv
(011) strongly depends on the

presence of various interaction terms and its structure depends
on the assumptions made [84]. For our Hamiltonian with the
interaction terms introduced in Sec. II and assuming |Bc(r)| �
bzc and |�c(r)| � |�c − �r | and Bext, bzc, bxc 
= 0, we find

Hv
(011) ≈

∑
j=c,r

(
B j · S j + H j

v

) + J

8

[
(Sc · Sr )(V c · V r )

+ Sc · Sr + V c · V r + 8

(
1

4
+ Sc · Sr − 2ScySry

)

×
(

1

4
− V c · V r

)
− 3

]
. (22)

The low-energy Hamiltonian has 32 relevant basis states,
forming six supersinglets and ten supertriplets in each charge
configuration [85,86].

First, we consider the effect of the lifted valley degeneracy
for the limit of a large valley splitting which is compara-
ble to the Zeeman splitting, � j ≈ Bext � J and 4tlc < �l +
�c − |�l − �c|. In this limit it is possible to treat J and
the magnetic gradients as perturbations and approximate the
eigenenergies of H ′v

TQD near the ACs.
Knowledge about the valley phase differences and thus

the occurrence of valley-flip tunneling is of vital importance
for the interpretation of the results. The splitting of the ACs
at the charge transition is determined by δϕlc. On the other
hand, δϕcr determines which (0,1,1) states can couple to the
(0,2,0), (0,0,2) subspace and are thus shifted in energy by the
exchange interaction.

We find that the valley-conserving tunneling between the
left and center dots gives rise to up to 12 pairs of transmission
dips with a dipole moment ∝ tlc cos(δϕlc). The tunneling be-
tween states without spin polarization is observed in the cavity
response near

δ1v ≈ ±�c − �l

2
− J

2
± (bzc − bzl ) ±

√
ω2

p − 4t2
lc cos2(δϕlc)

(23)
while the spin-polarized states are observed near

δ2v ≈ ±�c − �l

2
− J

8
[1 ± cos(δϕcr )] ± b2

xc − b2
xl

2Bext

±
√

ω2
p − 4t2

lc cos2(δϕlc). (24)

Analogously, the valley-flip tunneling between l and c
gives rise to responses with dipole moment ∝ tlc sin(δϕlc)
near

δ3v ≈ ±�c + �l

2
− J

2
± (bzc − bzl ) ±

√
ω2

p − 4t2
lc sin2(δϕlc)

(25)

FIG. 3. Cavity absorption 1 − T during a sweep of δ with lifted
valley degeneracy of �l = 45 μeV, �c = 40 μeV, �r = 50 μeV,
and two different combinations of valley phase differences δϕlc, δϕcr

(dashed and solid curves). As can be seen, the proposed measurement
scheme is reliable in the presence of a valley splitting as well and the
effect of the gradients can be expected to be comparable to the case
without valley. The precise transmission profile strongly depends on
the different tunneling matrix elements parametrized by the valley
phase differences. Here, Bext = 50 μeV, while all other parameters
are the same as in Fig. 2(b). For clarity the curves are offset by 1
each.

and also near

δ4v ≈ ±�c + �l

2
− J

8
[1 ± cos(δϕcr )] ± b2

xc − b2
xl

2Bext

±
√

ω2
p − 4t2

lc sin2(δϕlc). (26)

These results are illustrated in Fig. 3.
In the opposite limit of a small valley splitting, � j ≈ J �

Bext, we treat � j and J as perturbations. As a simplification,
only the lowest spin state is considered, which is justified if
Bext � kBTdot.

Due to the valley-conserving tunneling between the left
and center QDs up to four arc-shaped transmission dips
emerge in the δ-tlc plane, when the condition

ωp

√
16t2

lc + δ2 ≈ 8t2
lc + δ

{
−δ − J

8
[1 ± cos(2δϕcr )]

± 1

2
[�c − �c cos(2δϕlc)]

}
(27)

is satisfied. The valley-flip tunneling similarly gives rise to
cavity responses if

ωp ≈ 16t2
lc + δ(δ + J/4)√

16t2
lc + δ2

+ J

8
[1 ± cos(2δϕcr )]

± 1

2
[�c + �l cos(2δϕlc)]. (28)

Consequently, the exchange interaction can be identified from
both a sweep of δ and tlc.

The measurement procedure for the exchange J can be
completed similar to the simple case of Sec. III, inferring
the distance between the outermost peaks along the δ axis
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as a function of tlc. A single-parameter fit then reveals J , if
all other parameters are known. However, due to the strong
dependence of peak position and dipole moment on the valley
phase differences there are no universal instructions which
peaks those will be. This is best determined case by case by
using the equations from this section, prior knowledge about
the valley parameters, and an estimated range of J .

Therefore, before J can be measured, the valley Hamil-
tonian should be estimated. This can be accomplished with
well-known techniques described in Refs. [48,49,53] using
the same microwave resonator and a single electron.

VI. CONCLUSIONS

In this article we have proposed a scheme to measure the
exchange coupling J between two electrons in neighboring
QDs from the transmission of a dipole-coupled microwave
resonator. The exchange interaction between adjacent QDs
emerges in a regime where charge transitions are extremely
unlikely, resulting in a very low dipole moment. Our proposal
circumvents this hindrance by introducing an empty third QD.
The required dipole moment is obtained by sweeping through
a charge transition where one electron can tunnel into the
additional (left) QD. The relative position of the observed
transmission dips reveals the value of J .

Exact analytical expressions for the transmission T and the
position of the transmission dips during a sweep of the left
dot potential δ were derived. Furthermore, we applied pertur-
bation theory up to second order to discuss corrections due
to magnetic field gradients and weak spin-orbit interaction. A
transverse magnetic field gradient bx j has only small effects if
the external magnetic field Bext is sufficiently high. A longi-
tudinal gradient bz j , however, can obstruct the measurement,
since it alters the singlet-triplet splitting.

The proposed measurement scheme also works in the case
of a lifted valley degeneracy, e.g., in silicon QDs. Approxi-
mate expressions for the position of the transmission dips are
presented in the limits of large and small valley splitting. In
both cases the valley phase differences δϕi j have a crucial
role. The phase differences parametrize the valley-conserving
and valley-flip tunneling and thus determine which transitions
couple to the cavity field.

Our results can be applied to simplify and speed up the
characterization of the short-range interaction between spin
qubits, of multispin qubit devices, and of the interaction in
longer spin chains. With the addition of the estimation of J to
their range of applications microwave resonators become even
more significant a component of spin qubit devices.
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APPENDIX A: EXCHANGE MEASUREMENT SCHEME
WITH ONLY TWO DOTS

If the left QD is decoupled from the rest of the system
(tlc = 0) and the remaining double quantum dot (DQD) is in
the (1,1) configuration, the low-energy Hamiltonian H ′

DQD =
Hc

z + Hr
z + J (Sc · Sr + 1/4) is readily diagonalized which

can be used to compute T from Eqs. (8) and (9). Choosing
ωp = ω0 � bxc, bzc 
= 0 and sweeping Bext, a transmission
dip will be observed at Bresp in response to transitions between
the two lowest-energy eigenstates and it is

J ≈ Bresp − ωp + b2
zc

ωp − Bresp
. (A1)

However, the leading contribution to the dipole mo-
ment associated with this transition is of the order of
bxct2

cr/(min(U2r,U2c) − U1 − |ε|)3, resulting in an extremely
low visibility of the corresponding cavity response. An anal-
ogous result can be obtained with lifted valley degeneracy
� j � J , but the dipole moment and visibility are of the same
order of magnitude.

APPENDIX B: EXPLICIT EXPRESSION FOR T

Without magnetic gradients the transmission according to
Eq. (8) can be directly computed:

T =
∣∣∣aout

ain

∣∣∣2
=

∣∣∣∣ −i
√

κ1κ2

(ω0 − ωr ) − iκ
2 + 2g0[dS (J )χS + dT χT ]

∣∣∣∣
2

.

(B1)
The two contributions to the cavity response,

χS = 2g0dS (J )

aJ/2 − ωp − iγ /2
PS, (B2)

χT = 2g0dT

a/2 − ωp − iγ /2
PT , (B3)

are stemming from the singlet (S) and triplet (T) states.
We have defined aJ =

√
(4tlc)2 + (2J + 2δ)2 and a =√

(4tlc)2 + (2δ)2. The associated dipole moments are

dS (J ) = −
∏

μ=±1

μaJ/2 − J − δ√
4t2

lc + (μaJ/2 − J − δ)2
, (B4)

dT = −
∏

μ=±1

μa/2 − δ√
4t2

lc + (μa/2 − δ)2
, (B5)

and the populations in thermal equilibrium are

PS =
∑

μ=±1 μe−(μaJ /2−J+δ)/2kBTdot∑
μ=±1

(
e−(μaJ/2−J+δ)/2kBTdot + ∑1

ν=−1 e−(μa/2+νBext+δ)/2kBTdot

) , (B6)

PT =
∑

μ=±1

∑1
ν=−1 μe−(μa/2+νBext+δ)/2kBTdot∑

μ=±1

(
e−(μaJ/2−J+δ)/2kBTdot + ∑1

ν=−1 e−(μa/2+νBext+δ)/2kBTdot

) . (B7)
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APPENDIX C: CORRECTIONS FROM SOI

The complex tunneling and spin-flip terms due to the SOI shift the response associated with the singlets to

δ′′′
1 ≈ −Jt2

cr/n ±
√√√√(

ωp − | flc|
4

∑
μ,ν=±1

1

2μBext + 4tlc + νJt2
cr/n

)2

− 4t2
lc, (C1)

where n = t2
cr + | fcr |2. The cavity responses associated with the T± states are shifted to

δ′′′
2a ≈ ±

√[
ωp − tlc| flc|2

2

(
1

B2
ext − 4t2

lc

+ 1

(±Bext + Jt2
cr/2n)2 − 4t2

lc

)]2

− 4t2
lc. (C2)

Unlike the transverse magnetic gradient, SOI introduces a small correction to the position of the cavity response associated with
the T0 states,

δ′′′
2b ≈ ±

√(
ωp + tlc| flc|2

B2
ext − 4t2

lc

)2

− 4t2
lc. (C3)

Cavity responses due to additional transitions allowed for by the SOI can be neglected for large magnetic field similar to the
case of the transverse magnetic gradient.
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