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The spin-orbit interaction permits to control the state of a spin qubit via electric fields. For holes it is
particularly strong, allowing for fast all electrical qubit manipulation, and yet an in-depth understanding of
this interaction in hole systems is missing. Here we investigate, experimentally and theoretically, the effect
of the cubic Rashba spin-orbit interaction on the mixing of the spin states by studying singlet-triplet
oscillations in a planar Ge hole double quantum dot. Landau-Zener sweeps at different magnetic field
directions allow us to disentangle the effects of the spin-orbit induced spin-flip term from those caused by
strongly site-dependent and anisotropic quantum dot g tensors. Our work, therefore, provides new insights
into the hole spin-orbit interaction, necessary for optimizing future qubit experiments.
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The spin-orbit interaction (SOI) allows electrical
manipulation of individual spins and has therefore become
a key ingredient for the realization of fully electrically
controlled spin qubits [1,2]. For electrons in Si it is rather
weak and synthetically boosted by means of micromagnets
[3,4]. For holes, on the other hand, it is an intrinsic property
which allows to perform electron dipole spin resonance
(EDSR) measurements [1,2,5–9]. In Ge it is particularly
strong leading to Rabi frequencies beyond 100 MHz
[7,10,11]. SOI for holes can be linear or cubic in the wave
vector k, with nanowire qubits favoring the former type
while planar qubits the latter [12–14]. The SOI is not only
important for single spin but also for singlet-triplet qubits as
it causes an intrinsic mixing between the heavy hole (HH)
and light hole (LH) bands and thereby locally affects the g
factors of the individual spins allowing to drive S − T0

oscillations [15]. In combination with an extrinsic Rashba
type SOI caused by the structural inversion asymmetry
induced by the heterostructure, it also mixes the S and

T− states contributing therefore to a measurable avoided
crossing ΔST−

.
Here, we investigate this avoided crossing for a double

quantum dot (DQD) Ge hole spin system and gain insight
into the interplay between SOI and the g-factor anisotropy
and their consequences on qubit dynamics.
A scanning electron microscope (SEM) image of the

device under consideration is depicted in Fig. 1(a) and
further details can be found in Ref. [15]. A two-dimensional
hole gas is embedded in a Ge=SiGe heterostructure and
additional TiPd top gates confine a DQD and a charge sensor
(CS). For qubit state selective read out we rely on Pauli spin
blockade (PSB) combined with Ohmic reflectometry [16].
Fast detuning pulses are applied to gates LB and RB through
an arbitrary waveform generator (AWG) with a pulse-rise
time of τrise ≈ 2 ns. Throughout this work we apply a small
magnetic field in a plane perpendicular to the axis connect-
ing the two dots (DQD axis), B ¼ ½B cosðθÞ; 0; B sinðθÞ�,
where θ describes the tilt angle from the in-plane direction.
We tune the DQD to a charge transition between an effective
ð2; 0Þ ↔ ð1; 1Þ state, with (nL, nR), where nL (nR) denotes
the effective hole number in the left (right) QD [Fig. 1(c)].
The tunnel coupling between the dots is described by tC
while the energy detuning between the Sð2; 0Þ and Sð1; 1Þ
state is parametrized by ϵ. Each QD is characterized by an
out-of-plane and an in-plane g factor, g⊥ and gk, respectively.
However, the dynamics of singlet-triplet qubits is only
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sensitive to differences in, or the average of, the Zeeman
energies of the dots, and hence we define g� ¼ gL � gR as
the g-factor difference and sum. The energy spectrum of the
system (the complete Hamiltonian Htot is derived in the
Supplemental Material [17] Sec. VI) is depicted in Fig. 1(b)
as a function of ϵ. At ϵ ¼ ϵ� the S and T− states anticross.
We start by mapping out ΔST−

as a function of magnetic
field angle by varying the magnetic field strength B and ϵ
[24]. We initialize the system deep in (2,0) in a singlet state
[point I in Fig. 1(c)], then pulse quickly to (1,1) where the
spins are separated (Sep). Mixing between S and T− is
induced when ϵ ≈ ϵ�. In the end we measure the spin state
inside the PSB triangle (M). The resulting triplet return
probability depends both on the size of the avoided crossing
and the separation time τS. We apply a rapid pulse of
duration τS ¼ 65 ns and varying ϵ [inset of Fig. 1(d)].
Figures 1(d),1(e), and 1(f) depict the phase response of the

charge sensor in the measurement point as a function of ϵ
and B for θ ¼ 90°, 60°, and 10°, respectively. A high phase
signal corresponds to a larger triplet return probability. In
the out-of-plane direction we observe the expected funnel
shape of the S − T− anticrossing [24]. At 60° we similarly
observe a typical funnel shape, however, we notice the line
to be fainter, which indicates a smaller ΔST−

. The picture
drastically changes towards the in-plane direction where
the S − T− avoided crossing develops interference fringes
with a pattern resembling a butterfly; 2 components can be
attributed to S − T− oscillations at low detuning and S − T0

oscillations becoming more prominent at high detuning.
The angular anisotropy of the funnel pattern, further
exemplified in the Supplemental Material [17], Fig. S5,
is the main focus of this work and requires knowledge of
the full Hamiltonian and therefore an understanding of the
interplay between the g-factor anisotropy and the spin-flip
element tSO.
In order to extract the g-factor anisotropy we rely on

singlet-triplet oscillations. After initialization in Sð2; 0Þ,
appropriate pulses to (1,1) induce either S − T0 or S − T−
oscillations. The probability to maintain the initial eigen-
state of the system after a sweep with ramp time τR is given
by the Landau-Zener formula PLZ ¼ exp½−ð2πΔ2

ST−
=ℏvÞ�

[25,26], where ℏ is the reduced Planck constant, v ¼
jdE=dtj ¼ jdJðϵÞ=dϵjϵ¼ϵ� ðΔϵ=τRÞ is the velocity calcu-
lated at ϵ ¼ ϵ� and JðϵÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðϵ2=4Þ þ 2t2C

p
− ðϵ=2Þ is the

exchange energy [Fig. 1(b)] [15]. If v satisfies the diabatic
condition (PLZ ≈ 1) S − T0 oscillations with a frequency
f ¼ ð1=hÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J2 þ ðg−μBBÞ2

p
will be favored. With PLZ < 1

the S − T0 oscillations are suppressed and the qubit is
initialized in a superposition of S and T−. After a time τS
the system is pulsed back to the measurement point where
another nondiabatic passage will cause an interference
between the two states [27]. The accumulated phase
difference is then given by ϕ ¼ 2πfS−T−

τS ≈ ðτS=ℏÞjJ −
1
2
gþμBBj [28] [Fig. 1(b)]. As the oscillation frequency of

the S − T0 (S − T−) qubit depends on g− (gþ) [Fig. 1(b)]
we can extract the individual g factors without the need for
EDSR. We fix the magnetic field at jBj ¼ 2 mT and
observe the oscillations vs τS while rotating B. We use a
fast pulse (τR ¼ τrise ¼ 2 ns) in Fig. 2(a) and a ramped
pulse with ramp time τR ¼ 100 ns in Fig. 2(c). In both
cases we pulse to ϵ ¼ 4 meV for a duration τS. From the
fast Fourier transform (FFT) in Figs. 2(b) and 2(d) we
extract the oscillation frequency fS−T0

(orange dots) and
fS−T−

(pink dots). We notice that for θ ∈ ½−25°;þ25°� in
both FFT plots the S − T− frequency is visible, suggesting
that a large coupling term inducing S − T− oscillations is
present at these magnetic field directions, in line with the
observations in Fig. 1(f). Moreover, in Fig. 2(d) the FFT
power vanishes for θ ≈ 60° indicating that the ramp time τR
induces a completely diabatic passage over the avoided
crossing. This is in line with Fig. 1(e) where we observed a

(a)

(b)

(c) (f)

(e)

(d)

FIG. 1. (a) SEM image of the device. (b) The energy level
diagram as a function of detuning highlights the relevant energy
splittings between S and T0 (orange) and S and T− (pink). At
ϵ ¼ ϵ�, S and T− anticross with a splitting 2ΔST−

. Initialization (I)
in a singlet Sð2; 0Þ occurs at negative ϵ. The spins are separated
(Sep) at positive ϵ. Spin-selective read out happens at the
measurement point (M, white dot). (c) Stability diagram of the
transition of interest. The effective hole number is reported as
“(nL, nR).” The detuning axis as well as I, M, and Sep are
highlighted. The dashed triangle marks the PSB region. (d)–(f)
Reflection phase versus ϵ and magnetic field for θ ¼ 90°, 60°, and
10°, respectively. A high signal corresponds to a larger triplet
return probability. The lower inset in (d) displays the pulse
sequence where only the pulse amplitude ϵ is varied.
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sharper S − T− avoided-crossing characteristic of a smaller
mixing term.
The lines arising in the FFT plots can be fit by the energy

splitting between the three lowest lying states of the system
depicted in Fig. 2(e) with gþ⊥ ¼ 12.00, g−⊥ ¼ 2.04,
gþk ¼ 0.10, g−k ¼ 0.43, and tC ¼ 11.38 μeV. The latter is

extracted from exchange oscillation measurements (see
Supplemental Material [17] Fig. S2).
Interestingly jg−k j > jgþk j while jg−⊥j < jgþ⊥j. This means

that the g factors in the out-of-plane direction have the same

sign while they exhibit opposite signs in the in-plane
direction. To understand this observation we investigate
the effect of the dot geometry on the g factors. As is shown
in Supplemental Material [17] Sec. VIII by using the
semimicroscopic Luttinger-Kohn Hamiltonian as a starting
point, the effects of the intrinsic HH-LH mixing and an
elliptical confinement potential can combine to yield
g-factor renormalizations. While the correction to the
out-of-plane g factor is jδg⊥j < 10−2 for the values con-
sidered and hence negligible, the in-plane g factor can be
altered considerably,

gk ¼ g0k − ξ1
ℏðωx − ωyÞ

ℏðωx þ ωyÞ − ξ2Δ
: ð1Þ

Here, ξ1 ≈ 20.3 and ξ2 ≈ 6.0 are material specific constants,
Δ is the HH-LH splitting, ℏωx;y are the in-plane confine-
ment energies, and g0k ¼ 0.2 for Ge [30]. It can be seen from

Fig. 2(f) that the in-plane g-factor corrections can be
negative in one dot but not in the other for opposite
elliptical confinement.
Electrostatic simulations of the DQD potentials arising

from the applied gate voltages [29], not accounting for
random disorder potentials, confirm the differently shaped
dots. In fact, both dots appear elongated with the major axis of
the dots being almost perpendicular to each other [Fig. 2(g)
shows the calculated hole density nh and Supplemental
Material [17] Sec. IX gives details about the simulation].
We now turn to extract tSO by analyzing ΔST−

in more
detail. We perform Landau-Zener sweeps at jBj ¼ 20 mT
and extract ΔST−

from PLZ [Fig. 3(b)] and repeat this for
different θ. We vary τR during the first passage over the
avoided crossing, creating a superposition of S and T−, and
keep the return sweep diabatic in order to maintain this
superposition [Fig. 3(a) and inset of Fig. 3(b)]. The
extracted ΔST−

is reported for different θ in Fig. 3(c). In
general, ΔST−

may depend on effects influencing the hole
spins such as the g-factor differences in the two dots, the
SOI and possible effective magnetic field gradients caused
by the hyperfine interaction [31]. While the hyperfine
interaction can result in a strong out-of-plane hyperfine
component δbZ for HH states due to a special Ising-type
form [32], the inhomogeneous dephasing times extracted
for B⊥ of ≈700 ns at 1 mT in Ref. [15] give an upper limit
for the hyperfine component δbZ < 2 neV, suggesting that
the effects of the nuclear spin bath may safely be neglected.
In planar HH DQD systems the SOI can be parametrized

by a real in-plane spin-orbit vector tSO ¼ ðtx; ty; 0Þ. Such
in-plane spin-flip tunneling terms stem from the cubic
Rashba SOI [33], while this type of SOI does not induce
out-of-plane terms tz. In a basis in which the total
Hamiltonian is diagonal in the absence of the SOI and
g-factor differences, the S − T− splitting has the form [34]

(a) (b)

(c)

(e)

(g)

(d)

(f)

FIG. 2. (a) and (c) Oscillation amplitude of the singlet state in
the measurement point as a function of separation time and
magnetic field angle at B ¼ 2 mT for τR ¼ 2 and τR ¼ 100 ns,
respectively. (b) and (d) FFT of (a) and (c) revealing the
oscillation frequency anisotropy. The orange and pink dotted
lines are fit to our model. We find a small offset of 100 μT in the
perpendicular field which leads to a small asymmetry in the FFT
plots. The insets show the pulse shape where the system is swept
to ϵ ¼ 4 meV. (e) The energy dispersion of the eigenstates ofHtot
at ϵ ¼ 4 meV as a function of θ reproduce the frequencies seen in
(b),(d) with the orange (pink) arrow highlighting the visible
transition. (f) Effect of the confinement on the in-plane g factors
for a quantum well width of 20 nm according to Eq. (1). On top,
we schematically show possible dot geometries in real space. (g)
DQD potential obtained with an electrostatic simulation analo-
gous to that presented in Ref. [29]. Using the gate voltages from
the experiment we can infer the approximate dot shapes which
shows an almost opposite elongation for the two QDs. The color
scale represents the hole density (nh).
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ΔST−
¼

����ΔSO sin

�
Ω
2

�
þ ΔEZ cos

�
Ω
2

�����; ð2Þ

where the spin-orbit splitting ΔSO and the Zeeman splitting
ΔEZ due to anisotropic site-dependent g tensors read

ΔSO ¼ ty þ itx
gþ⊥ sin θffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðgþk cos θÞ2 þ ðgþ⊥ sin θÞ2
q ; ð3Þ

ΔEZ ¼ μBB

4
ffiffiffi
2

p
ðg−k gþ⊥ − gþk g

−⊥Þ sinð2θÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðgþk cos θÞ2 þ ðgþ⊥ sin θÞ2

q ; ð4Þ

and Ω ¼ arctanð2 ffiffiffi
2

p
tC=ϵ�Þ is the mixing angle at the

anticrossing. The analytical result (2) agrees well with
the numerical results obtained by exact diagonalization of
the system Hamiltonian for all θ except in a narrow region
around θ ¼ 0 [jθj≲ 2°, inset of Fig. 3(c)]. We attribute
these deviations to the small in-plane Zeeman energies
which violate the assumption of an isolated two-level
system made when deriving (2) (see Supplemental
Material [17] Sec. VI). Because of the opposite sign
g-factor corrections in the dots the Zeeman splitting

ΔEZ can be the dominant contribution to ΔST−
, exceeding

the spin-orbit splitting by one order of magnitude at small
angles. Even when the magnetic field has a large out-of-
plane component, the effect of different g factors can
contribute crucially to ΔST−

[Fig. 3(d)].
The extracted ΔST−

in Fig. 3(c) can be fit by the model
with tx and ty as free parameters and tC, g

þ⊥, g−⊥, gþk , g−k
extracted from previous measurements. Between −25° and
25° the splitting seems to drop to zero as the Landau-Zener
assumptions of diabatic return sweeps are not met and an
extraction of ΔST−

is not accurate. The black dashed line
corresponds to the maximum ΔST−

that allows a diabatic
passage with a rise time of 2 ns of our pulses
(PLZ;max ¼ 0.99 ¼ exp½−ð2πΔ2

ST;max=ℏvÞ�). The model fits
the dark blue data points with tx ¼ 129.0� 18.0 and
ty ¼ −369.8� 13.8 neV, yielding the total spin-flip tun-

neling element tSO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2x þ t2y

q
¼ 392.0 neV.

Having characterized all the elements in the Hamiltonian
from independent measurements we can now reproduce the
funnel measurements in Fig. 1 (Fig. 4). In particular the
sharper line at θ ¼ 60° [Fig. 4(b)] as well as the S − T−
oscillations for θ ¼ 10° [Fig. 4(c)] reflect what we observe
in the data. Even with tSO ¼ 0 the in-plane g-factor
difference induces S − T− oscillations [Fig. 4(d)] further
confirming its dominant role in determining the size
of ΔST−

.
In conclusion, we have demonstrated that the g-tensor

anisotropy and, in particular, the in-plane g-factor

(a)

(b)

(c)

(d)

FIG. 3. (a) Energy level diagram of the states involved in the
passage over the avoided crossing [red circle in 1(b)]. The
probability PS to maintain a singlet after a single passage over
the avoided crossing is given by the Landau-Zener formula.
(b) The single LZ passage pulse sequence (inset) leads to a singlet
return probability PS that decays exponentially with the ramp
time τR. A fit to the Landau-Zener transition formula (black
dashed line) allows to extract ΔST−

. (c) ΔST−
as a function of

magnetic field angle. The extracted ΔST−
is fit to Eq. (2) with tx

and ty as fitting parameters (solid blue line). The black dashed
line represents the maximum ΔST−

as a function of θ that can be
reliably measured by a single LZ passage. The light colored data
points are, therefore, excluded from the fit. (inset) Comparison
between the analytical result [solid line, Eq. (2)] and numerical
simulation (squares) for ΔST− around θ ¼ 0. Here, the analytical
expression fails due to the small in-plane Zeeman energies.
(d) Comparison between the two contributions to ΔST−

.

(a) (b)

(c) (d)

FIG. 4. Simulations of the funnel plots with the master equation
approach using qutip. (a)–(c) Funnel for θ ¼ 90°, 60°, and 10°,
respectively, showing the S − T− avoided crossing as an in-
creased triplet return probability. The simulations take the model
Hamiltonian with the experimentally extracted parameters as
input and perform the time-evolution calculation returning the
combined triplet return probability (PTþ þ PT−

þ PT0
). The

simulations reproduce the experimental data observed in Fig. 1.
(d) A simulation with tSO ¼ 0 but with all the other values of the
model as in (c) again reveals the butterfly shape of the S − T−
avoided crossing.
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difference can lead to a considerable contribution toΔST−
in

the in-plane direction. However, Landau-Zener sweeps and
singlet-triplet oscillations measured in different magnetic
field directions allowed us to distinguish the Zeeman
induced coupling from the spin-orbit induced coupling
and, thereby, infer the magnitude and orientation of tSO. We
reconstructed the experimental data in our simulations
confirming the validity of our theoretical model. This
understanding of the interplay between tSO and the in
plane g-factor difference opens the possibility to operate
hole singlet-triplet qubits at sweet spots, for example with
orthogonal axis [34]. Our work, therefore, provides impor-
tant insight into the spin-orbit interaction of hole spin
double quantum dot devices and lays the foundation for the
design of future hole spin qubit experiments.
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