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The spin degree of freedom is crucial for the understanding of any condensed matter system.
Knowledge of spin-mixing mechanisms is not only essential for successful control and manipula-
tion of spin-qubits, but also uncovers fundamental properties of investigated devices and material.
For electrostatically-defined bilayer graphene quantum dots, in which recent studies report spin-
relaxation times T1 up to 50 ms with strong magnetic field dependence, we study spin-blockade
phenomena at charge configuration (1, 2)↔ (0, 3). We examine the dependence of the spin-blockade
leakage current on interdot tunnel coupling and on the magnitude and orientation of externally ap-
plied magnetic field. In out-of-plane magnetic field, the observed zero-field current peak could arise
from finite-temperature co-tunneling with the leads; though involvement of additional spin- and
valley-mixing mechanisms are necessary for explaining the persistent sharp side peaks observed. In
in-plane magnetic field, we observe a zero-field current dip, attributed to the competition between
the spin Zeeman effect and the Kane–Mele spin–orbit interaction. Details of the line shape of this
current dip however, suggest additional underlying mechanisms are at play.

Spin–orbit and hyperfine interactions are common
sources of spin decoherence. Natural bilayer graphene
(BLG) is comprised of 98.9% low-mass, nuclear-spin free
12C, and only a small zero-field spin–orbit gap ∆SO ≈
60 − 80µeV has been experimentally observed [1–3].
Though still in their infancy, investigations of electro-
statically defined BLG quantum dots have made great
progress, demonstrating high controlability [1, 2, 4–12].
Recent studies [11, 12] reported spin-relaxation times T1
in BLG quantum dots up to 50 ms, strongly dependent on
magnetic field. The exact spin-mixing mechanisms lim-
iting the lifetimes and determining their magnetic field
dependence, however, remain elusive.

A common technique to study spin-mixing mechanisms
is examining the dependence of the strength of the Pauli
blockade effect on externally applied magnetic field [13–
23], where the “standard” double dot two-carrier charge
states (1, 1) and (0, 2) are investigated [(NL, NR) labels
the number of carriers in the left and in the right dot]. In
BLG quantum dots, the valley degree of freedom enriches
the energy spectrum [7, 9, 10, 24, 25]. Two-electron Pauli
blockade of both spin and valley degrees of freedom has
been demonstrated, where around zero magnetic field it
is mostly only valley in nature [10], compelling us to
move to alternative charge configurations with different
ground states to examine spin-mixing effects.

We therefore populate our BLG double dots with three
electrons, near the (1, 2) ↔ (0, 3) charge transition. By
close examination of the states involved, we conclude that
around zero magnetic field the (1, 2)→ (0, 3) blockade is

truly spin in nature. At various interdot tunnel couplings
we thus study leakage currents, which exhibit unconven-
tional magnetic field dependencies: In out-of-plane mag-
netic field, we observe a peak in leakage current around
zero field, orders of magnitude too wide [18, 20, 21] to
be attributed to hyperfine-induced spin-mixing [19] that
is commonly seen in double dots hosted in GaAs [13],
InAs [14–16], Si [17], and carbon nanotubes [18]. This
wide peak could instead arise from finite-temperature co-
tunneling with the leads [23, 26, 27]. Sharp side-peaks
observed in out-of-plane field point to other spin- and
valley-mixing mechanisms at play. In in-plane magnetic
field, we observe relatively large leakage current at finite
field that dips at zero field. This may arise from the
competition between the Kane–Mele spin–orbit interac-
tion polarizing the spins of the blocked states fully out-of-
plane [1–3], and the magnetic field that wants to align the
spin quantization axis in plane, thereby mixing blocked
and unblocked states [22]. Compared to similar studies
in InAs [14, 15], carbon nanotubes [18], and Si [17, 23]
however, not only is the shape of our dip oddly indepen-
dent of interdot coupling, but it also seems to possess
a higher-order magnetic field dependence at small fields,
better described by B4, than the typical Lorentzian with
B2.

Our double quantum dots are defined electrostatically
in the same BLG device as described in Ref. 10. Plunger
gate voltages for the left and the right dot are VL and
VR, respectively. The interdot t and dot-lead tunnel cou-
plings are individually controlled by barrier gate voltages.
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FIG. 1. (a) Bias-triangles at zero magnetic field, at (1, 2)–
(0, 3) charge degeneracy at VMB = −6.33 V, (i) VSD = 1 mV,
(0, 3)→ (1, 2), and (ii) VSD = −1 mV, (1, 2)→ (0, 3), labeled
with the detuning δ-axis being the difference of the (1, 2) and
(0, 3) ground state chemical potential. Regions of strong cur-
rent suppression induced by spin blockade are marked in (ii).
(b) Schematics of (1, 2) ↔ (0, 3) charge transport: (i) any
(0, 3) state can be split into corresponding (1, 2) states, but
(ii) transport from a spin-polarized Sz = ±3/2 (1, 2) state to
(0, 3) is spin blocked.

For details on the sample structure and quantum dot for-
mation, see Appendix A1.

Finite-bias transport measurements at zero magnetic
field close to the (1, 2)–(0, 3) charge degeneracy are shown
in Fig. 1(a), for (i) “reverse”-bias, where transport in-
volves the (0, 3) → (1, 2) transition, and (ii) “forward”-
bias involving the (1, 2) → (0, 3) transition. Strong sup-
pression of current in the lower part of the forward bias
triangles signifies the occurrence of Pauli blockade. To
understand its nature, we first discuss the relevant single-
dot states:

One particle.—As shown in Refs. 1 and 2, the fourfold
degenerate (twofold in spin, ↑ or ↓, and twofold in valley,
K− or K+) one-particle ground states in a BLG quan-
tum dot are split by the Kane–Mele [3] spin–orbit gap
∆SO into two Kramers pairs: |↓ K−〉 and |↑ K+〉 lower
in energy, and |↓ K+〉 and |↑ K−〉 higher in energy.

Two particles.—The two-particle ground state
has been consistently observed experimentally to be
the threefold degenerate spin-triplet valley-singlet,∣∣∣T±(0)
s Sv

〉
(total spin number S = 1, where Sz = −1, 0, 1

states are denoted T−,0,+
s ), due to strong confinements

and onsite exchange interaction [7, 9, 10, 24, 25].

Three particles.—The three-particle states are most
easily understood as being the four different states that
can result from removing a single particle with arbi-
trary spin and valley, from a fully (fourfold) occupied
orbital ground state. The resulting spectrum there-
fore comprises four spin-doublet (S = 1/2) valley-
doublet states, forming Kramers pairs split by ∆SO with

|↓ K−; ↑ K+; ↓ K+〉 and |↓ K−; ↑ K+; ↑ K−〉 lower in en-
ergy, and |↓ K+; ↑ K−; ↓ K−〉 and |↓ K+; ↑ K−; ↑ K+〉
higher in energy. These are the four allowed (0, 3) states,
with all three carriers on the right dot (shown in Fig. S2).

We can now investigate the nature of the blockade re-
sulting from the (1, 2) → (0, 3) transition. The (1, 2)
charge states have one carrier in the left dot in any of the
four single-particle states, and two carriers in the right
dot in any of the three spin-triplet valley-singlet states,
forming twelve possible (1, 2) states in total. At zero
magnetic field these states are split by ∆SO, and can be
decomposed into four S = 1/2 spin-doublet states with
finite tunneling amplitude to the (0, 3) spin-doublets,
and eight blocked S = 3/2 spin-quadruplet states [28–
30], listed in detail in Appendix A2. The spin–orbit
interaction ∆SO mixes the four spin-quadruplet states
with Sz = ±1/2 with the spin-doublet states (also with
Sz = ±1/2), giving them a finite tunneling amplitude to
the (0, 3) states.

We are thus left with four truly blocked (1, 2) states
with Sz = ±3/2, which are simply product states of
the relevant one- and two-particle states in the left and
the right dot: |↑ K±〉L |T+

s Sv〉R and |↓ K±〉L |T−
s Sv〉R.

Hence, these states are responsible for the (1, 2)→ (0, 3)
blockade observed in Fig. 1(a) [as illustrated in Fig. 1(b)],
which is therefore purely spin in nature. At large enough
detuning, the excited Sz = ±3/2 (0, 3) states become ac-
cessible and lift the blockade, shown by the finite current
reappearing at the tip of the triangles in Fig. 1(a,ii).

To describe the effect of magnetic field on the afore-
mentioned (1, 2) states, we employ a simple model Hamil-
tonian,

Ĥ =
∑
i

(
gsµBB · Ŝi + gv,iµBBzT̂

z
i − 2∆SOŜ

z
i T̂

z
i

)
(1)

summed over the left and the right dot i = L,R, where
Ŝi = 1

2 σ̂
(i) is the total spin operator of carriers on the dot

i and analogously, T̂i = 1
2 τ̂

(i) the total valley pseudospin
operator, written in terms of the Pauli matrices τ̂ that
act in valley space. The first term in (1) describes the
usual Zeeman splitting of the spin states, where the elec-
tronic g-factor gs = 2 [1, 2, 4, 6, 7]. The second term adds
the coupling of the orbital structure of the valley states
to the out-of-plane component of the magnetic field; the
corresponding valley g-factor is displacement field and
dot-geometry dependent [5], measured to be gv ≈ 30 in
this same device at similar gate configuration [10]. The
last term describes the Kane–Mele spin–orbit splitting
∆SO ≈ 60–80µeV between states with their z-projection
of spin and valley aligned parallel or antiparallel [1–3].
These three terms incorporate all the qualitative and par-
tially quantitative understanding of our BLG quantum
dot systems to date.

The level structure of the (1, 2) states resulting from
(1) is sketched in Fig. 2. At zero field, the Kramers pairs
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FIG. 2. Level structure of (1, 2) states as a function of the
magnetic field, resulting from the model Hamiltonian (1). The
dark red states (Sz = ±3/2 at Bx = 0) are fully blocked, while
the light states are unblocked. On-site (i) spin- and valley-,
and (ii) pure spin-mixing processes can lift the blockade close
to B = 0 by mixing the states pointed at by the arrows,
and also near the crossing of different clusters (gray) where
gvµBBz ≈ ∆SO. Large enough Bx tilts the spin quantization
axis from z- to x-direction, mixing the blocked states with the
unblocked ones, thus lifting the blockade.

on the left dot are split by ∆SO. A finite in-plane field Bx
(left side of the plot) does not couple to the valley degree
of freedom, but aligns the spin-triplets in the right dot
along the x-axis and splits them by the Zeeman energy.
In an out-of-plane field Bz (right side of the plot), both
spin and valley states are split by gµBBz with their re-
spective gs and gv, forming four clusters of states: one
cluster of triplet states in the right dot per state in the
left dot. The four fully blocked Sz = ±3/2 states are
sketched in red; all other states are open and sketched in
yellow.

We now examine experimentally the dependence of
spin blockade leakage current on the magnitude and
orientation of an external magnetic field, and on the
strength of interdot tunnel coupling t. The field direc-
tion is changed by rotating the sample, and t is tuned
via the middle barrier gate voltage, with weaker t at
more negative VMB. In Fig. 3(a,i–iii) we show result-
ing bias triangles at zero field for various t, all weaker
than in Fig. 1(a). The corresponding current measured
along the detuning axis δ and its dependence on out-
of-plane Bz and in-plane Bx magnetic field is mapped
in Fig. 3(b,c). Line-cuts around δ = 0 averaged over a
range of ∆δ ≈ 30 µeV [≈ 150 µeV for Fig. 3(d,iii) due to
weakness and instability of the signal] are plotted as a
function of Bz and Bx in Fig. 3(d) and (e).

Upon suppressing t, we observe in the bias triangles
[Fig. 3(a)] the emergence of a resonance around δ = 0

with current increasing from (i) below the noise level,
to (iii) ∼ 1 pA. When turning on Bz [Fig. 3(b,d)], the
current of this resonance decreases with increasing Bz
in a Lorentzian shape [Fig. 3(b and d,ii and iii)], with
full-width-half-maximum (FWHM) ∆Bz ∼ 10 mT.

This zero-field current peak could arise from mixing of
the blocked and the unblocked states by spin- or valley-
mixing processes. As shown in Fig. 2, around zero field
the four blocked states can undergo either (i) simultane-
ous onsite spin and valley flip in the one-carrier left dot,
mixing e.g., the blocked state |↑ K−〉L |T+

s Sv〉R with the
unblocked |↓ K+〉L |T+

s Sv〉R, or (ii) onsite pure spin flips
in the two-carrier right dot, mixing e.g., the blocked state
|↑ K−〉L |T+

s Sv〉R with the unblocked |↑ K−〉L
∣∣T 0
s Sv

〉
R

.
The energy scale of the mixing terms competes with the
external magnetic field: At large enough fields such that
the energy splitting between the mixed states [gvµBBz
for (i) and gsµBBz for (ii)] is larger than the mixing en-
ergy, the system will go into full spin blockade. The
width of the zero-field current peak, therefore, contains
information about the strength of the underlying mixing
processes.

In double-dot systems for which similar zero-field peaks
have been observed, the spin-mixing term has been at-
tributed to the hyperfine interaction with randomly fluc-
tuating nuclear spin baths [13, 16, 18–21]. If the same
applies to our system and lifts the blockade via pure spin-
flip processes (ii), then the peak width ∆B ∼ 10 mT
should correspond to the root-mean-square magnitude of
the random nuclear fields Bnuc experienced by the lo-
calized spins. Our quantum dots ∼ 50 nm in radius are
made of exfoliated BLG which contains only 1.01% spin-
ful 13C, yielding Bnuc ∼ 1µT using the hyperfine cou-
pling constant A ∼ 1 µeV calculated by Refs. 20 and
21 for graphene, or Bnuc ∼ 100µT using A ∼ 100–
200 µeV extracted from the leakage current peak ob-
served in 13C enriched carbon nanotubes [18]. Our ob-
served peak width of 10 mT is, however, orders of mag-
nitude larger, indicating that a different mechanism is
responsible for this peak.

Wide zero-field peaks in Si have been attributed to
finite-temperature co-tunneling effects, yielding I ∝
gsµBBz/ sinh(gsµBBz/kBT ) when t < kBT [23, 26, 27].
For type-(ii) processes where spins are flipped in the right
dot, co-tunneling events have to involve virtual (1, 1)
states that are too high in energy to be accessible. For
type-(i) processes, virtual (0, 2) states are closer in energy
and co-tunneling events with the lead can provide simul-
taneous spin- and valley-flips in the left dot; with gv = 30
and T ≈ 100 mK we estimate for co-tunneling-induced
current peaks FWHM 12 mT, similar to the measured
10 mT. The skewness of the baseline resonance of the bias
triangles towards the (0, 2) charge state in Fig. 3(a,ii) cor-
roborates with the conjecture, though noise and charge
instability preclude definite conclusions. Another pos-
sible candidate could be site-specific spin–orbital effects
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FIG. 3. (a) Bias triangles with VSD = −1 mV for the spin-blockaded transition (1, 2)→ (0, 3) at zero magnetic field at (i) strong,
(ii) intermediate, and (iii) weak interdot coupling t, at VMB = −6.40 V, −6.43 V, and −6.46 V, respectively, with corresponding
maps as functions of δ [labeled in (a)] and B-field for (b) out-of-plane field Bz, and (c) in-plane field Bx. The field orientations
are indicated in (f). (d,e): Line-cuts from the respective maps averaged around zero detuning over a range [indicated by arrows
in (b,c)] of ∆δ ≈ 30 µeV [≈ 150 µeV for (d,iii) due to weakness and instability of the signal] with fitted curves. A B-field offset
is subtracted from each map and trace, assuming for (b) and (d): the side peaks are symmetric in Bz, and for (c) and (e): the
zero-field dip is centered at Bx = 0 T. Traces in (d) are fitted with multiple Lorentzians. In (e), the black traces show fits of
Lorentzian-shaped dips, whereas the green trace in (i) is fitted empirically with higher order field dependence B4.

specific to the symmetry of BLG [31], leading to mis-
aligned quantization axes along which ∆SO acts in the
two dots, mixing spin and valley.

Another feature observed in out-of-plane field is two
side peaks with FWHM ≈ 2 mT occurring at Bz ≈
±16.5 mT, too narrow to arise from the co-tunneling ef-
fects discussed above. Considering the level structure in
Bz (see Fig. 2), we see that a cluster of triplet states with
|↑ K+〉L (moving up in energy) crosses the triplet with
|↑ K−〉L (moving down) at gvµBBz ≈ ∆SO (gray shading
in Fig. 2). If finite mixing between a blocked state in one
triplet and an unblocked state in the other triplet exists,
by a mechanism that flips valley in the left and spin in
the right dot, e.g., between the blocked |↑ K+〉L |T+

s Sv〉R
and the unblocked |↑ K−〉L

∣∣T 0
s Sv

〉
R

, then an increase in
current close to the crossing point would be expected.
With gv ≈ 30 and side peaks at ±16.5 mT, this implies

∆SO ≈ 30 µeV, similar to that reported in Refs. 1 and 2
within a factor of two.

We now turn to the effect of an in-plane magnetic field
Bx, which we apply perpendicular to the double dot axis
[see Fig. 3(f)]. At strong interdot coupling t [Fig. 3(c,i)
and (e,i)], we observe a large leakage current at finite
Bx, which is reduced at zero field. As t is weakened, the
saturation leakage current decreases from 8 pA in (i) to
1.2 pA in (iii), while the width of the dip remains roughly
constant.

In two-carrier spin blockade, observation of such a zero-
field dip is usually an indication of strong spin–orbit in-
teraction [14, 15, 17, 18, 22, 23]. A similar mechanism
can be expected to be at work here: At zero magnetic
field, the level structure is dominated by the Kane–Mele
spin–orbit interaction and has all quantization axes ori-
ented along the z-axis, splitting the (1, 2) states into two
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clusters of six degenerate states (see Fig. 2)—the sys-
tem is in spin blockade. A finite Bx lifts this blockade:
not only does it lift the degeneracy, but it also tilts the
quantization axis of the spin triplets towards the x-axis,
such that the original blocked Sz = ±3/2 states become
mixed by the Zeeman field with the open states (the dark
blocked states brightening in Fig. 2). As a consequence,
a dip in the leakage current occurs around Bx = 0. The
leakage current weakens but remains finite when tilting
the external magnetic field away from in-plane (see Ap-
pendix. A3).

Details of the observed dip deviate from this simple in-
terpretation. First of all, a direct mixing of blocked and
unblocked states by Bx should yield a regular Lorentzian
line shape with a field dependence B2

x [14, 15, 17, 18, 23],
which does not fit our data very well [see Fig. 3(e,i),
black]. In fact, an empirical fit with A − C/(B4

0 + B4
x)

where A and C are fitting constants, shows much better
agreement [Fig. 3(e,i), green], suggesting that the state-
mixing by the applied Zeeman field is a higher-order ef-
fect. Secondly, the dip-like line shape is expected to arise
from the competition between the Zeeman splitting and
the interdot exchange energy ∝ t2 caused by coupling
to the (0, 3) states; thus we expect the width of the dip
∝ t2 [22]. The line shapes here, however, seem not to be
strongly dependent on t. These two oddities suggest the
existence of other mechanisms at play. The co-tunneling
process discussed earlier in out-of-plane field cannot be
responsible for the odd line shape, as here it is only rel-
evant at much higher in-plane field since gs � gv.

To conclude, we examined the spin-blockade leakage
current in a BLG double quantum dot at the three-carrier
charge transition (1, 2)→ (0, 3), and investigated its de-
pendence on interdot coupling, and magnitude and ori-
entation of external magnetic field. Most of the charac-
teristics can be understood in terms of processes similar
to those observed in other quantum dot systems, but
some of the details of the underlying mechanisms still
require further investigation. In out-of-plane magnetic
field, the dominant feature observed is a zero-field cur-
rent peak that could arise from finite-temperature co-
tunneling with the leads, though explanation of the per-
sistent sharp side peaks have to involve other mixing
mechanisms. In in-plane magnetic field, we observe a
zero-field current dip, which is expected based on the
competition between the Zeeman effect and the Kane–
Mele spin–orbit interaction; several details of its line
shape, however, suggest additional mechanisms are at
play. We expect further studies to capture the nature
and strength of the various elusive spin-mixing mecha-
nisms existing in BLG in more detail, thereby not only
paving the way for BLG spin qubits, but also gaining
deeper insights into BLG spin and valley physics.
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FIG. S1. Reproduced from Supplementary information of
Ref. [10]: (a) False-colored AFM image of the sample used,
where voltages supplied to these gates are labeled. (b)
Schematic sketch of the conduction band (CB) and valence
band (VB) edge variation along the channel, underneath the
respective gates. The left and right dot, L and R, are formed
underneath the respective plunger gates (yellow), with gate
voltages VL, and VR. The two dot-lead tunnel couplings are
controlled by left and right barrier gate voltages VLB and VRB.
The interdot tunnel coupling is controlled by the middle bar-
rier gate voltage VMB.

A1. METHODS

The device is fabricated as described in Ref. 4, 5, 10,
and 32. A false-colored AFM image of the sample is
shown in Fig. S1(a). Stacked with the dry-transfer tech-
nique [33], the van der Waals hetero-structure lies on a
silicon chip with 280 nm surface SiO2. The stack consists
of a bottom graphite back gate, and on top of it a BLG
flake encapsulated in 38 nm thick bottom and 20 nm thick
top hBN flakes. Ohmic edge contacts with Cr and Au of
10 and 60 nm thickness, respectively, are evaporated af-
ter etching through the top hBN flake with reactive ion
etching. A pair of 5 nm thick Cr, 20 nm thick Au split
gates are deposited on top, defining a 1 µm long, 100 nm
wide channel. Separated by a layer of 30 nm thick amor-
phous Al2O3 grown by atomic layer deposition, finger
gates (yellow and green in Fig. S1) of 20 nm in width,
and 5 nm Cr and 20 nm Au in thickness, lie across the
channel. Neighboring finger gates are separated by 75 nm
from center to center.

Our double quantum dots are defined electrostatically
in the same BLG device as described in Refs. 10. In
BLG, a band-gap is formed near the K± valleys when
applying a displacement field perpendicular to the sheet
of BLG [34–36], where the size of the gap increases with
the strength of the displacement field. With dual-gating,
we therefore have control to both the size of the gap, and

the doping, in the gated region.
To form the pair of double electron dots studied in

this work, we apply a positive global graphite back-
gate voltage VBG = 5 V, tuning the whole sheet of
BLG into an n-doped regime. With negative voltages
VSG = −3.645 V,−3.53 V applied to the split gates [gray
in Fig. S1(a)], we open up a band gap underneath the
split gates, and simultaneously tune the Fermi energy
EF into the middle of the gap. Thus we form an n-type
1D-channel as shown in Fig. S1. With another layer of
finger gates deposited on top, we gain control locally over
the potential landscape within this channel. As shown in
Fig. S1(b), we use the three barrier gates (green) LB, MB,
and RB to tune the region underneath them into the gap,
forming our left, middle, and right barriers. The barrier
gate voltages control the location of the Fermi energy
EF in the gap, and hence the strength of the barriers. In
general, the tunnel coupling decreases with more nega-
tive barrier gate voltages, until the voltages are negative
enough for the formation of p-type dots underneath the
barriers. The gates L and R serve as plunger gates for
the electron dot L and R, respectively. With more nega-
tive plunger gate voltages VL and VR, we can deplete the
electron dots cleanly to the last carrier.

The measurements are performed in a dilution refrig-
erator with base temperature of ∼ 100 mK.

A2. RELEVANT (1,2) AND (0,3) STATES

Following the discussion in the main text, we spec-
ify here in more detail the states involved in transport.
The allowed (1, 2) charge states have two carriers in the
right dot in a spin-triplet valley-singlet state and a single
carrier in the left dot in any of the four spin-doublet
valley-doublet states. Thus, there are twelve possible
(1, 2) states in total, consisting of one spin-quadruplet
valley-doublet (eight states, all with total spin S = 3/2)

|Q 3
2
, τ〉 = |↑ τ〉L|T+

s Sv〉R,

|Q 1
2
, τ〉 =

1√
3

(√
2|↑ τ〉L|T 0

s Sv〉R + |↓ τ〉L|T+
s Sv〉R

)
,

|Q− 1
2
, τ〉 =

1√
3

(√
2|↓ τ〉L|T 0

s Sv〉R + |↑ τ〉L|T−
s Sv〉R

)
,

|Q− 3
2
, τ〉 = |↓ τ〉L|T−

s Sv〉R,

and one spin-doublet valley-doublet (four states with S =
1/2)

|D 1
2
, τ〉 =

1√
3

(
|↑ τ〉L|T 0

s Sv〉R −
√

2|↓ τ〉L|T+
s Sv〉R

)
,

|D− 1
2
, τ〉 =

1√
3

(
|↓ τ〉L|T 0

s Sv〉R −
√

2|↑ τ〉L|T−
s Sv〉R

)
,

where τ = ± denotes the valley quantum number K±,
T±,0
s are the spin triplet states, Sv the valley singlet and
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FIG. S2. Sketch of the level diagram as a function of the
magnetic field, assuming δ � t for clarity. The (0, 3) states
are dark blue, in the (1, 2) subspace the color scale indicates
each state’s contribution to the transport, the lighter the color
the larger the coupling to (0, 3). For B = 0 the dark red
states |Q±3/2,±〉 are fully blocked, while the other states are
unblocked. Spin- and valley-mixing interactions can lift the
blockade around B = 0 and in the “crossing” region where the
valley Zeeman splitting due to Bz equals ∆SO. For increasing
Bx the blockade is lifted due to a tilting of the spin-triplet
quantization axis on the right dot.

the index L (R) indicates the left (right) QD [37, 38]. As
explained in the main text, the four (0, 3) states are all
spin-doublet states, meaning that in this basis only four
out of twelve states would be coupled to them and thus
be unblocked.

The spin quadruplet and doublet states specified above
are not eigenstates of the Hamiltonian given in Eq. (1) of
the main text. In the presence of an out-of-plane field Bz
and Kane–Mele spin–orbit coupling one finds the eigen-
states |sτ〉L|TsSv〉, as used in the main text, with s =↑, ↓
labeling spin along ẑ. Written in terms of the basis states

given above, these read as

|↑ τ〉L|T+
s Sv〉R = |Q 3

2 ,τ
〉, (2)

|↑ τ〉L|T 0
s Sv〉R =

1√
3

(√
2|Q 1

2 ,τ
〉+ |D 1

2 ,τ
〉
)
, (3)

|↑ τ〉L|T−
s Sv〉R =

1√
3

(
|Q− 1

2 ,τ
〉 −
√

2|D− 1
2 ,τ
〉
)
, (4)

|↓ τ〉L|T+
s Sv〉R =

1√
3

(
|Q 1

2 ,τ
〉 −
√

2|D 1
2 ,τ
〉
)
, (5)

|↓ τ〉L|T 0
s Sv〉R =

1√
3

(√
2|Q− 1

2 ,τ
〉+ |D− 1

2 ,τ
〉
)
, (6)

|↓ τ〉L|T−
s Sv〉R = |Q− 3

2
, τ〉. (7)

We thus see that in the Sz = ±1/2 subspace the blocked
and unblocked states are mixed, leaving only the four
states |Q± 3

2
,±〉 as truly blocked states. If the magnetic

applied field is in-plane instead of out-of-plane, the Zee-
man effect will mostly result in a rotation of the three
spin-triplet states on the right dot, aligning their spin
quantization axis along x̂ (as long as gsµBBx � ∆SO the
Kramers pair on the left dot will not be affected much).
This results in a mixing of all three states T±,0

s in each
spin-triplet in (2–7) (which were defined along ẑ), lifting
the blockade for all twelve states.

Including the (0, 3) states and adding a finite detuning
δ between the (1, 2) and (0, 3) states for clarity, we show
a typical resulting level diagram in Fig. S2. The (0, 3)
states are dark blue, in the (1, 2) subspace the color scale
indicates each state’s contribution to the transport, the
lighter the color the larger the coupling to (0, 3). At zero
field the Kramers pairs are split by ∆SO. With an out-of-
plane field Bz the spins are split by the Zeeman splitting
gsµBBz and the valleys are split by gvµBBz. The states
with Sz = ±3/2 are blocked, while the other states are
open to the transport.

One subtlety we would like to point out here is that
without spin- or valley-flip tunneling the (1, 2) states that
have a T 0

s spin configuration on the right dot (i.e., states
|sτ〉L|T 0

s Sv〉R, with s =↑, ↓ and τ = ±), couple only to
(0, 3) states in a Kramers pair with opposite parity, i.e.,
split off by ∆SO, which makes their contribution to the
transport inefficient at δ = 0. However, if the decay rate
Γ of the (0, 3) states to the right lead is sufficiently large,
Γ� ∆SO, all unblocked states can be treated as equally
open, nonetheless.

A3. DEPENDENCE OF ZERO-FIELD DIP ON
MAGNETIC FIELD ORIENTATION

The leakage current dips at strong interdot coupling
at three different magnetic field orientations are plotted
together in Fig. S3. The blue and red traces, for out-of-
plane magnetic field Bz and for in-plane magnetic field
Bx, are the same as the data shown in Fig. 3(d,i) and



9

FIG. S3. Current |ISD| measured around δ = 0 as a function
of external magnetic field B applied out-of-plane, at 30◦ with
the out-of-plane direction, and in-plane (across the channel),
at strong interdot coupling t with VMB = −6.40 V. The blue
and the red traces are the same as the traces in Fig. 3(d,i)
and (e,i) in the main text. Inset: schematics of the sample
with the B-field directions labeled. Black line: fit with a
Lorentzian dip; green line: fit with a “Lorentzian” with a
∼ B4-dependence.

(e,i) in the main text. When we tilt the external field
away from the in-plane direction, we see that at Bθ=30◦

(shown in inset in Fig. S3, the saturation current at large
field reduces from 8 pA in in-plane field, to 2 pA. Finally,
when the field direction is completely out-of-plane in Bz,
this zero field dip feature seems to disappear completely.

This magnetic field orientation dependence corrobo-
rates with the assumption in the main text that a zero-
field spin–orbit interaction aligned along the z-axis, i.e.,
that the Kane–Mele type spin–orbit gap aligning and
spins and valleys along the z-axis, is at work here.

A4. VALLEY BLOCKADE LEAKAGE CURRENT

Zero-field valley blockade in BLG double dots near
two-carrier transition (1, 1) ↔ (2, 0) has been observed
and reported in Ref. [10]. We examine the valley block-
ade leakage current at strong Fig. S4(a,b) and weak
Fig. S4(c,d) interdot couplings, and see that the valley
blockade leakage current also exhibits a dependence on
the perpendicular magnetic field Bz. The bias triangles
are shown in Fig. S4(a,c) for strong, and weak inter-
dot couplings, where the bias is applied in direction of
(i) the valley blockaded (1, 1) → (2, 0) transition, and

(ii) the non-blockaded (0, 2) → (1, 1) transition. The
magnetic field Bz is swept along the detuning δ-axis la-
belled on the triangles in (a) (c,i). At strong interdot
coupling [Fig. S4(b)], the leakage current increases with
magnetic field; at weak interdot coupling on the other
hand [Fig. S4(d)], a zero-field peak is observed. The

FIG. S4. Finite-bias triangles near the two-electron tran-
sition (1, 1) ↔ (2, 0), at (a) strong interdot coupling with
VMB = −5.775 V, and (c) weak interdot coupling with VMB =
−5.84 V, at (i) positive source-drain bias VSD = 1 mV, and (ii)
negative source-drain bias VSD = −1 mV. For negative bias,
the transition (1, 1)→ (2, 0) is Pauli valley blocked. (b,d) The
perpendicular magnetic field dependence of a line-cut around
the detuning-axis δ, marked in (a,c). The detuning is con-
verted from the left and the right plunger gate voltages VL

and VR, where in (i) the entire map and in (ii) a cut along
δ = 0 is shown. A zero-field minimum is observed in (b)
whereas in (d) a zero-field maximum is found.

exact width of the current peaks and dips are hard to
extract due to the bending of the δ = 0 base-line, more
prominent than that for the (1, 2)↔ (0, 3) configuration,
due to the valley g-factor gv ≈ 30 being much larger than
the spin g-factor gs = 2 [5].
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