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Ability of error correlations to improve the performance of variational quantum algorithms
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The quantum approximate optimization algorithm (QAOA) has the potential of providing a useful quantum
advantage on noisy intermediate-scale quantum (NISQ) devices. The effects of uncorrelated noise on variational
quantum algorithms such as QAOA have been studied intensively. Recent experimental results, however, show
that the errors impacting NISQ devices are significantly correlated. We introduce a model for both spatially and
temporally (non-Markovian) correlated errors based on classical environmental fluctuators. The model allows
for the independent variation of the marginalized spacetime-local error probability and the correlation strength.
Using this model, we study the effects of correlated stochastic noise on QAOA. We find evidence that the
performance of QAOA improves as the correlation time or correlation length of the noise is increased at fixed
local error probabilities. This shows that noise correlations in themselves need not be detrimental for NISQ
algorithms such as QAOA.
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I. INTRODUCTION

Quantum computers hold the promise of outperform-
ing classical computers on tasks such as the simulation of
quantum-mechanical systems [1,2], factoring [3], unstruc-
tured database search [4], and solving linear systems of
equations [5]. However, it is much harder to shield qubits,
the fundamental building blocks of quantum computers, from
environmental noise than it is to shield classical bits [6],
leading to errors in quantum computations. These errors can
be detected and corrected, provided that error probabilities
remain below a certain threshold, as is proven by thresh-
old theorems for fault-tolerant quantum computation [7–10].
Fault-tolerant quantum computation remains possible in the
presence of some forms of spatially and temporally correlated
errors [10–14] but breaks down in others [15]. In any case, the
quantum overhead required for fault-tolerant quantum com-
putation is currently prohibitively large.

Nevertheless, current pre-error-corrected noisy
intermediate-scale quantum (NISQ) [16] computers can
already outperform classical computers on some tasks and
have hence shown a quantum advantage [17,18]. However, the
tasks for which a quantum advantage has been demonstrated
are artificial and have no known applications. Thus, the next
milestone in the field will be the demonstration of a useful
quantum advantage.

Hybrid quantum-classical variational quantum algorithms
(VQAs) have the potential of showing a useful quantum
advantage on NISQ devices [19]. In these algorithms, a
parametrized quantum state, known as the ansatz, is pre-
pared using a parametrized quantum circuit. Subsequently,
the expectation value of some observable (which depends on
the specific VQA) is estimated by repeated preparation and
measurement of the ansatz. The parameters and the resulting
expectation value are fed into a classical optimization algo-
rithm, which in turn suggests new parameters. By repeating
the above steps, the optimizer heuristically seeks parameters

that optimize the expectation value of the observable. The
VQA returns the optimal value of the observable and the
parameters at which it was attained. Using these parameters,
the optimal ansatz state can be reconstructed, which allows
for the extraction of additional classical data from the optimal
ansatz state.

The quantum approximate optimization algorithm
(QAOA) [20] is a VQA designed to (approximately) solve
instances from a large set of optimization problems [21],
including problems of practical relevance, such as portfolio
optimization [22] and correlation clustering [23]. The cost
function of the optimization problem is first mapped to an
Ising-type Hamiltonian whose ground state corresponds

FIG. 1. The temporal fluctuator model. Each qubit interacts with
an independent classical two-level fluctuator in the bath (orange, only
one fluctuator shown). The fluctuator is initially excited with proba-
bility p, as described by the classical ensemble s0. The operation Tκ

resets the fluctuator to s0 with probability 1 − κ . We refer to κ as the
correlation strength. The unitary error operator V is applied to the
qubit if and only if the fluctuator is excited, leading to an error model
with independent time-local error probability p and correlation time
0 � τ = −1/ ln κ < ∞ (in units of gate time). For a circuit of depth
m, acting on n qubits, the full temporal fluctuator model is obtained
by repeating the shaded area m times and the entire structure n times.
Empty rectangles represent generic gates. At the end of the circuit,
the fluctuator is discarded.
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to the optimal solution of the optimization problem. This
Hamiltonian is the observable being measured during the
optimization loop. In the context of QAOA, the expectation
value of the Hamiltonian, as a function of the variational
parameters, is called the cost function landscape. QAOA
seeks approximate ground states of the Hamiltonian by
optimizing the cost function landscape and thereby finds
approximate solutions to the optimization problem.

A common figure of merit for QAOA is the approximation
ratio (AR), defined as the ratio of the cost function landscape
at the best parameters found by QAOA to the global opti-
mal value of the classical cost function. Along the lines of
Ref. [24], to evaluate the effects of noise, a noise-unaware
AR can be defined. The noise-unaware AR is obtained by
first running QAOA in classical simulations with all noise
turned off. The resulting optimal parameters are subsequently
used to compute the expectation value of the Hamiltonian
while the noise is turned on. An AR that is larger than the
noise-unaware AR indicates that variational parameters can
adapt to the presence of noise. We call this ability the noise
adaptivity of the optimal parameters.

The behavior of VQAs such as QAOA under local errors
has been studied extensively [24–32], showing that VQAs
possess forms of resilience against coherent [27,28] and in-
coherent [24,29–32] errors. VQAs [29], specifically QAOA
[33], are therefore thought to be ideal candidates for obtaining
a useful quantum advantage.

Recent experimental results have highlighted the ubiquity
of both spatially and temporally correlated errors in NISQ de-
vices. Sources of spatially correlated errors include crosstalk
[34,35], fluctuations of external, quasihomogeneous magnetic
fields [36], and (cosmic) radiation [37,38]. Sources of tem-
porally correlated errors include 1/ f noise (where f denotes
frequency) [39–42], reflections in drive lines [43], long-lived
quasiparticle excitations [37], nuclear spins [44], and micro-
scopic two-level systems [45–47]. In particular, Refs. [46,47]
studied the stability of superconducting (transmon) qubits.
Telegraph-like switching of relaxation times [47] and qubit
frequency [46] were observed. Both works attribute these
effects to single two-level systems local to each qubit.

Given the importance of VQAs, their resilience against
local errors and the prevalence of correlated errors, an under-
standing of the effects of correlated errors on VQAs is needed.
We make a first step in this direction by studying the effects
of temporally correlated (non-Markovian) and spatially corre-
lated errors on QAOA.

We introduce a toy model for temporally correlated errors
(Fig. 1) that is inspired by the two-level systems local to each
qubit of Refs. [46,47]. Our model captures the essence of
correlated errors, which we consider to be the existence of
a nontrivial error probability and correlation strength. To this
end, we assign a classical two-level fluctuator to each qubit
that causes a unitary error operation V on the associated qubit
conditioned on the state of the fluctuator. The error probability
p and correlation time τ of these errors, defined in Fig. 1,
are determined by the internal evolution of the fluctuators.
A significant advantage of this model is its ability to fully
and independently control the marginalized, time-local error
probability p and correlation time τ . Interchanging the roles
of space and time, a model for spatially correlated errors is

FIG. 2. The spatial fluctuator model. Definitions are as in Fig. 1.
As opposed to Fig. 1, the fluctuator is displayed in green and travels
through space rather than time. The error model for one circuit layer
is generated by repeating the shaded area in the spatial direction n
times, with n being the number of qubits. The full error model is
obtained by repeating the obtained structure after each gate time. In
the spatial fluctuator model, the correlation strength κ leads to an
error correlation length 0 � λ = −1/ ln κ < ∞ in units of interqubit
distance.

obtained with local error probability p and correlation length λ

(Fig. 2). Both τ and λ arise from the same fluctuator parameter
κ that we call the correlation strength. Thus, we are able to
treat temporally and spatially correlated errors on an equal
footing. Limitations of our model are discussed in Sec. V of
this paper.

We classically simulate the performance of QAOA under
the fluctuator error models of Figs. 1 and 2 for various prob-
lem instances, error probabilities p, and correlation strengths
κ . Our main results are the following.

Our first result is the observation of an increase of the
performance of QAOA (as measured by the AR) as a func-
tion of the correlation strength κ at fixed spacetime-local
marginalized error probabilities p across all cases studied. We
analytically derive the effect of our fluctuator models on the
AR to first order in the spacetime-local error probability p.
Using this linear order theory, we show the increase in AR
with correlation strength is explained by a counting argument,
stating that a correlated error can happen in fewer ways than
an uncorrelated error. Although a single, strongly correlated
error can have a stronger effect on the output state than a
single error happening at a single spacetime location, in all
cases we studied this does not outweigh the fact that there are
simply fewer ways in which a correlated error may happen.

A second, distinct result is the observation of a linear
degradation of the performance of QAOA as a function of the
error probability p around p = 0, noise adaptivity of QAOA,
and the existence of critical error probabilities for this noise
adaptivity, all for uncorrelated and correlated errors that do
not break the symmetries of the cost function landscape. As p
is increased away from p = 0, the AR and the noise-unaware
AR decrease linearly and are essentially equal up until some
critical p that depends on the fluctuator model (temporal or
spatial), the correlation strength, and problem instance. After
this critical p, the AR becomes better than the noise-unaware
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AR. This divergence between the AR and noise-unaware AR
coincides with an abrupt jump in optimal parameters that are
otherwise essentially constant. This indicates that there are
two competing, separated points in the cost function landscape
and that one of them overtakes the other at the critical p.

Recently, similar linear decay, noise adaptivity of optimal
parameters, and critical error probabilities were observed for
a VQA by Fontana et al. [24]. Our results regarding these
points go beyond the results of Fontana et al., first because we
show them for QAOA, and second because our results also
hold for correlated errors. Finally, Fontana et al. attributed
the noise adaptivity to the fact that their noise model breaks
the symmetries of the cost function landscape. Our fluctuator
error models do not break the symmetries of the cost function
landscape, showing the existence of additional mechanisms
for noise adaptivity.

The remainder of this paper is organized as follows: We
give a more detailed introduction to QAOA in Sec. II. In
Sec. III, we derive physical properties of our error model, such
as correlation functions and marginalized error probabilities.
In the same section, we derive the linear order effects of
our fluctuator models on the cost function landscape. Subse-
quently, in Sec. IV, we describe our numerical methods and
present and analyze our results, followed by a discussion in
Sec. V.

II. QUANTUM APPROXIMATE OPTIMIZATION
ALGORITHM

A wide class of optimization problems can be formu-
lated using a quadratic cost function, C(z) = ∑n

i< j ωi j ziz j +∑n
i=1 ωizi, with zi ∈ {−1, 1} [21]. The goal is to find a z =

(z1, . . . , zn) that optimizes C globally. Depending on the
specific application, the optimization is a maximization or
minimization of C. The cost function can readily be mapped
to a Hamiltonian on n qubits,

H =
n∑

i< j

ωi jZiZ j +
n∑

i=1

ωiZi, (1)

with Zi the Pauli-Z operator acting on qubit i. The mapping is
such that C(z) = 〈z|H |z〉. The Sherrington–Kirkpatrick (SK)
model encompasses all cost functions with ωi j ∈ {1,−1} and
ωi = 0. In this case, both C and H can be identified with the
same undirected weighted graph with n nodes and adjacency
matrix ωi j . We do not assume the SK model in this section un-
less stated otherwise.

QAOA [20] bounds the optimal value of C by optimizing
the cost function landscape C̃ : R2r → R, with

C̃(γ,β) = 〈γ,β|H |γ,β〉, (2)

by a classical heuristic optimization method of choice. Here,
|γ,β〉 is the ansatz quantum state, depending on 2r parame-
ters. It is prepared on a quantum computer by

|γ,β〉 =
1∏

k=r

S(γk, βk )|+〉⊗n, (3)

with |+〉 = (|0〉 + |1〉)/
√

2, and the cycle

S(γk, βk ) = exp

(
−i

βk

2

n∑
i=1

Xi

)
exp

(
−i

γk

2
H

)

= RX ⊗n(βk )

[∏
i

RZi(ωiγk )

]

×
⎡
⎣∏

i< j

RZZi j (ωi jγk )

⎤
⎦. (4)

Here, RX (α) = e−iαX/2, RZi(α) = e−iαZi/2, and RZZi j (α) =
e−iαZiZ j/2. In this work, the order of the products is from left
to right, so that in Eq. (3), S(γ1, β1) is the first cycle to act
on |+〉⊗n. To obtain an estimate for C̃, the ansatz state is
prepared repeatedly, each time measuring H at the end of
the circuit. Since H is diagonal in the computational basis,
this measurement can be performed by measurements in the
computational basis and classical postprocessing of the mea-
surement outcomes.

On NISQ devices, the ansatz state will be described by a
mixed state ρ(γ,β). In this work, the focus is on correlated
errors during the ansatz circuit and we will therefore assume
perfect estimation of C̃ throughout. That is, we use

C̃(γ,β) = tr[ρ(γ,β)H] (5)

to compute the cost function landscape in our classical simu-
lation of QAOA (Sec. IV).

For SK problem Hamiltonians (ωi j ∈ {1,−1}, ωi = 0),
each cycle of the ansatz circuit requires one two-qubit gate
RZZ between each pair of qubits. To accomplish this on
quantum hardware without all-to-all connectivity, SWAP gates
need to be inserted. On hardware with square-grid or line con-
nectivity, the optimal way of doing so is by a SWAP network
[48,49]. In the SWAP-network implementation of the ansatz
circuit (Fig. 3), the order of the product of RZZ gates forms
a brickwork structure, and a SWAP gate is inserted after each
RZZ gate [50]. From ωi j ∈ {1,−1} and the antiperiodicity of
RZZ (and RZZ ′) with period 2π , it follows that the circuit
cycle S(γk, βk ) is invariant (up to an irrelevant overall sign)
under γk 
→ γk ± 2π for any k. As a consequence, the noise-
less cost function landscape is fully periodic in γk with period
2π for any k. A similar statement holds for RX . Because of
the properties of the circuit ansatz and the SK Hamiltonian,
much stronger and nontrivial symmetry relations hold, which
are derived in Appendix B. In the same appendix, we prove
that these symmetries are not broken by spatiotemporally
correlated Pauli error channels, which includes our fluctuator
models if the unitary error operator V (defined in Figs. 1 and
2) is a Pauli operator.

Returning to the general case [Eq. (1)], a widely used fig-
ure of merit of optimization algorithms is the approximation
ratio (AR),

AR = C̃(γ∗,β∗)

C∗ , (6)

with γ∗, β∗ being the optimal parameters as returned by the
optimization algorithm, and C∗ the true, global optimum of
the cost function C, which is equal to the ground-state energy
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FIG. 3. SWAP-network implementation of the QAOA ansatz on
n = 6 qubits in the absence of 1-local terms in the problem Hamil-
tonian (ωi = 0), with RZZ ′ = RZZ · SWAP and dependence on
variational parameters suppressed. The ansatz cycle, marked by the
dashed box, is applied to the initial state |+〉⊗n a total of r times,
each time with new parameters. The cost function landscape is
obtained through repeated preparation, measurement, and classical
postprocessing.

of H by construction. The algorithm has found the global opti-
mum of any C if and only if AR = 1. If, in contrast, the ansatz
state is maximally mixed, ρ(γ,β) = 1/2n, which amounts to
randomly guessing measurement outcome bit stings, AR = 0
by the definition of C̃ [Eq. (5)] and the tracelessness of H
[Eq. (1)]. In a noisy implementation of QAOA, the AR that
is reached is in principle noise aware; noise may cause the
optimum of C̃ to change and the optimal parameters may
adapt to this change by classical heuristic optimization.

To assess the resilience of QAOA against correlated errors,
in this work we also consider the noise-unaware AR. In clas-
sical simulation, where error probabilities can be changed at
will, QAOA can be run without noise, obtaining the optimal
parameters γ∗

0, β∗
0. These parameters are thus unaware of the

effects of noise on the cost function landscape. Putting them
into the noisy circuit, we obtain C̃(γ∗

0,β
∗
0 ). Thus, we define

the noise-unaware AR as

AR0 = C̃(γ∗
0,β

∗
0 )

C∗ . (7)

Using the noise-unaware AR, we define the noise adaptivity
as

�AR = AR − AR0. (8)

Given that the optimum found in the noiseless case and the
optimum found in the noisy case are global, we have �AR �
0, where �AR �= 0 indicates that the optimal parameters have
adapted to the noise.

A quantity similar to AR0 was introduced in Ref. [24].
There, instead of the expectation value of the Hamiltonian,
the fidelity between the ansatz state and a target state was
used as the cost function. Furthermore, the optimal noise-
aware parameters were obtained by using the noise-unaware
parameters as the initial point of optimization. This led the
authors of Ref. [24] to call their noise-aware parameters the

reoptimized parameters. The advantage of reoptimization is
that �AR � 0 is guaranteed. In the current work, we find
the optimal parameters for AR and AR0 independently to pre-
vent any bias of the noise-aware optimal parameters to points
close to the noise-unaware parameters. Furthermore, our data
(Sec. IV) obey �AR � 0 without enforcing this property by
reoptimization.

III. ERROR MODEL

The internal time evolution of a single fluctuator can be de-
scribed by a two-state, discrete-time, and time-homogeneous
Markov chain. (See, e.g., Refs. [51,52] for background infor-
mation on Markov chains.) Using this formulation, we obtain
the correlation time, time-local marginalized error probabil-
ities, and the expected number of errors of the error models
used in this paper (Figs. 1 and 2). Analytical first-order effects
of uncorrelated errors in the context of variational quantum
algorithms were studied before in Refs. [24–26]. We extend
these methods to derive the analytical first-order effects of our
correlated error models on QAOA.

In this section, we use terminology from the model of
temporally correlated errors. Nonetheless, the results hold for
the spatial fluctuator model if the state of the fluctuator after
circuit layer i is reinterpreted as the state of the fluctuator
after qubit i. In this case, the correlation time τ becomes the
correlation length λ.

A. Two-level fluctuator

Consider a single classical two-level fluctuator with ground
state (1, 0)T and excited state (0, 1)T, with T being the trans-
pose. If the fluctuator is excited with probability 0 � p � 1,
its state is described by the ensemble

s0 =
(

1 − p
p

)
. (9)

This does not represent a quantum state, but a classical ensem-
ble equivalent to the classical mixed quantum state diag(s0).
We take s0 as the initial state of the fluctuator. Define the
random variable

B[(1, 0)T] = 0, B[(0, 1)T] = 1, (10)

which can, e.g., be imagined as the strength of a magnetic field
caused by the fluctuator at its associated qubit.

At time t (in units of gate time), the state of the fluctuator,
st , is retained with probability 0 � κ � 1, and it is reset to
s0 with probability 1 − κ . We refer to κ as the correlation
strength. After this process, the state is given by st+1 = T st ,
with T the transition matrix,

T =
[
κ + (1 − κ )(1 − p) (1 − κ )(1 − p)

(1 − κ )p κ + (1 − κ )p

]
, (11)

denoted by Tκ in Figs. 1 and 2.
To see that T describes the desired process, assume, for

example, that at time t , the fluctuator is excited; st = (0, 1)T.
After it is reset with probability 1 − κ , there are two ways
in which it can remain excited: either the fluctuator was not
reset, which happens with probability κ , or the fluctuator was
reset to s0, but is excited merely because in the state s0, the
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fluctuator is excited with probability p. Thus, the overall prob-
ability that the fluctuator remains excited is (0, 1)T (0, 1)T =
T11 = κ + (1 − κ )p. Other entries of T follow similarly. Note
Tba describes the probability to transition from the state a to b
(in terms of the values that the random variable B can take).

The initial state s0 is a steady state of T because T sends
s0 to s0 both when the state is kept and when it is reset.
(Explicit diagonalization is a simple way to check that this
is the only nontrivial steady state). Thus, from an ensemble
viewpoint, the Markov chain is trivial; st = T t s0 = s0 for all t .
Therefore, the marginalized, time-local probability to be in the
excited state is p, independent of t and κ . Under the definition
Bt = B(st ), it follows that E(Bt ) = p for all t . Defining the
random variable Btot = ∑t

t ′=0 Bt ′ , it follows by the linearity
of expectation values, which also holds for correlated random
variables, that the expected number of times the fluctuator has
been excited from t = 0 up to and including t = t ′ is simply
(t + 1)p, irrespective of κ .

The state of the fluctuator at time t is given by st = T t s0,
where the t th matrix power of T is given by

T t =
(

1 − p + pκ t 1 − p − κ t + pκ t

p − pκ t p + κ t − pκ t

)
. (12)

Note that Eq. (11) is retrieved at t = 1. With a concise ex-
pression for T t at hand, the correlator C(�t ) = E(Bt Bt+�t ) −
E(Bt )E(Bt+�t ), which does not depend on t by time homo-
geneity of the Markov chain, is computed straightforwardly,
yielding

C(�t ) = 4p(1 − p) κ |�t |. (13)

That is, correlations decay exponentially, with 1/e correlation
time

τ = − 1

ln κ
. (14)

Thus, the correlation time increases monotonically from 0 to
∞ as the correlation strength κ is increased from 0 to 1. (In
the spatial fluctuator model, the correlation length λ increases
monotonically from 0 to ∞ as κ is increased from 0 to 1.)

Even though st = T t s0 = s0 for all t , in the course of each
physical run of a quantum circuit involving m circuit layers,
a nontrivial realization R ∈ {(1, 0)T, (0, 1)T}m+1 of fluctua-
tor states is sampled. Equivalently, we can say that, during
each run, a realization bit string b ∈ {0, 1}m+1 of outcomes
is obtained, where the t th entry of b, bt ∈ {0, 1}, denotes the
outcome of a trial of the random variable Bt . The realization b
occurs with probability

pb = [δb0,0(1 − p) + δb0,1 p]
m−1∏
t=0

Tbt+1bt , (15)

using pb as shorthand notation for p(B0 = b0, B1 = b1, . . .).
With the above expression, it can be seen with an explicit
calculation that, also from the realization viewpoint, the
marginalized, time-local probability that the fluctuator is ex-
cited at time t is

p(Bt = 1) =
∑

{b : bt =1}
pb = p, (16)

independent of t and κ .

B. Circuit fidelity

Consider the circuit fidelity F = 〈ψ |ρ|ψ〉 between the
noiseless output state |ψ〉〈ψ | of a VQA’s quantum circuit
and the noisy output state ρ of that same quantum circuit.
If we assume that a single error operator V (Figs. 1 and 2)
occurring during the circuit leads to an output state that is
orthogonal to the noiseless output state of that circuit, we have
in the temporal fluctuator model that F = (p0m )n. Here, p0m

is the probability that no error occurs during the m layers of
the circuit, and n is the number of qubits. The probability
p0m is computed straightforwardly with Eq. (15) [53]. For
uncorrelated errors, we have F = (1 − p)mn, whereas for fully
correlated errors, we have F = (1 − p)n. Thus, one may ex-
pect an increasing circuit fidelity with increasing correlation
strength, and therefore an improvement of the performance of
VQAs with increasing correlation strength.

The corresponding formulas for the circuit fidelity F in the
spatial fluctuator model are obtained by interchanging m and
n. Thus, in the case of strong correlations and deep circuits
(m > n), we expect a lower circuit fidelity in the spatial fluc-
tuator model than in the temporal fluctuator model. Therefore,
in the same case, we may expect a worse performance of
VQAs in the spatial fluctuator model than in the temporal
fluctuator model. Therefore, in the same case, we may expect
a worse performance of VQAs in the spatial fluctuator model
as compared with in the temporal fluctuator model. Because
mn > m, n, we expect an even worse performance in the case
of fully uncorrelated errors.

However, since one error operator V may cause an output
state that is not exactly orthogonal to the noiseless output
state, the above discussion merely puts a lower bound on
the circuit fidelity. Furthermore, even if the circuit fidelity
is exactly known, it merely puts a bound on the AR, which
may be loose [54]. Additionally, it is not clear a priori how
the variational parameters may change due to the noise and
the correlations thereof. Finally, because of the breakdown of
quantum error correction in the presence of strongly corre-
lated noise, one might expect a decrease in the performance
of VQAs with increasing correlation strength. In the next sec-
tion, we therefore derive analytical expressions for the effects
of the fluctuator error models on the AR. These are valid in the
regime of small error probability and do not account for any
possible noise-induced change in the optimal variational pa-
rameters. In the section thereafter, we show numerical results
that are valid outside the regime of small error probability
and account for a possible noise-induced change in optimal
variational parameters.

C. Expectation values

Directly after the fluctuator has transitioned from bt−1 to
bt , the unitary error operator V is applied to the associated
qubit, conditioned on the state of the fluctuator. The transition
and the controlled unitary do not change the reduced state of
the fluctuator, but correlations are built up by the controlled
unitary nevertheless. At the end of the circuit, all fluctuators
are traced out. Let U1, . . . ,Um be the layers of a quantum
circuit (where U1 denotes the layer that is applied first) and
let ρ be its initial state. In QAOA, these layers will depend
on the variational parameters γ , β, but in this section, their
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dependence on these parameters is mostly suppressed. The
effect of a single fluctuator f in the temporal fluctuator model,
at the end of the circuit and after tracing out the fluctuator, is
described by the noisy circuit

Ũ f (ρ0) =
∑

bf

pbf Ũbf ρ0 Ũ †
bf , Ũbf =

1∏
t=m

Vbf
t
Ut , (17)

with pbf as in Eq. (15) (after substituting b → bf ), Ũbf be-
ing the circuit in case of noise realization bf , and ρ0 =
(|+〉〈+|)⊗n being the initial state. Here, Vbf

t
is an operator act-

ing immediately after time t and immediately before the gates
Ut+1 on the qubit associated with f , with V0 ≡ 1, V1 ≡ V . [In
Eq. (17), the product ordering is such that U1 appears on the
right. When Ũbf is applied to a state, the first operator that acts
on that state is U1.]

Because the n realization probability distributions {pbf } f

are independent and identically distributed, their combined
effect on the output state is

Ũ (ρ0) =
∑

b

pbŨb ρ0 Ũ †
b , (18)

with

pb =
1∏

f =n

(pbf ), Ũb =
1∏

t=m

(Vbt Ut ), Vbt =
1∏

f =n

(
Vbf

t

)
. (19)

In the spatial fluctuator model, we again have Eq. (18), but
with

pb =
1∏

t=m

(pbt ), Ũb =
1∏

t=m

(Vbt Ut ), Vbt =
1∏

q=n

(
Vbt

q

)
. (20)

In the spatial model, the different fluctuators carry the label t .
Fluctuator t transitions from the state bt

q to bt
q+1 as it “moves”

from qubit q to q + 1.
Returning to the temporal fluctuator model, we define the

susceptibility of the cost function to noise at optimal varia-
tional parameters (as found by QAOA) as χ = (d〈H〉/d p)p=0,
with tr[ρ(γ∗

0,β
∗
0 )H] ≡ 〈H〉 for short. Using χ , we may write

the first-order approximation to the AR, which we call the
linearized AR, as

ARlin(p) = AR(0) + p
χ

C∗ , (21)

where we have by Eq. (17) that

χ =
∑

b

d pb

d p

∣∣∣∣
p=0

tr(Ũb ρ0 Ũ †
b H ). (22)

In this section, we are mainly interested in χ , for which no
approximations are made. The linearized AR, which approx-
imates the AR up to an error O(p2) as p goes to zero, is
introduced for later reference.

Since pb [Eq. (15)] is some explicit polynomial in p and
κ , it is clear that the derivative with respect to p at p = 0 can
be computed analytically. The resulting expression for χ is
derived in Appendix A. The expression becomes especially
clear in the limits of no correlation (κ = 0) and full correlation
(κ = 1),

χ (a)
κ = |B1+aδκ1 |{〈H〉(1+aδκ1 ) − 〈H〉0}, (23)

where a = m for fully temporally correlated errors, and a =
n for fully spatially correlated errors. Here, B� is the set
of realizations b where exactly one fluctuator has exactly
one chain of � contiguous excitations (no other excita-
tions in any fluctuator present), 〈H〉(�) is the expectation
value of H given realization b, averaged over all b ∈ B�,
and 〈H〉0 is the expectation value of H in the noiseless
case.

For fully temporally correlated errors, we have the prefac-
tor |B1+m| = n, for fully spatially correlated errors, |B1+n| =
m, and for fully uncorrelated errors |B1| = n(m + 1). So,
roughly speaking, there are two effects that determine whether
we should expect χ0 > χ1 or χ0 < χ1. On the one hand, one
expects that, (i) on average, the detrimental effect of a fully
correlated error, consisting of m consecutive errors (n adjacent
errors in the case of spatially correlated errors) on 〈H〉 is larger
than the detrimental effect of 1 error on 〈H〉. That is, one ex-
pects (〈H〉(m+1) − 〈H〉0) > (〈H〉(1) − 〈H〉0) and (〈H〉(n+1) −
〈H〉0) > (〈H〉(1) − 〈H〉0). On the other hand, (ii) there are
fewer ways in which a fully correlated error can happen: a
fully temporally correlated error can happen in n different
ways and a fully spatially correlated error can happen in m
different ways, whereas a single uncorrelated error can happen
in nm ways. [The latter still leads to a prefactor of |B1| =
n(m + 1) because of the way 〈H〉(1) is defined.] If the effect
(ii) is dominant, we expect that for deep circuits (m > n), the
AR is highest with fully temporally correlated errors, followed
by the AR with fully spatially correlated errors, followed by
the fully uncorrelated errors. This order of ARs would be
consistent with the expectations that follow from the fidelity
arguments in the previous section.

IV. NUMERICAL METHODS AND RESULTS

In this section, we present numerical data on the SWAP-
network implementation of QAOA (Fig. 3) under the influ-
ence of the temporal and spatial fluctuator models. As the
error operator V (Figs. 1 and 2), we choose the bit-phase-
flip error or Pauli-Y error. This choice is motivated by the
fact that Y is the only nontrivial single-qubit Pauli operator
that commutes with neither RZZ ′ nor RX . To exclude the
possibility that an increase in AR as a function of κ is due
to Y 2 = 1, which may occur, for example, due to Y oper-
ators being inserted at t = 1 and t = 2 on the first qubit,
we include an interaction between the fluctuator and its as-
sociated qubit only after the qubit was acted on by a RZZ ′
or RX gate. [Since, in SK models, ωi = 0, the entire circuit
(excluding measurement) consist of RZZ ′ and RX gates, as in
Fig. 3.]

Simulations were performed for 16 random SK instances
on n = 6 qubits, with r = 3 cycles (leading to m = 21 circuit
layers) and various values of p and κ . For each data point;
that is, for each combination of SK instance, type of fluctuator
model, p, and κ , a basin-hopping routine [55] was run 32
times to heuristically optimize the cost function landscape C̃.
The meta-parameters of the routine were the default values
as per SCIPY [56], but with four iterations and all initial
parameters γ , β chosen at random in the interval [−0.5 ×
10−3, 0.5 × 10−3). The randomness of the optimization rou-
tine on the one hand and the regularity of the outcomes on
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the other indicates that the optimization routine consistently
found the global optimum, as is discussed in detail in the
Supplemental Material [57].

The mixed state ρ ′ at the end of the quantum circuit was
obtained by full density-matrix simulation of all qubits and
fluctuators, tracing out all fluctuators before computing the
cost function C̃ = tr(ρ ′H ) (dependence on variational param-
eters suppressed). With the full density matrix at hand, the
computation of the cost function at given p, κ and varia-
tional parameters is free of shot noise and thus essentially
exact. The simulator itself was obtained by extending the
simulator used in Ref. [58] with the functionality of density-
matrix simulation of mixed quantum-classical registers. All
code used to generate the results in this work, including
the code of the simulator, is available as Supplemental
Material [57].

We find qualitatively equal results for all 16 random prob-
lem instances. In this section, we report on the results for
one typical instance. Details on its typicality and on the other
15 instances are found in Appendix C and the Supplemental
Material [57].

We first present the numerical results regarding the noise-
adaptivity, followed by our results on the dependence of the
AR on the correlation strength κ . Figure 4 shows the AR as
a function of p at fixed κ ∈ {0, 1} for the typical instance,
obtained under the temporal and spatial fluctuator models.
Increasing p away from zero, we observe a linear decrease
of the AR, with excellent agreement between the AR, the
noise-unaware AR, and the linearized AR. In this sense, no
robustness of QAOA against errors of the three types is ob-
served around p = 0.

For uncorrelated noise, a divergence between the AR and
the noise-unaware AR is observed at puncor

crit = (3.9 ± 0.1) ×
10−3. This coincides with an abrupt jump in the otherwise
slowly varying optimal parameters (see Supplemental Ma-
terial [57]). This shows that, as p is increased away from
zero, initially no other local minimum of the cost function
becomes available and that the location of the initial mini-
mum is approximately constant. For p > puncor

crit , for the first
time, a remote lower local minimum becomes available. This
new local minimum remains the lowest local minimum as
found by QAOA until p = 0.015 ± 0.005. Similar first critical
points, not visible in the plot because of the scale, occur at
ptemp

crit = 0.077 ± 0.001 for fully temporally correlated noise,
and at pspat

crit = 0.013 ± 0.001 for fully spatially correlated
noise. For noise that would break the symmetry of the cost
function landscape, a divergence between the noise-aware
AR and the noise-unaware AR would already be expected
at p = 0 [24].

An increase of the noise-aware AR in the case of fully
spatially correlated errors is seen after p ≈ 0.2. This effect
may arise because the noise creates a mixture of states, some
of which may have a favorable cost. Then, increasing the
error probability may in some cases lead to an increase in
the AR. This effect is perhaps best illustrated by a simple
example. Consider a trivial version of QAOA, with a single
qubit in the initial state |+〉, no variational circuit, and Hamil-
tonian H = Z , under the effect of the error channel ρ 
→ (1 −
p)ρ + RY (π/2) ρ RY †(π/2). Then, with RY (π/2)|+〉 = |1〉,

FIG. 4. The approximation ratio (AR), obtained by the noisy
SWAP-network implementation of QAOA for a typical problem in-
stance (see Appendix C), for 0 � p � 0.5 (top) and 0 � p � 0.01
(bottom), at fixed correlation strength κ . Results are shown for fully
temporally correlated errors (orange), fully spatially correlated errors
(green), and fully uncorrelated errors (blue). Open circles show the
noise-aware AR [Eq. (6)], whereas the filled circles show the noise-
unaware AR [Eq. (7)]. The linearized AR [Eq. (21)] is displayed
as a dashed gray line for visibility, irrespective of the noise model
and correlation strength. Light gray lines at p ∈ {0.001, 0.01} are
for later reference. Error bars are absent because of the use of full
density-matrix simulation. The AR in the case of random guessing is
exactly zero (Sec. II).

the cost function “landscape” after the error channel is C̃ =
−p. That is, in this example, AR(p) = p.

We now discuss the numerical data and results on the
dependence of the AR on the correlation strength. Our con-
clusion that error correlations can be beneficial for VQAs such
as QAOA is based on these data, together with the analytical
results of Sec. III C and the additional data in the Supplemen-
tal Material [57]. In addition to data on uncorrelated errors,
Fig. 4 shows data on the extreme cases of fully temporally
and fully spatially correlated errors. Out of the three types of
correlation (uncorrelated, temporal, spatial), the AR is highest
for fully temporally correlated errors. Second in AR comes
the fully spatially correlated errors, followed by the AR for
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FIG. 5. The approximation ratio (AR) for a typical problem in-
stance (see Appendix C), as a function of the correlation strength
κ , at fixed p = 0.001 (upper lines and crosses) and p = 0.01 (lower
lines and crosses). Note that the correlation time τ and the correlation
length λ are monotonically increasing functions of κ [Eq. (14)]. At
κ = 0, errors are fully uncorrelated, whereas at κ = 1, errors are
fully correlated. The values for p correspond to the vertical lines
in Fig. 4. Definitions are as in Fig. 4, except for the linearized AR,
which is now displayed with crosses. At κ = 0, the temporal fluc-
tuator model is equivalent to the spatial fluctuator model, and hence
only two black crosses are shown at κ = 0, the upper one showing
the linearized AR at p = 0.001, and the lower one showing the same
at p = 0.01. For visibility, at κ = 1, crosses are black irrespective of
the type of fluctuator model and p. From top to bottom, they describe
the linearized AR at p = 0.001 for the temporal fluctuator model
and spatial fluctuator model, followed by the linearized AR for the
temporal fluctuator model and spatial fluctuator model at p = 0.01.

uncorrelated errors. This shows that, for the cases studied
here, effect (ii) in Sec. III C is dominant for small p. The order
of the ARs remains unchanged for all p considered, indicating
that the same effect plays a role for all p [59].

After having discussed these extreme cases, we now take a
closer look at the effects of partially correlated errors. Figure 5
shows the AR as a function of κ at fixed p ∈ {0.001, 0.01} for
both fluctuator models. These values for p are chosen because
typical two-qubit error probabilities roughly fall within the
range 0.001 � p � 0.01 [60–62]. The data suggest that the
noise-aware AR is highest for temporally correlated errors,
and that the increase in the AR as a function of κ is monotonic
for all fluctuator models and p considered. At p = 0.001,
excellent agreement between the noise-aware AR, the noise-
unaware AR, and the linearized AR is shown for all 0 � κ �
1 considered. At p = 0.01, κ = 0, the agreement between the
AR, the noise-unaware AR, and the linearized AR has been
broken, as was already apparent from Fig. 4. In Fig. 5, we
see how the first critical p depends on κ; p = 0.001 is below
pκ

crit for both fluctuator models and any 0 � κ � 1. In the
spatial fluctuator model, p = 0.01 is above pspat,κ

crit for all 0 �
κ � 1. In the temporal fluctuator model, p = 0.01 is below
ptemp,κ

crit for κ below roughly 0.7, and above ptemp,κ

crit for κ above
roughly 0.7.

V. DISCUSSION

We studied the performance of QAOA under temporally
and spatially correlated errors using a physically inspired toy
error model. In the model for temporally correlated errors,
each qubit interacts with one independent classical fluctuator
during a quantum computation. In the model for spatially
correlated errors, after each gate time, all qubits interact with a
single fluctuator that is reset before the next gate time. As the
fluctuator moves through time (temporal model) or space (spa-
tial model), it undergoes an internal time evolution described
by a Markov process. Using the Markov formulation, we
showed that the spacetime-local marginalized error probabil-
ity p is independent of the correlation strength of the Markov
chain, and how the latter can be varied from zero to infinity.

We showed that, to first order in the local error probability
p, the effect of the fluctuator error models on QAOA’s cost
function landscape has two competing factors. On the one
hand, (i) the detrimental effect of a single correlated error may
be worse than the effect of a single uncorrelated error, but on
the other, (ii) there are far fewer ways in which a correlated
error may act. For example, a fully temporally correlated error
(that is, the error operation V , defined in Figs. 1 and 2, is
inserted after each gate time) during a circuit acting on n
qubits can happen in n ways, a fully spatially correlated error
(i.e., an error operation V is inserted at every qubit) during a
circuit of depth m can happen in only m ways, whereas a fully
uncorrelated error (i.e., a single error operation V is inserted
anywhere in the circuit) can happen in nm ways.

We numerically simulated QAOA for 16 random SK prob-
lem instances on 6 qubits. For all instances, we observed
an increase in the performance of QAOA with correlation
strength at all p, indicating that effect (ii) is dominant [63].
As a separate effect, in all instances and at all correlation
strengths, we observed the existence of critical local error
probabilities after which the noise-aware approximation ratio
is higher than the noise-unaware approximation ratio. This
shows QAOA can in some cases adapt to the effects of un-
correlated and correlated errors, given that error probabilities
are above a threshold. It remains an open question how this
threshold behaves as the number of qubits is increased to
the numbers required for a practical quantum advantage. The
noise resilience of QAOA may be seriously limited if the
noise-adaptivity threshold increases with n.

Our work does not show that correlated errors are benefi-
cial to QAOA; adding correlated errors on top of local errors
will almost certainly result in a reduction in the performance
of QAOA. What our work indicates is that it is not correlation
in itself that has a negative effect on QAOA. To improve
current hardware to the point that it can demonstrate a use-
ful quantum advantage, a reduction of both uncorrelated and
correlated errors remains necessary.

The error model used in this work is minimalistic, but we
do not expect that the qualitative results of our work depend
on the details of more complicated or realistic noise models.
A first limitation of our noise model is that it is ultimately a
stochastic unitary error model, where unitary error operations
are inserted into the circuit according to some (correlated)
probability distribution [Eq. (18)]. Not all quantum channels
are of this type, such as the amplitude damping channel,
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but they can be transformed into an effective stochastic error
model (specifically, a stochastic Pauli error model) by the pro-
cess of Pauli twirling [35,64]. As a result, if QAOA is run on a
real quantum device with added Pauli twirling operations, the
physical noise experienced during the quantum computation
will effectively be formed by stochastic Pauli errors, thereby
also reinstating the symmetries of the SK QAOA cost function
landscape derived in Appendix B.

A second limitation of our noise model is that all stochastic
error unitaries inserted into the circuit are equal. Although
allowing, e.g., gate-dependent errors would result in a more
realistic noise model, we expect that our results would not
be qualitatively affected. This is because we expect the states
during the ansatz circuit to be sufficiently spread out over the
Hilbert space, and to vary enough from circuit layer to circuit
layer, that the choice of error operation V is irrelevant as long
as it does not fully commute with the gates in the ansatz cir-
cuit. If, on the other hand, the error operator were to commute
with, for example, the RZZ gates, it would effectively lead to
one layer of error operations per circuit cycle, coarsening the
error model.

A final limitation of our error model is that it only considers
error correlations with an exponentially decaying correlation
function [Eq. (13)]. This does not include scenarios in which
the correlations decay as a power law. However, it is important
to note that if our model were to be expanded to accommodate
power-law correlations, it would be equivalent to the current
model in the cases of uncorrelated and fully correlated errors,
therefore leaving Fig. 4 unaltered. The same holds for errors
with a 1/ f spectral density. Additionally, 1/ f noise has a cor-
relation function proportional to Ei(− f0|t |) = O(e− f0|t |) [45],
with f0 a low-frequency cutoff. Hence, a low-frequency cutoff
introduces a timescale that confines correlations to within a
finite time span, much like the correlations in our model.

Lines for future work include the study of the generality of
our results. It is a priori not clear if similar effects hold in more
general models of temporally and spatially correlated noise,
or if they hold for other VQAs. If they do, the experimental
requirements on noise correlation strengths may not be as
stringent as previously thought, bringing a useful quantum
advantage within closer reach.

Code and data is available as Supplemental Material [57]
and at GitHub [65].
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APPENDIX A: COST FUNCTION LANDSCAPE NOISE
SUSCEPTIBILITY

Here, we analytically compute χ [Eq. (22)], the derivative
of the cost function landscape C̃ [Eq. (2)] (at fixed variational
parameters) to the local error probability p at p = 0. The only
assumption on C̃ is that it is obtained using a circuit that is

acted upon by our fluctuator models with noise parameters p
and κ (Figs. 1 and 2).

Let us first consider a single fluctuator f . Denote the noise
realizations of that fluctuator by the bit string bf . Computing
the derivative of Eq. (15), we find

d pbf

d p

∣∣∣∣
p=0

=
m+1∑
�=1

m+1−�∑
i=0

δbf ,0i1�0ki� (1 − κ )2−δi,0−δki�,0κ�−1

− δbf ,0[m(1 − κ ) + 1], (A1)

with ki� = m + 1 − i − � the number of zeros that need to be
appended to the bit string 0i1� to make it a bit string of length
m + 1.

Moving to n fluctuators, we have by Eq. (19) that

d pb

d p

∣∣∣∣
p=0

=
n∑

f =1

δb1...bf −1,0

(
d pbf

d p

)
p=0

δbf +1...bn,0. (A2)

Then, with the definition 〈H〉b = tr(Ũb ρ0 Ũ †
b H ), we have by

Eq. (22), that

χ =
∑

b, f ,�,i

δ̃b, f ,�,i(1 − κ )2−δi,0−δki,�,0κ�−1〈H〉b

− n[m(1 − κ ) + 1]〈H〉0, (A3)

with δ̃b, f ,�,i = δb1...bf −1,0δbf ,0i1�0ki� δbf +1...bn,0, and where the sum
is over all b, i, j, f , in the ranges as described before. Note
0 = 00 . . . 0 has varying dimension depending on context. We
can write the previous expression for χ more schematically as

χ =
∑

b

[(1 − κ )h(b)κ�(b)−1〈H〉b]

− n[m(1 − κ ) + 1]〈H〉0, (A4)

where the sum is over all realizations b where exactly one
fluctuator has exactly one chain of consecutive excitations
(and no other excitations), h(b) ∈ {0, 1, 2} is the number of
transitions 0 ↔ 1 in b, and �(b) � 1 is the length of the chain.

The average contribution of chains of errors of length �

to χ schematically reads 〈H〉(�) ≡ 1
|B�|

∑
b∈B�

(1 − κ )h(b)〈H〉b,
where the set B� contains those realizations b where exactly
one fluctuator has exactly one chain of excitations of length �,
and where we have absorbed the boundary effects (1 − κ )h(b)

into 〈H〉(�). With this definition, the susceptibility becomes

χ =
m+1∑
�=1

(|B�|κ�−1〈H〉(�) ) − n[m(1 − κ ) + 1]〈H〉0. (A5)

APPENDIX B: COST FUNCTION LANDSCAPE
SYMMETRIES FOR SHERRINGTON-KIRKPATRICK

PROBLEM INSTANCES

Here, we prove that a certain set of transformations of
the parameters of the QAOA SK cost function landscape
generates a symmetry group of the cost function landscape.
Note that the SK Hamiltonian is given by Eq. (1) with ωi j ∈
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{1,−1}, ωi = 0 and that hence the Hamiltonian itself pos-
sesses a global Z2 symmetry. Additionally, because ωi = 0,
the ansatz circuit [Eq. (3), Fig. 3] does not contain RZ gates.
The numerical data available in the Supplemental Material
[57] suggest that the transformations derived in the current
appendix generate the entire symmetry group of the cost
function landscape. The symmetries are not broken under a
general class of noise models that we call the spatiotemporally
correlated Pauli noise channels. The main application of the
results in this section is that they allow for the comparison of
optimal variational parameters modulo the symmetries of the
cost function landscape.

1. Symmetry group

The class of Pauli channels contains all channels of the
form

�(ρ) =
∑

a

paPa ρ P†
a , (B1)

with pa being a probability distribution, and {Pa}a being tensor
products of the Pauli operators {1, X,Y, Z}, also referred to
as Pauli words. Note that Pauli channels have a stochastic
interpretation: with probability pa, the Pauli word Pa acts
on ρ. We generalize this to circuits with multiple layers
and insert Pauli words according to a correlated probability
distribution.

Definition B.1. (Spatiotemporally correlated Pauli chan-
nels) Let U = Ug · · ·U1 be a noiseless quantum circuit
consisting of the unitaries {Ui}i. The spatiotemporally corre-
lated Pauli channels are of the form

�(ρ) =
∑

a

paŨa ρ Ũ †
a , (B2)

with

Ũa =
1∏

i=g

(PaiUi ) (B3)

being the circuit realization in case of noise realization a.
Spatiotemporally correlated Pauli channels effectively in-

sert Pauli operations into the circuit stochastically and can
hence be considered to be a form of stochastic unitary error,
where all unitaries are Pauli operators and where the proba-
bility distribution may be correlated in space and time. The
fluctuator models of the main text are spatiotemporally corre-
lated Pauli channels if the error operation V is a Pauli operator.
Note that if a set of transformations generates a symmetry
group of the cost function landscape, also the inverses and
any composition of those transformations form symmetries of
the cost function landscape.

Lemma B.1. Any n-qubit QAOA SK cost function land-
scape C̃(γ,β), obtained using any number of SWAP gates
while the ansatz circuit was acted upon by any spatiotem-
porally correlated Pauli channel, is invariant under the group
generated by the following transformations:

(1) translation of any γk by 2π ;
(2) translation of any βk by 1π ;
(3) negation of any βk (i.e., βk 
→ −βk) and simultaneous

translation of γk and γk+1 by π (for the last β parameter; that

is, the edge case k = r, only γk = γr needs to be translated by
π );

(4) simultaneous negation of all parameters.
Proof. Let us first assume the QAOA circuit is imple-

mented in the absence of noise. In the following, we consider
two states or two unitaries equal if they are equal up to a global
phase. The first generator follows directly from the periodicity
of RZZ (γ ) with period 2π . For the second generator, note
that RX (β ± π ) = X RX (β ). Thus, sending βk 
→ βk ± π has
the same effect on the ansatz state as adding a layer of X
gates immediately before the layer of RX gates of the cycle
k. Now, note that the layer of X gates commutes with all
RZZ gates, any SWAP gates, and all layers of RX gates at
all cycles of the ansatz circuit. Thus, we may commute the
layer of X gates all the way to the beginning of the circuit and
act with it on the initial state, resulting in X ⊗n|+〉⊗n = |+〉⊗n.
Thus, the ansatz state |γ,β〉 is invariant under βk 
→ βk ± π

for any k, and consequently C̃(γ,β) is invariant under these
transformations.

For the third generator, note that RZZ[±′(γ ±′′ π )] =
(Z ⊗ Z ) RZZ[±′(γ ±′′ π )]. (The signs ±′ and ±′′ are inde-
pendent.) Thus, sending γk 
→ γk ±′ π has the same effect
as adding Z ⊗ Z to the circuit immediately after each RZZ
gate in the Hamiltonian stage of the cycle k. Note that ZiZ j

commutes with RZZkl (x) for all x, i, j, k, l and that any SWAP

gate can be seen as permuting qubit indices, not changing
the number of times a qubit is acted on by an RZZ gate.
We may now commute all excess Z gates that arose from
the shift γk 
→ γk ±′′ π to immediately before the layer of
RX gates of cycle k. At this layer, each qubit is now acted
on by an odd number of Z gates, which is equal to the sit-
uation where each qubit is acted on by a single Z gate. We
can do the same for the cycle k + 1 of the ansatz circuit,
sending γk 
→ γk ±′′ π , but now moving the resulting Z gates
to immediately before the layer of RX gates of the cycle
k. Using Zi RXi(βk )Zi = RXi(−βk ) on all qubits proves the
standard case of generator 3. For the edge case k = r, sending
γr 
→ γr ±′′ π results in a layer of Z gates immediately before
the last layer of RX gates. Commuting this layer through the
last layer of RX gates sends βr to −βr . Noting that the layer
of Z gates commutes through (any term of) H , and thus that
〈γ,β|Z⊗nHZ⊗n|γ,β〉 = 〈γ,β|H |γ,β〉 = C̃(γ,β), completes
the proof of generator 3 (in the noiseless case).

The fourth generator follows because (in the computational
basis) (i) any gate in the ansatz is generated by a real Hamilto-
nian, (ii) the Hamiltonian used in QAOA is real, and (iii), the
initial state is real. Both U (θ ) = RX (θ ) and U (θ ) = RZZ (θ )
are generated by real Hamiltonians [i.e., statement (i) holds].
Thus, for both operators, U T (θ ) = U †(−θ ) and, likewise,
U †T(θ ) = U (−θ ). From (ii) and (iii), it follows that HT = H
and (|+〉n)T = 〈+|n. Let the sequence of gates in the ansatz
be given by �1

i=gUi(θi ), with g being the number of gates in
the ansatz, and note that trivially x = xT for x a real number.
Then,

C̃(γ,β) = (〈+|n[�g
i=1U

†
i (θi )

]
H

[
�1

i=gUi(θi )
]|+〉n

)T

= 〈+|n[�g
i=1U

†
i (−θi )

]
H

[
�1

i=gUi(−θi )
]|+〉n

= C̃(−γ,−β). (B4)
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This completes the proof of Lemma B.1 in the noiseless
case.

In case the ansatz circuit is acted upon by a spatiotempo-
rally correlated Pauli error channel,

C̃(γ,β) =
∑

a

pa〈+|⊗nŨ †
a (γ,β)H Ũa (γ,β)|+〉⊗n

:=
∑

a

paC̃a(γ,β). (B5)

So, to show that C̃(γ,β) is invariant under the transformations
generated by generators 1–4, it suffices to show that C̃a(γ,β),
the cost function in case of realization a, is invariant under
those transformations for all noise realizations a.

Transformation 1 trivially leaves C̃a(γ,β) invariant under
any spatiotemporally correlated Pauli error channel. To show
that the transformations 2 and 3 leave C̃a(γ,β) invariant under
the same type of channel, consider Ua(γ,β), the circuit in case
of noise realization a. Note that any Pauli operator either com-
mutes or anticommutes with both the layer of X gates arising
from any the parameter shift RX (β ± π ) = X RX (β ), and
any Z ⊗ Z operators originating from RZZ[±′(γ ±′′ π )] =
Z ⊗ Z RZZ[±′(γ ±′′ π )]. Hence, we can use the noiseless
proofs of generators 2 and 3 to show that Ca(γ,β) is invariant
for all a if we make the additional observation that any overall
factors of −1, arising from anticommutativity, have no effect
on the expectation value Ca(γ,β).

To show that generator 4 leaves C̃a(γ,β) invariant, note
that RZZi j = RZZji, and that RZZ (θ )Pi = Pi RZZi j (−θ ), if
Pi = Xi or Pi = Yi, and RZZi j (θ )Pi = Pi RZZi j (θ ) if Pi = Z .
Likewise, RX (θ )P = P RX (−θ ) if P = Y or P = Z , and
RX (θ )P = P RX (θ ) if P = X . Commuting all Pauli opera-
tors arising from an error realization to the beginning of the
circuit, we obtain Ũa(γ,β) = U0(γ̃, β̃)P, with P some tensor
product of Pauli operators, Ũ0 the noiseless circuit realization,
and where γ̃, β̃ can be determined explicitly using the afore-
mentioned commutation relations. Thus, Ua(γ,β)|+〉⊗n =
U0(γ̃, β̃)|ψ〉, with |ψ〉 a state with real entries. Hence, con-
ditions (i)–(iii) used in the noiseless proof of generator 4 are
satisfied, and therefore Ca(γ,β) = Ca(−γ,−β). �

2. Parameter representatives

Due to the symmetries of the SK QAOA cost function
landscape, two unequal sets of parameters � = (γ,β) and
�′ = (γ ′,β′) may be deemed equivalent if there exists a group
element from the symmetry group of the QAOA SK cost func-
tion landscape that maps � to �′. This defines equivalence
classes of sets of parameters. Algorithm 1 maps each set of
parameters � to a unique representative A(�) of the equiv-
alence class that set of parameters is in. Thus, the Euclidean
distance D between � and �′, modulo the symmetries of the
cost function, may be defined as

D =
√∑

i

[A(�)i − A(�′)i]
2. (B6)

This is the procedure used in the Supplemental Material [57]
to plot the distance D between the noise-unaware parameters
and the noise-aware parameters.

Algorithm 1. The algorithm that removes the redundant
freedom that is caused by symmetries of the QAOA SK
cost function landscape. It does so by mapping each set of
parameters to a unique class representative.

APPENDIX C: INSTANCE PROPERTIES

The instance reported on in Sec. IV is

H =
∑
i< j

ωi jZiZ j, (C1)

with

ω =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 +1 −1 +1 +1 −1
0 0 +1 −1 +1 +1
0 0 0 −1 −1 −1
0 0 0 0 −1 −1
0 0 0 0 0 +1
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C2)

We can write the data defining the instance more compactly by
gathering and concatenating the factors ±1 from left to right
and top to bottom. If we additionally make the identification
(+1,−1) 
→ (0, 1), we obtain the instance bit string

ω̃ = 010010100111110. (C3)

In general, the instance bit string of a SK model on
n qubits contains nω̃ = n(n − 1)/2 bits and reads ω̃ =∏n−1

i=1

∏n
j=i+1[(1 − ωi j )/2]. Here, the product acts by con-

catenation (not multiplication) and the bit string is built up
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TABLE I. The random instances and some of their properties. None of the 16 graphs are mutually isomorphic, except for those noted with
an asterisk.

Instance bit string Graph class cardinality GS manifold GS energy Cost fn. landscape class

000100100011110 360 010101 −7 0

001100110101110 180 001001 −9 1
001111110000010 720 011010 −9 1
010011011101010 180 010010 −9 1

001111011010001 720 011011 −9 2
010100101011100 360 010101 −9 2
100010101000100 360 001110 −9 2
110010010101000 720 010010 −9 2

010010100111110* 720 010000, 010110 −7 3
011100011010011 360 010011, 010101 −7 3
100110010001101 720 001001, 001100 −7 3
101100001010110 360 001010, 010001 −7 3
111011011000010* 720 000010, 011010 −7 3
111100111011001 360 000100, 001011 −7 3

011101001011100 180 011001 −11 4

110101111100011 72 000000, 000011, 000101 −5 5
001100, 010111, 011101

from left to right [i.e., if n = 6, ω̃1 = (1 − ω1,2)/2, ω̃2 =
(1 − ω1,3)/2, . . . , ω̃15 = (1 − ω5,6)/2].

We sampled 16 random SK problem instances (including
the one above) on n = 6 qubits by sampling 16 bit strings
of length 15 uniformly at random. Table I lists the following
properties of these instances.

(1) Instance bit string.
(2) Graph class cardinality. Many of the 2nω̃ SK Hamilto-

nians on n qubits are equivalent up to a relabeling of the qubit
indices. That is, many of the SK graphs with n nodes, obtained
by interpreting the ωi j as entries of an adjacency matrix, are
isomorphic. Indeed, for n = 6, we found by a brute-force
method that the 2nω̃ = 32 768 SK graphs fall into 156 dif-
ferent equivalence classes, where equivalence is defined by
graph isomorphism. The graph class cardinality is the number
of distinct graphs in a graph class. The highest occurring
class cardinality is 720, and there are 8 classes attaining this
cardinality. From the 16 random graphs we generated, only
the graphs with instance bit strings 010010100111110 and
111011011000010 are in the same class (i.e., isomorphic).
The class they belong to has the highest occurring cardinality
of 720.

(3) Ground-state manifold. We indicate the ground-state
manifold of the SK instances by lists of bit strings. The list of
an instance is related to the instance’s ground-state manifold
GS by GS = span(∪i{|i〉, |ī〉}), where i ranges over all bit
strings in the list and ī indicates the negation of i. It follows
from [X ⊗n, H] = 0 that |ī〉 is in the ground-state manifold if
|i〉 is in the ground-state manifold.

(4) Ground-state energy. The energy EGS of any state in
the ground-state manifold.

(5) Cost function landscape class. Consistent with
QAOA’s cost function landscape concentration [66], we find

that two nonisomorphic SK instances may have identical cost
function landscapes (up to numerical precision) at n = 6, d =
3, p = 0. We consider two SK instances to be in the same cost
function landscape class if their cost function landscapes are
identical. The 16 random SK instances studied in this work,
of which only two are isomorphic, fall into 6 distinct cost
function landscape classes.

Cost function landscape equivalence is established numer-
ically by the comparison of cost function landscape values
at 64 random points in parameter space. We deem a pair of
SK instances equivalent to numerical accuracy if their cost
function landscape values differ by less than 10−14 in absolute
value across all 64 random points. We found that, by this
criterion, the set of pairs of instances that lie in the same
cost function landscape class is well separated from the set
of pairs of instances that do not. (For each pair of instances
in the same cost function landscape class, there is no point
in parameter space among the 64 sampled points where the
pair’s cost functions differ by more than 10−4. For each pair
of instances not in the same cost function landscape class, we
found that there is at least one point in parameter space where
their cost functions differ by more than unity.) Increasing
the error probability p breaks the cost function equivalence.
The data presented in the Supplemental Material [57] show
that this does not lead to qualitative differences in the AR of
instances in the same cost function landscape class.

In the main text, we have shown the data pertaining to
the SK instance with instance bit string 010010100111110.
We consider this instance typical because it falls into a graph
class with the highest possible cardinality and because the
qualitative performance of QAOA on this instance is largely
equal to the qualitative performance of QAOA on all other
sampled instances.
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