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Transmission-based noise spectroscopy for quadratic qubit-resonator interactions
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We develop a theory describing the transient transmission through noisy qubit-resonator systems with
quadratic interactions as are found in superconducting and nanomechanical resonators coupled to solid-state
qubits. After generalizing the quantum Langevin equations to arbitrary qubit-resonator couplings, we show that
only the cases of linear and quadratic couplings allow for an analytical treatment within standard input-output
theory. Focussing on quadratic couplings and allowing for arbitrary initial qubit coherences, it is shown that noise
characteristics can be extracted from input-output measurements by recording both the averaged fluctuations
in the transmission probability and the averaged phase. Our results represent an extension to the field of
transmission-based noise spectroscopy with immediate practical applications.
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I. INTRODUCTION

We live in the age of noisy intermediate-scale quantum
devices in which noise severely affects the coherence of qubits
and thereby the performance of quantum computers [1]. The
noise can have several origins, but may roughly be categorized
according to whether it arises as a consequence of imperfect
system control or unwanted interactions with the environment.
For instance, random electromagnetic fields due to fluctuating
control gate voltages belong to the first class [2], while noise
arising from various two-level fluctuators in the host material
[3], the interaction with the nuclear spin bath in semicon-
ductor quantum dots [4–6], as well as magnetic flux noise
and quasiparticles in superconducting circuits [7–10] can be
assigned to the second class.

Common to all types of noise is their detrimental effect
on the coherence of engineered quantum systems. To miti-
gate noise-induced decoherence one requires knowledge of
the spectral form of the fluctuations, which is encoded in
the frequency-dependent noise power spectral density S(ω)
[11,12]. Experiments assessing the effect of charge noise on a
semiconductor double quantum dot by examining the long-
time resonator transmission were already performed [13],
and recently spectroscopy methods for classical and quantum
noise based on measurements of the transient transmission
through a linearly coupled qubit-resonator system were de-
veloped [14,15]. Linear light-matter interactions involving
the exchange of one photon are relevant in many fundamen-
tally and technologically relevant systems, such as atoms in
a cavity [16,17] as well as charge qubits coupled to super-
conducting transmission lines [18,19]. Additionally, linear
spin-photon couplings are made possible by the spin-orbit
interaction [20–24] or the use of micromagnets [25,26].

Quadratic qubit-resonator couplings also allow for input-
output measurements and are found in diverse physical
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systems. For instance, nanomechanical and optomechanical
resonators have been shown to couple to superconducting
and spin qubits, and the characteristic feature is the quadratic
qubit-resonator interaction including two-photon processes
[27–31]. Quadratic qubit-resonator interactions can also be
engineered in superconducting circuits [32,33] and the ability
of quadratic couplings to produce Schrödinger-cat-like states
lends itself to the stabilization and control of Kerr-cat qubits
[34–36]. Other studies of such systems investigated ther-
mal transport [37] and input-output theoretical transmission
features in the noise-free steady-state case [38]. If one is inter-
ested in transmission-based noise spectroscopy, it is desirable
to have detailed knowledge about the input-output behavior of
both the linear and quadratic cases as the coupling of a given
type of qubit to resonator modes may more easily be realized
in one system or the other. In this paper we generalize the
results in Ref. [14] to also include quadratic qubit-resonator
interactions and show that noise characteristics can be inferred
by measuring both the averaged fluctuations in the transmis-
sion probability and the averaged phase. Moreover, as another
extension of earlier results we allow for a general form of the
initial qubit coherence.

The remainder of this paper is structured as follows. In
Sec. II we consider a general n-photon-qubit interaction and
derive the Langevin equations for this case. We then show
that within standard input-output theory only the cases n = 1
and n = 2 allow for an analytical solution to lowest order in
perturbation theory. Specializing in these cases we calculate
the averaged transmission probability and phase in Sec. III,
and propose a scheme for extracting noise characteristics in
Sec. IV. Finally, Sec. V provides a conclusion.

II. GENERAL MODEL AND LANGEVIN EQUATIONS

We consider a resonator mode of frequency ωr that couples
to a qubit with fluctuating energy separation ωq + δωq(t ), see
Fig. 1 (bottom). The noise δX affecting the control param-
eter X is related to the fluctuating energy separation by the
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FIG. 1. Potential systems for transmission-based noise spec-
troscopy. A two-level system (qubit, blue dot) is affected by noise
leading to fluctuations δωq in the energy splitting ωq between qubit
states |0〉 and |1〉. The interaction with a single resonator mode is
described by the Hamiltonian HI containing the qubit and resonator
operators σ± and a. We schematically show an optical resonator
with linear qubit-mode couplings on the left and a nanomechanical
resonator with quadratic qubit-mode couplings on the right. Both
types of interactions allow for the characterization of noise fea-
tures by studying the transmission A = 〈bout〉/〈bin〉 through the noisy
qubit-resonator system. The bottom schematic introduces the photon
loss rate κ j at the resonator port j, the qubit decay rate γ , and the
qubit-resonator coupling strength g.

first-order expansion δωq = λδX with the noise sensitivity
λ = ∂X ωq|δX=0. The noise is assumed to be classical as the
resulting symmetric spectrum will be needed in our deriva-
tions later on. The number n of photons taking part in the
interaction is left unspecified for now and we assume a general
qubit-resonator Hamiltonian of the form

Hqr = ωq + δωq(t )

2
σz + ωra†a + g(a + a†)nσx, (1)

where σx,z are Pauli matrices in the basis of the logi-
cal qubit states {|0〉, |1〉} and a is the mode annihilation
operator. In the rotating frame defined by the transforma-
tion Hqr → UHqrU † + iU̇U † with the time-dependent unitary
U = exp(i	t[a†a/n + σz/2]) and within the rotating wave
approximation, the system is described by the Hamiltonian

Hqr = 
q + δωq(t )

2
σz + 
(n)

r a†a + g[anσ+ + a†nσ−], (2)

where σ± are the qubit ladder operators and the quantities

q = ωq − 	 and 
(n)

r = ωr − 	/n are the shifted qubit and
resonator frequencies.

In addition, external bath modes b interact with the res-
onator and the coupling is assumed to be linear. We take into

account the effects of the corresponding input field 〈bin(t )〉 by
including the injection Hamiltonian in the rotating frame

Hin = i
√

κ1(〈bin(t )〉ei	t/na† − H.c.). (3)

The input field 〈bin(t )〉 may be used to probe the system, and
it is assumed to be a classical wave of real amplitude 〈bin〉 and
frequency ωp, 〈bin(t )〉 = 〈bin〉e−iωpt . In the following we work
in the frame defined by U as above with 	 = nωp such that
the injection Hamiltonian (3) is constant in time. One then has

q ≡ 
(n)

q = ωq − nωp and 
(n)
r ≡ 
r = ωr − ωp.

Furthermore, taking into account noise-independent qubit
relaxation, absorption, and dephasing at finite temperature
as well as photon losses, the system may be described by a
Lindblad master equation in the rotating frame

ρ̇ = − i[Hqr + Hin, ρ] + L[ρ],

L[ρ] = γ1

2

∑
±

1 ± 1 + 2nB

2
(2σ∓ρσ± − {ρ, σ±σ∓})

+ γϕ

2
(σzρσz − ρ) + κ

2
(2aρa† − {ρ, a†a}), (4)

where γ1 is the relaxation rate at zero Kelvin, γϕ is the
dephasing rate, and nB = [exp(ωq/T ) − 1]−1 is the Bose dis-
tribution, i.e., the mean number of bath photons at temperature
T , evaluated at the qubit frequency where the resonant energy
exchange is possible. Additionally, we introduced the total
photon loss rate κ = ∑

j κ j + κint as the sum of the individual
loss rates at port j ∈ {1, 2} and the internal loss rate κint.

By using the relation 〈Ȯ〉 = Tr(ρ̇O) for a given operator
O and Eq. (4), we obtain the partial system of Langevin
equations to leading order in g,

˙〈a〉 = −
[

i
r + κ

2

]
〈a〉 − ign〈σ−〉〈an−1〉∗ + √

κ1〈bin〉,
˙〈σz〉 = −γ1(T )〈σz〉 − γ1(0) + 2ig(〈an〉〈σ−〉∗ − c.c.),

˙〈σ−〉 = −[
i
(n)

q + iλδX (t ) + γ2
]〈σ−〉 + ig〈σz〉〈an〉, (5)

where γ1(T ) = γ1 coth(ωq/2T ), γ2 = γ1(T )/2 + γϕ , the star
denotes complex conjugation, and we have used the relation
〈QR〉 = 〈Q〉〈R〉 + O(g) that is valid for all qubit (Q) and
resonator (R) operators under the assumption of an initially
separable state. In the following we define γ = 2γ2 such that
the homogeneous parts of the Langevin equations for 〈σ−〉
and 〈a〉 have the same form, allowing us to obtain cleaner
mathematical expressions later on.

A. Analytical approach

The system of Langevin equations (5) is not closed be-
cause, in general, 〈an〉 
= 〈a〉n, and even if the relation was
true, an exact solution in the presence of arbitrary time-
dependent qubit noise could not be obtained. However, we
may formally solve the equation for 〈σ−〉 without any assump-
tions on the noise δX (t ),

〈σ−(t )〉 = 〈σ 0
−〉e−i
(n)

q t−γ t/2e−iλX (t ) + ig
∫ t

0
〈σz(t ′)〉〈an(t ′)〉e(i
(n)

q +γ /2)(t ′−t )eiλ[X (t ′ )−X (t )]dt ′, (6)

052603-2



TRANSMISSION-BASED NOISE SPECTROSCOPY FOR … PHYSICAL REVIEW A 107, 052603 (2023)

with the integrated noise X (t ) = ∫ t
0 δX (t ′)dt ′ and the initial qubit coherence 〈σ 0

−〉, and subsequently insert the result into the
equation for 〈a〉. By again formally solving the resulting differential equation, we find an integral equation for the expectation
value of the mode annihilation operator

〈a(t )〉 =
√

κ1〈bin〉
i
r + κ/2

(1 − e−i
r t−κt/2) − ing〈σ 0
−〉e−i
r t−κt/2

∫ t

0
dt ′〈an−1(t ′)〉∗ei(
r−
(n)

q )t ′+(κ−γ )t ′/2e−iλX (t ′ )

+ ng2e−i
r t−κt/2
∫ t

0
dt ′〈an−1(t ′)〉∗ei(
r−
(n)

q )t ′+(κ−γ )t ′/2e−iλX (t ′ )
∫ t ′

0
dt ′′〈σz(t ′′)〉〈an(t ′′)〉ei
(n)

q t ′′+γ t ′′/2e−iλX (t ′′ ), (7)

where we assume 〈a0〉 = 0, e.g., the resonator may initially
be in an eigenstate of the mode number operator a†a or in any
thermal equilibrium state. We first remark that if we wish to
work to leading order in g, we may neglect the second integral
in Eq. (7), and hence the time-dependent populations 〈σz(t )〉
do not play a role. Second, if n � 2, then the 〈an−1〉 term in
the remaining integral is equal to unity (n = 1) or 〈a〉 (n = 2)
and the equation can be solved to first order in perturbation
theory by substituting the zeroth-order value of 〈a〉 into the
first integral. Otherwise, the fact that, in general, 〈an−1〉 
=
〈a〉n−1 forces us to obtain an additional equation of motion
for 〈an−1〉 which cannot be treated in a simple input-output
model without further assumptions due to additional terms of
the form

∫ 〈b(ω)an−2〉dω which feature the bath modes b(ω)
but cannot be related to the input fields. In the long-time limit
the term linear in g vanishes and the long-time transmission
is determined by the g2 term. Since this term features the
quantity 〈an〉, the long-time solution can only be obtained for
n = 1 due to the same arguments made above. A comprehen-
sive study of the long-time transmission for linearly coupled
systems may be found in Ref. [39]. Since the coupling of
the resonator to the external bath modes is assumed to be
linear, the standard input-output relation for the transmission
amplitude A applies [40–42]

A(t ) = 〈bout(t )〉
〈bin(t )〉 = −

√
κ2〈a(t )〉
〈bin(t )〉 . (8)

As a consequence, the transmission amplitude can be obtained
by solving Eq. (7) for 〈a(t )〉.

B. Numerical study

To validate the truncation of the quantum Langevin equa-
tions (5) and the solution for the transmission at first order
in the qubit-photon coupling g, we numerically solve the
full Lindblad equation (4) and compare the results to our
approximate analytical expressions in Figs. 2 and 3. We allow
for up to 12 photons and assume an initially empty res-
onator containing a qubit in a coherent superposition |ψ〉 =
(eiπ/8 |↑〉 + e−iπ/8 |↓〉)/

√
2 such that the initial conditions

〈a0〉 = 0, Re〈σ 0
−〉 = Im〈σ 0

−〉 = 1/
√

8 and 〈σ 0
z 〉 = 0 are satis-

fied. The transmission amplitude is then calculated according
to Eq. (8) as A = −√

κ2Tr(ρa)/〈bin〉, and the averaged trans-
mission and phase are obtained by averaging the solution over
103 distinct noise configurations. We generally find excellent
agreement in the regime considered, underlining the high ac-
curacy of our analytical results.

III. OBSERVABLE FIGURES OF MERIT

We now focus on the cases n � 2 that can be treated per-
turbatively. The case n = 1 was studied in Ref. [14], and we
include it here to be able to make contact to these previous
considerations. In addition, we complement earlier results
by including the averaged phase 〈〈φ〉〉 as an observable fig-
ure of merit and allowing for arbitrary complex initial qubit
coherences 〈σ 0

−〉. The case n = 2 constitutes an alternative
contribution to the theory of transmission-based noise spec-
troscopy and it is of immediate interest for nanomechanical
and superconducting resonators coupled to solid-state qubits.

The complex transmission amplitude can be written as

A = |A|eiφ, (9)

FIG. 2. The normalized fluctuations in the averaged transmission
probability δ〈〈|An|2〉〉/|A∞|2 for quadratic qubit-resonator couplings
(n = 2) as a function of time t with δ

(n)
0 = 
r − 
(n)

q . Black solid
lines are drawn according to Eq. (13) with the averaged noise inte-
gral for quasistatic noise [Eq. (24)] with root-mean-square δXrms =
0.05δ

(n)
0 , while the numerical data points (black squares) are ob-

tained as described in Sec. II B. We also show the noise-free case
(green dashed lines) for comparison. The parameter values are set
to ng = 0.002δ

(n)
0 , κ = 0.1δ

(n)
0 , κ1 = κ2 = κ/2, κint = 0, γ1 = γϕ =

0.025δ
(n)
0 , T = δ

(n)
0 , λ = 0.9, and the resonator-probe detunings are

chosen as indicated in the figure.
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FIG. 3. The transient averaged phase 〈〈φn〉〉 as a function of the
measurement time t with δ

(n)
0 = 
r − 
(n)

q , plotted for quasistatic
noise at 
r = 0 for the cases of linear qubit-resonator couplings (n =
1, top) and quadratic qubit-resonator couplings (n = 2, bottom). The
solid lines are drawn according to the approximate analytical result
(18), while the numerical data are obtained as described in Sec. II B
using the exact expression (17). For the case n = 1 we show the
averaged phase for several values of the input field 〈bin〉/√κ =
(0.5, 0.7, 1) as (light blue, medium blue, dark blue) solid lines and
(square, triangle, circle) symbols. For the case n = 2 we also show
the noise-free case (green dashed line) for comparison. We set κ =
δ

(n)
0 and the remaining parameter values are chosen as in Fig. 2(a).

where both the transmission |A| and the phase φ are experi-
mentally observable and thus allow for a noise average 〈〈. . . 〉〉
over many measurements. Solving Eq. (7) to first order in
the small parameter ε(n) ≡ ng/max{|δ(n)

0 | ≡ |
r − 
(n)
q |, |κ −

γ |}, we find according to Eq. (8),

An(t )

A∞
= 1 − e−i
r t−κt/2

×
[

1 + ign〈σ 0
−〉κ/2 + i
r

κ/2 − i
r

(
κ/2 − i
r√

κ1〈bin〉
)2−n

In(t )

]
,

(10)

with the zeroth-order long-time transmission amplitude A∞ =
−√

κ1κ2/(i
r + κ/2) and the noise integrals

In(t ) =
∫ t

0
ei(ωr−ωq )t ′+(κ−γ )t ′/2

× (eiωpt ′ − eiωr t ′−κt ′/2)n−1e−iλX (t ′ )dt ′. (11)

Interestingly, the corrections to the empty resonator trans-
mission come with a factor 〈bin〉n−2 and hence the transient
transmission for linear interactions depends on the input field
while for quadratic interactions it does not, a characteristic
feature of this type of qubit-resonator coupling. This can be
seen to lead to a metrological advantage of noise spectroscopy
using quadratic couplings as the relevant observable quantities
are insensitive to fluctuations in the input field. To extract
noise characteristics, we now proceed to study the averaged
transient transmission and phase.

A. Transmission

Taking the absolute value of Eq. (10) and averaging over
distinct noise configurations yields

〈〈|An|〉〉 = |A∞|√ξ0 + ξ1,n, (12)

where |A∞| = √
κ1κ2/(
2

r + κ2/4) is the long-time empty
cavity transmission

ξ0(t ) = 1 + e−κt − 2e−κt/2 cos(
rt ),

ξ1,n(t ) = 2nge−κt/2

(√

2

r + κ2/4√
κ1〈bin〉

)2−n

× (Yn(t )[Re〈σ 0
−〉Re〈〈In〉〉 − Im〈σ 0

−〉Im〈〈In〉〉]
+ Zn(t )[Im〈σ 0

−〉Re〈〈In〉〉 + Re〈σ 0
−〉Im〈〈In〉〉]), (13)

and we introduce the functions

Yn(t ) = sin(nζ − 
rt ) − e−κt/2 sin(nζ ),

Zn(t ) = cos(nζ − 
rt ) − e−κt/2 cos(nζ ), (14)

with ζ = arctan(2
r/κ ). In obtaining Eq. (12) we use the
fact that the variance of |A| is nonzero only at quadratic
order in ε(n) or higher [14]. The averaged noise integrals
(ANIs) 〈〈In〉〉 are as given in Eq. (11) but with the factor
exp[−iλX (t ′)] in the integral replaced by the averaged ran-
dom phase 〈〈exp[−iλX (t ′)]〉〉. We may rewrite Eq. (12) in
terms of the normalized fluctuations of the averaged transmis-
sion probability

δ〈〈|An|2〉〉
|A∞|2 = 〈〈|An|2〉〉 − ξ0|A∞|2

|A∞|2 = ξ1,n. (15)

The effect of the noise on the averaged transmission can be
assessed in a clear and disentangled fashion by using Eq. (15)
as can be seen from Fig. 2. The signal oscillates in time in the
transient phase and then decays on a time scale determined by
κ , γ , and the noise δX .

Often the resonator is probed on resonance 
r = 0 since
we may expect the most pronounced response at this point in
experiments. In this case, we find

δ〈〈|An|2〉〉
|A∞|2 = 2ng

(
κ

2
√

κ1〈bin〉
)2−n

e−κt/2(1 − e−κt/2)

× [Im〈σ 0
−〉Re〈〈In〉〉 + Re〈σ 0

−〉Im〈〈In〉〉], (16)

where |A∞| = 1 for symmetric mirrors. The transient signal
for the resonant case is shown in Fig. 2(a).

B. Phase

We now turn to the averaged phase of the transmission
signal. We have

〈〈φn〉〉 =
〈〈

arctan

(
Im(An)

Re(An)

)〉〉
, (17)

where the general expressions for the real and imaginary
parts of the transmission amplitude to leading order in g are
straightforward to calculate from Eq. (10) but lengthy, so we
display them in the Appendix. In the above form the noise
average of the phase cannot be performed analytically due to
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the arctan function. However, when the resonator is driven
on resonance 
r = 0, the dominant term in the expansion
of Im(An) in orders of ε(n) vanishes, while it is nonzero in
the expansion of Re(An), and we have |Im(An)| � |Re(An)|
for g � κ . In this case, we may keep only the leading-order
term in the Taylor expansion of the arctan function, whereby
it becomes possible to average the phase analytically

〈〈φn〉〉 ≈ ng

1 − eκt/2

(
κ

2
√

κ1〈bin〉
)2−n

× [Re〈σ 0
−〉Re〈〈In〉〉 − Im〈σ 0

−〉Im〈〈In〉〉]. (18)

As was the case for the corrections to the empty resonator
transmission probability, the phase is also inversely pro-
portional to the input field 〈bin〉 for linear couplings, but
independent of the input field for quadratic couplings. To
underline the validity of the approximation made when de-
riving (18), we show a comparison between numerical and
analytical results for the transient averaged phase in Fig. 3. We
find excellent agreement, suggesting that the averaged phase
measured at the resonance 
r = 0 can be used to infer noise
characteristics according to Eq. (18). As for the case of the
averaged transmission probability, the averaged phase signal
oscillates in time in the transient phase and then decays to
zero. The long-time value is determined by higher-order terms
in g.

IV. NOISE SPECTROSCOPY

The aim of noise spectroscopy is the determination of
spectral features of the fluctuations affecting the system under
consideration [43]. In this section we show that information
on the noise power spectral density S(ω) of the qubit noise
can be obtained from the averaged transmission and phase by
extracting the ANI and investigating its properties.

A. Extracting the averaged noise integral

Having obtained expressions for the averaged transmission
and averaged phase, we now turn to investigate how noise
features can be extracted from the measurement of these quan-
tities. For n = 1, the extraction of the ANI and the extraction
of noise features from the ANI was detailed in Ref. [14]. The
first relies on the fact that the ANI does not depend on the
probe frequency ωp, allowing for an extraction scheme based
on measurements of the transmission at two distinct resonator-
probe detunings. For n = 2, however, the noise integral I2

does depend on ωp, and hence it is impossible to extract it by
recording the transmission at two distinct values of the probe
frequency. However, if in addition the phase is measured, it is
possible to obtain the ANI for both n = 1 and n = 2. Since
we aim to use the analytical result for the averaged phase in
Eq. (18), we work in the resonant regime where 
r is fixed to
zero. We may then infer the following set of equations from
Eqs. (12) and (18):

Im〈σ 0
−〉Re〈〈In〉〉 + Re〈σ 0

−〉Im〈〈In〉〉 = ϒ|A|,

Re〈σ 0
−〉Re〈〈In〉〉 − Im〈σ 0

−〉Im〈〈In〉〉 = ϒφ, (19)

where the functions on the right-hand side are obtained from
the averaged transmission and phase

ϒ|A| = 〈〈|An|〉〉2/|A∞|2 − (1 − e−κt/2)2

2nge−κt/2(1 − e−κt/2)

(
κ

2
√

κ1〈bin〉
)n−2

,

ϒφ = 〈〈φn〉〉1 − eκt/2

ng

(
κ

2
√

κ1〈bin〉
)n−2

. (20)

The inhomogeneous linear system of Eqs. (19) can be
uniquely solved for the real and imaginary parts of 〈〈In〉〉 if

det

(
Im〈σ 0

−〉 Re〈σ 0
−〉

Re〈σ 0
−〉 −Im〈σ 0

−〉

)
= −|〈σ 0

−〉|2 
= 0. (21)

Hence, the qubit must be initialized in a coherent superpo-
sition to permit the extraction of the ANI from transmission
measurements. This condition, however, is not restrictive as it
is required to be fulfilled for the noisy part of the transmission
signal to be nonvanishing in the transient phase in the first
place [see Eq. (10)] and hence does not introduce additional
constraints.

B. Common types of noise

Since we show that the ANI can be extracted from trans-
mission measurements even for quadratic qubit-resonator
interactions, it is possible to extract noise features by com-
paring the measured data to our theory. For this purpose,
we now aim to obtain analytical expressions for the ANI for
the case n = 2. To proceed, we assume zero-mean noise and
express the factor 〈〈exp[−iλX (t ′)]〉〉 that appears in the ANI
in the Gaussian approximation using the noise power spectral
density S(ω) [44]. We may then evaluate the ANI for three
noise types that are common in engineered quantum systems:
white noise, quasistatic noise, and low-frequency noise.

White noise is characterized by a constant noise amplitude
S(ω) = S0 and the corresponding ANI takes the form

〈〈I2〉〉 =
2∑

j=1

(−1) j ec jt−λ2S0t/2 − 1

c j − λ2S0/2
, (22)

where we introduce the shorthand notation

c1 = i(2ωr − ωq) − γ

2
, c2 = i(ωr − ωq + ωp) + κ − γ

2
.

(23)

Fluctuations are quasistatic if they are constant during a
given measurement but change between two measurements.
In this case, the spectral density may be written as S(ω) =
2πδX 2

rmsδ(ω), where δXrms =
√

〈〈δX 2〉〉 is the root-mean-
square of the noise and δ(ω) is the Dirac delta distribution,
and we find

〈〈I2〉〉 =
2∑

j=1

(−1) jeC2
j

λδXrms

[
E (Cj ) + E

(
λδXrms√

2
t − Cj

)]
, (24)

where Cj = c j/(
√

2λδXrms) and E (z) = √
π/2 erf(z) with er-

ror function erf(z). Finally, we may consider low-frequency
noise such as 1/ f noise in a frequency band [ωir, ωuv]. If large
frequencies are sufficiently strongly suppressed such that the
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ultraviolet cutoff frequency ωuv satisfies ωuvt � 1 in the tran-
sient phase, the ANI is in good approximation described by
the same functional form as in Eq. (24) with the substitution
δXrms → √

P/π , where P = ∫
S(ω)dω is the noise power in

the frequency band under consideration. The information on
the noise attainable by fitting the experimental data to the
above expressions hence includes the noise amplitude S0 for
white noise, the root mean square of the noise δXrms for qua-
sistatic noise and the noise power P for low-frequency noise.
While useful when investigating common material platforms,
the approach requires a priori knowledge on the type of noise.
We now proceed to introduce a formalism that allows the
extraction of noise features in terms of the power spectral
density S(ω) without the need to make any assumptions on
the form of the noise.

C. Relating the noise integrals

In a final step, we wish to relate the n = 1 and n = 2
ANIs since we already know how to extract S from 〈〈I1〉〉
via the convolution theorem from the discussion in Ref. [14].
Comparing the expressions for I1 and I2 in Eq. (11), we
straightforwardly find the relation

I2(t ) =
∫ t

0
(eiωpt ′ − eiωr t ′−κt ′/2)İ1(t ′)dt ′, (25)

where İ1(t ′) = ∂tI1(t )|t=t ′ . Equation (25) can be inverted, and
after averaging over the noise configurations, we find

〈〈I1(t )〉〉 =
∫ t

0

〈〈İ2(t ′)〉〉
eiωpt ′ − eiωr t ′−κt ′/2

dt ′ = 〈〈I2(t )〉〉
eiωpt − eiωr t−κt/2

+
∫ t

0
〈〈I2(t ′)〉〉 iωpeiωpt ′ − [

iωr − κ
2

]
eiωr t ′−κt ′/2

[eiωpt ′ − eiωr t ′−κt ′/2]2
dt ′,

(26)

where the second equality is obtained by partial integration.
After converting the ANI 〈〈I2(t )〉〉 to 〈〈I1(t )〉〉 via Eq. (26), we
may follow the approach outlined in Ref. [14] to obtain noise
characteristics from the ANI in the linearly coupled case, and
we describe this approach in the following to make the present
manuscript more self-contained.

Due to the symmetry of S(ω) = S(−ω) for classical noise,
we may write for the curvature of the ANI in the regime κt ∼
1 � (γ − κ )t , where all the time dependence has decayed

d2
〈〈
I1

(
δ

(1)
0

)〉〉
dλ2

∣∣∣∣
λ=0

= 16(S � K )
(
δ

(1)
0

)
(
κ − γ + 2iδ(1)

0

)2 , (27)

where (S � K )(δ(1)
0 ) = (1/2π )

∫ ∞
−∞ S(ω)K (δ(1)

0 − ω)dω de-
notes the convolution of S(ω) with the kernel K (ω) = (κ −
γ + 2iω)−1. Applying the residue theorem to Fourier trans-
form K (ω) analytically and the convolution theorem to invert
the relation (27), we have

S(ω) = −4
∫ ∞

0
(S � K )(τ ) cos(ωτ )e(γ−κ )τ/2dτ, (28)

where (S � K )(τ ) denotes the Fourier transform of the mea-
surable convolution. Hence, the noise power spectral density
can also be obtained in quadratically coupled qubit-resonator
systems. The method is limited by the maximum detuning
δ

(1),max
0 available in experiments.

Noise features of common noise types can be obtained by
reducing 〈〈I2〉〉 to 〈〈I1〉〉 as well, even though it may often be
easier to directly use the analytical expression for 〈〈I2〉〉 given
in Eqs. (22) and (24) in practice.

V. CONCLUSION

In this paper we extended the theory of noise spectroscopy
based on the transient transmission to include quadratic qubit-
resonator interactions, which occur in nanonmechanical and
superconducting resonators coupled to solid-state qubits. Al-
lowing for arbitrary initial qubit coherences, we derived and
solved the quantum Langevin equations in the presence of a
noisy qubit in first-order perturbation theory and showed that
noise features are imprinted in the averaged resonator trans-
mission and phase. Measuring both of these quantities permits
the extraction of the ANI 〈〈I2〉〉 for quadratically coupled
systems. By converting 〈〈I2〉〉 to the ANI for linearly coupled
systems, we may extract the noise power spectral density from
transmission measurements using established methods. Our
results expand the scope of applications of transmission-based
noise spectroscopy to a wide variety of systems including
superconducting, charge, and spin qubits coupled to electro-
magnetic cavities and nanomechanical resonators.
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APPENDIX: REAL AND IMAGINARY PARTS OF THE
TRANSMISSION AMPLITUDE

In this Appendix we display the real and imaginary parts of
the transmission amplitude in Eq. (10) for both linear (n = 1)
and quadratic (n = 2) qubit-resonator couplings. They read

Re(An) = −
√

κ1κ2


2
r + κ2/4

[
κ

2
− e−κt/2

(
cos(
rt )

κ

2
− sin(
rt )
r

)
+ gn

√

2

r + κ2

4

( √
κ1〈bin〉√


2
r + κ2/4

)n−2

e−κt/2

× {[Re〈σ 0
−〉ImIn + Im〈σ 0

−〉ReIn] cos([n − 1]ζ − 
rt ) + [Re〈σ 0
−〉ReIn − Im〈σ 0

−〉ImIn] sin([n − 1]ζ − 
rt )}
]
,

(A1)
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Im(An) = −
√

κ1κ2


2
r + κ2/4

[
− 
r + e−κt/2

(
sin(
rt )

κ

2
+ cos(
rt )
r

)
+ gn

√

2

r + κ2

4

( √
κ1〈bin〉√


2
r + κ2/4

)n−2

e−κt/2

× {[Re〈σ 0
−〉ImIn + Im〈σ 0

−〉ReIn] sin([n − 1]ζ − 
rt ) − [Re〈σ 0
−〉ReIn − Im〈σ 0

−〉ImIn] cos([n − 1]ζ − 
rt )}
]
,

(A2)

where as in the main text we use the notation ζ = arctan(2
r/κ ).
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