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Abstract
The performance and scalability of silicon spin qubits depend directly on the value of the
conduction band valley splitting (VS). In this work, we investigate the influence of electromagnetic
fields and the interface width on the VS of a quantum dot in a Si/SiGe heterostructure. We propose
a new three-dimensional theoretical model within the effective mass theory for the calculation of
the VS in such heterostructures that takes into account the concentration fluctuation at the
interfaces and the lateral confinement. With this model, we predict that the electric field is an
important parameter for VS engineering, since it can shift the probability distribution away from
small VSs for some interface widths. We also obtain a critical softness of the interfaces in the
heterostructure, above which the best option for spin qubits is to consider an interface as wide as
possible.

1. Introduction

The weak spin–orbit coupling and the nuclear zero-spin isotopes of silicon and germanium make Si/Ge
quantum dots (QDs) an ideal host for semiconductor spin qubits [1, 2], allowing for long relaxation [3–5]
and dephasing [6–8] times. Experiments in silicon structures have demonstrated high fidelities for single and
two-qubit gates [9–15], entanglement of three-spin states [16], and a strong coherent coupling between a
single spin and single microwave-frequency photons [17, 18]. However, the degeneracy of the conduction
band minima (valleys) of bulk silicon limits the performance of quantum information processing because
the less coherent valley degree of freedom competes with the spin as a low-energy two-level system. The
valley degeneracy is lifted in QDs in Si/SiGe heterostructures due to biaxial strain and a sharp interface
potential, but the reported valley splittings (VSs) are often uncontrolled and can be as low as 10–100 µeV,
close to the thermal energy kBT as cryogenic temperatures T≈ 0.1− 1K and the spin (Zeeman) splitting
gµBB at B≈ 1 T [19–26]. One manifestation of the valley degeneracy consists in a very fast spin relaxation
which is observed when the VS becomes equal to the qubit Zeeman splitting, a phenomenon known as
spin-valley hotspot [4, 27]. On top of that, the VS of devices fabricated on the same heterostructure growth
vary wildly [28]. Such variability is a consequence of the random concentration fluctuations at the Si/SiGe
interfaces, which poses a challenge for the control of the VS.

The greatest values for the VS are obtained for very sharp interfaces with a thickness of⩽2 monolayers
(ML), but the fabrication of such interfaces is not realistic. Therefore, different proposals for the
enhancement of the VS in Si-based heterostructures were reported recently. Some of these proposals are
related to the increase of the Ge content inside of the Si quantum well, which can be done, e.g. by
introducing a low concentration of Ge [28], a single Ge layer [29], or an oscillating Ge concentration
[30, 31]. The enhancement of the VS in these proposals is related to the increase of the overlap between the
electron wave function and the Ge atoms. In [28] it was also suggested that a nonintuitive increase of the
interface width leads to an enhancement of the VS. However, a complete analysis of the VS as a function of
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the interface width is missing. As a consequence, it is an open question whether a realistically sharp interface
or a very wide interface is better for spin qubit applications.

The VS in Si-based heterostructures can be calculated either using atomistic techniques [32–34] or
effective mass theory [35–40]. While atomistic methods can in principle work with very few free parameters,
the advantage of effective-mass theories is that the results are straightforward and, in some cases, analytical,
while still agreeing with the other methods. The VS can be obtained from the envelope function of the
electronic wave function, and the effective mass theory is used to deduce this envelope function. Several
works have considered variational methods or an infinite potential barrier to obtain the envelope function,
but these methods are not accurate, e.g. when a strong electric field is present. The influence of
electromagnetic fields in the VS was predicted in reference [41], where a Si/SiGe interface and also an
interface between SiGe and an insulator layer hosting the gate electrodes were considered. However, the
calculations were restricted to an ideal step interface. A one-dimensional model that takes into account the
concentration fluctuations at the Si/SiGe interfaces was proposed recently [28], which does not take into
consideration the influence of the shape and location of the QD.

In this work we propose a new three-dimensional model within the effective mass theory for the
calculation of the VS of QDs in silicon-based heterostructures. The main idea of the model is to build up the
confinement potential along the QD growth direction by delta functions at the location of each Ge atom. In
this way, we can model the concentration fluctuations at the Si/SiGe interfaces and also take into account the
lateral confinement in the calculation of the VS, since we have now a three dimensional potential profile
given by the delta functions that are distributed in the three directions. With this model, we calculate the VS
as a function of the interface width and electromagnetic fields. Analysing the statistics of the VS, we show
that the electric field is an important parameter for VS engineering since it can, e.g. shift up the distribution
of VS for some interface widths. We also obtain a critical interface width, in such way that the best
configuration for spin qubit applications is an interface narrower than this critical value. However, if such
sharpness cannot be achieved, the best option is to fabricate devices with an interface that is as wide as
possible. Additionally, we obtain that an in-plane magnetic field has a very weak influence in the VS.

The remainder of this paper is organised as follows. In section 2, we explain in detail the theoretical
model that we are proposing here and use it to obtain the envelope function of states confined to the QD in
the SiGe/Si/SiGe heterosctructure. We consider first the case without a magnetic field, section 2.1, and then
with the presence of an in-plane magnetic field, section 2.2. In section 3, we obtain our results and discuss
the influence of the interface width and electromagnetic fields in the VS. The paper is summarised and
concluded in section 4. Two appendices were included to add more technical details about our theoretical
model and the numerical calculations performed here.

2. Model

We consider here a SiGe/Si/SiGe heterostructure that is grown along the ẑ direction, as can be seen in the
schematic cross-section in figure 1(a). A realistic heterostructure does not comprise ideal step Si/SiGe
interfaces, which were considered in previous works [35, 41]. Rather than an abrupt change in Ge
concentration, there is a smooth transition in the Ge concentration along the z direction. Having this in
mind, we divide the system in six regions: the upper and lower SiGe barriers, the Si well, the top and bottom
interfaces between Si and SiGe and the insulating region. Also, gates are used to trap and confine electrons in
the silicon layer and to induce an electric field in the ẑ direction. We consider, e.g. a Si layer of dw = 10 nm,
which is a typical width used in the fabrication of such devices [42, 43], that is located at−dw ⩽ z⩽ 0 and
that the interface between the upper SiGe barrier and the insulator region is at z= di = 46 nm.

The electron wave function can probe the random distribution of the Si and Ge atoms in the SiGe alloy
within the Si/SiGe interface region. Therefore, sample-to-sample fluctuations in the Ge concentration are
relevant for the electronic properties, and in particular for the distribution of VSs. We propose here a new
model for the calculation of the VS in such devices. The main idea is to replace, in the top and bottom
interfaces, the confinement potential in the z direction by a delta function potential at the location of each Ge
atom. Since the Ge atoms are distributed in three dimensions, the confinement potential U(x,y,z) depends
on all three spatial coordinates x, y, and z. The Hamiltonian in the absence of a magnetic field that describes
the envelope function of the system is given by

H=
p2x
2mt

+
1

2
mtω

2
xx

2 +
p2y
2mt

+
1

2
mtω

2
yy

2 +
p2z
2ml

− eFzz+U(x,y,z), (1)

wheremt = 0.19me andml = 0.98me are the transverse and longitudinal effective masses and ωx = 2ℏ/mtx20
and ωy = 2ℏ/mty20 are the confinement frequencies along x̂ and ŷ directions, with x0 and y0 being the size
(radius or semi-axis) of the QD along x̂ and ŷ.
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Figure 1. (a) Schematic cross-section of the SiGe/Si/SiGe heterostructure containing the QD. The system is divided into six
regions: the lower and upper SiGe barriers, the Si well, the top and bottom interfaces and the insulating layer. The±V gates are
responsible for the lateral confinement of the QD. (b) Th average electrostatic potential along the ẑ direction for two distinct
electric fields and interface widths, where Fz denotes the electric field and Ū the average potential induced by the potential
barriers. In all cases we consider Lb = Lt/2. The bars with different colors show the interface width, which is given by 5.4 · Lt.

We can separate the potential U in the six regions of the system. It will depend on x and y only in the top
and bottom interfaces. We assume that the SiGe regions have 30% of germanium on average, which is a
typical value. In this case, the energy offset between the conduction band minima in Si and SiGe is 150meV.
So, the potential in the SiGe barriers is U0 = 150 meV, while it is 0 at the silicon well region. In the insulator
region we take U→∞. Within the interfaces, we have that

UI(x,y,z) = λ
∑
i

δ(x− xi)δ(y− yi)δ(z− zi), (2)

where i labels the Ge atoms in the interface region and λ is a parameter of the model that quantifies the
strength of the interaction between a Ge impurity and a conduction-band electron.

We consider in all the results obtained here a total of 104 realizations of the random Ge atom positions
(xi,yi,zi). Each realization represents a random distribution of the Ge atoms at the interface. We assume that
in the x and y directions the Ge atoms are uniformly distributed, while in the z direction they are distributed
following a probability distribution function (PDF) given by a hyperbolic tangent function (further details in
appendix A). This means that we can replace the potential (2) by an average potential Ū, which is taken over
the 104 realizations, plus a fluctuation δU. Since the Ge atoms are distributed uniformly in the x and y
direction, Ū is constant in these directions. So, we have now that at the interface,

UI(x,y,z) = Ū(z)+ δU(x,y,z), (3)

where

Ū(z) =
U0

2
[tanh((−dw − z)/Lb)+ 1] +

U0

2
[tanh(z/Lt)+ 1], (4)

where Lb and Lt control the widths of the bottom and top interfaces, respectively. The case with Lb(t) = 0
means an ideally sharp step interface. The geometric width of the interface is given by 5.4 · Lb(t) (see A). In
figure 1(b) it is possible to see clearly how the parameter Lmodifies the width of the interface. We plot Ū for
two values of Lt and Fz, with Lb = Lt/2 in all cases. Even though we are modelling the smooth interface by a
hyperbolic tangent function, other functions can also be used [39].

It is important to mention that λ is not a free parameter of the model. In fact, it is fixed in such a way that
the average potential from various realizations of the potential (2) reproduces the potential (4). We find that
λ= 10 meV·nm3 reproduces the conduction band offset of U0 = 150 meV at the Si/Si0.7Ge0.3 interface. More
details can be seen in the appendix A. Furthermore, we consider in all results an elliptical QD with
x0 = 12 nm and y0 = 15 nm, which are realistic values for these parameters. As demonstrated in reference
[30], the valley splitting changes only by a very small amount as a function of the shape of the QD.
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Figure 2. The eigenenergies of the ground state Ez,0 and the first two excited states, Ez,1 and Ez,2, as a function of the electric field
Fz for three different values of L (interface width is equal to 5.4 · L).

2.1. Envelope function without magnetic field
In order to calculate the VS using the effective mass theory, we first need to obtain the envelope function.
Considering δU(x,y,z) as a perturbation, we can obtain the (unperturbed) envelope function from the
Hamiltonian (1) using separation of variables, in such a way that ψxyz = ψxψyψz, and ψx(x) and ψy(y) are
harmonic oscillator wave functions, which have well-known eigenenergies Ex,nx and Ey,ny . We then need to
obtain the eigenstates ψz(z) and eigenenergies Ez,nz for the electron motion in the z direction.

The Schrödinger equation for the envelope function in the z direction is given by(
p2z
2ml

− eFzz+ Ū(z)− Ez,nz

)
ψz,nz = 0. (5)

Using the electrical confinement length

z0 =

(
ℏ2

2mleFz

)1/3

, (6)

and the energy scale

ϵ0 =
ℏ2

2mlz20
, (7)

we can rewrite equation (5) as [
d2

dz̃2
− (Ũ− z̃− ϵ̃z,nz)

]
ψz,nz = 0, (8)

where Ũ= Ū/ϵ0, z̃= z/z0 and ϵ̃z,nz = ϵz,nz/ϵ0.
For a constant Ũ, the analytical solution of the above equation is a linear combination of the Airy

functions of first and second kind. We solve this equation numerically using the transfer matrix method,
where we decompose the potential in successive constant rectangular barriers and use the continuity of the
wave function and its first derivative at each interface (further details in appendix B).

In figure 2 we show the eigenenergies Ez,nz for the ground state nz = 0 and the first two excited states
nz = 1,2 as a function of the electric field Fz for three different values of L, where we are considering
Lb = Lt = L. Besides these energies, we also have a set of states whose envelope function is localized in the
upper SiGe barrier. This is a consequence of the quantum well created by the electric field between the top
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Figure 3. The probability density along ẑ direction |ψz,n|2 of the ground state and the first two excited states for three different
values of L. We consider in the top and bottom panels an electric field of 10 MVM−1 and 20 MVm−1, respectively.

interface and the insulator region. We neglect these states because they do not contribute to the behaviour of
the VS [41].

The increase in the energies as we increase the width of the interface can be explained by the fact that the
bottom of the quantum well at the silicon layer is shifted up for a smooth interface. This can be seen clearly
around z= 0 in figure 1(b). Also, the height of the potential barrier at the top interface is shifted down when
we increase the interface width and/or the electric field. For this reason, the second excited state for a strong
electric field and smooth interfaces is no longer confined to the silicon quantum well, which explains the
lower energy for these states compared to the step case (L= 0).

We also show the probability density |ψz,n|2 in figure 3 for the ground state and the first two excited
states. We can see that the electric field pushes the envelope function towards the upper SiGe barrier. This is
important for the calculation of the VS, where we will neglect the probability density at the bottom interface
and lower SiGe barrier for strong electric fields. Also, we note only a small penetration of the envelope
function in the upper SiGe barrier, which is not the case when the eigenstate is not confined in the Si well, as
can be seen for Fz = 20 MVm−1 and L= 1.4 nm.

It is important to mention that the envelope functions were obtained from the averaged potential Ūz,
while the corrections due to the fluctuations δU are neglected in this step. However, δU will play an
important role when evaluating the VS.

2.2. Envelope function in the presence of a magnetic field
We consider now an in-plane magnetic field B= (Bx,By,0). We calculate the envelope function here as it was
done in reference [41]. With the vector potential A= (0,0,yBx − xBy), equation (1) can be written as

H=H 0(B)+H ′(B), (9)

where H 0(B) is equal to the Hamiltonian in equation (1) with the substitution

ωx(y) → ωx(y)

(
1+

Ω2
y(x)

ω2
x(y)

)1/2

= ω ′
x(y), (10)

with the cyclotron frequency given by

Ωx(y) =
eBx(y)√
mlmt

. (11)
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We treat

H ′(B) =− e

ml
(yBx − xBy)pz −

e2

ml
BxByxy (12)

as a perturbation and consider only first order correction to the envelope function.
We solve H0(B) as it was done in the previous section to obtain the unperturbed envelope function ψ0

xyz.
The only difference is that the harmonic oscillator solutions at x̂ and ŷ directions have now the magnetic field
dependent confinement frequencies ω ′

x(y). The solution at ẑ direction is not affected by B. The correction to
the envelope function due to H ′(B) is given by

ψ ′
xyz =−iBx

y ′0
z0
ψx,0ψy,1

mmax∑
m=0
m̸=nz

αy
mψz,m + iBy

x ′0
z0
ψx,1ψy,0

mmax∑
m=0
m̸=nz

αx
mψz,m

+
BxByx ′0y

′
0e

2

4mlℏ(ω ′
x +ω ′

y)
ψx,1ψy,1ψz,nz , (13)

where the sum is over all states confined to the Si quantum well, which means thatmmax depends on Fz and
L, and

x ′0 = x0

(
1+

mtx40
4mll4y

)−1/4

, y ′0 = y0

(
1+

mty40
4mll4x

)−1/4

, (14)

with the magnetic length given by

lx(y) =

√
ℏ

eBx(y)
. (15)

For the coefficients αx(y), we find

αx(y)
m =

eℏ
2ml

⟨ψz,nz |∂/∂z̃|ψz,m⟩
Ez,nz − Ez,m −ω ′

x(y)

. (16)

3. Results

The two low-lying valley states of the QD are given by

| ± z⟩=Ψxyze
±ik0zu±z(r), (17)

whereΨxyz is the envelope function, u±z(r) are the periodic parts of the Bloch functions, k0 = 0.82(2π/a0) is
the Bloch wavenumber at the conduction band minima of silicon and a0 = 0.543 nm is the length of the Si
cubic unit cell.

The intervalley coupling is given by

∆= ⟨+z| − eFzz+U(x,y,z)| − z⟩. (18)

As already obtained in previous works, the contribution to the intervalley coupling from the electric field is
negligibly small compared to the other term. So, we can write

∆= C0

ˆ
e−2ik0zU(x,y,z)|ψx,y,z|2d3x, (19)

where C0 =−0.2607 comes from the periodic parts of the Bloch wave functions [36, 41]. The total VS is then
given by

EVS = 2|∆|. (20)
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Figure 4. The average VS over 104 realizations as a function of L for the ground state and the excited states in the ẑ direction that
are confined at the quantum well. We consider two different electric fields Fz . In all cases, we see a strong initial suppression of the
VS, but after a specific width, the average VS begins to increase again.

3.1. VS in the absence of a magnetic field
In figure 4 we consider the average VS as a function of the width of the interface for two values of electric
field. We consider the case of the ground state being the QD qubit state and also the excited states in the ẑ
direction. We emphasize here that, e.g. the state (0,0,1) is not the first excited state of the QD, since there are
many other excited states related to the solutions in the x̂ and ŷ directions. Also, we calculated the VS here
only for states confined to the Si quantum well. For this reason, we considered only states with energies
below the energy of the state (0,0,2) for Fz = 20MVm−1.

The first value of L different form zero that we considered is L= 0.078 nm, which means an interface of
0.4 nm or 3 ML. It is a value slightly smaller than the sharpest interface width realized experimentally so far
(5 ML [28]), but we believe that such sharpness can be reached in the foreseeable future. We can see that in
all cases, there is a strong suppression of the average VS when we go from a perfect step interface (L= 0) to a
smooth interface. For instance, a VS suppression greater than 60% is obtained for the ground state case
between L= 0 and L= 0.078 nm. This happens because the phase shift between the fast oscillations of the
two low-lying valley states in silicon is averaged for a smooth interface, reducing the energy difference
between them.

However, we can see that the average VS begins to increase after a specific value of L. This increase of the
VS was mentioned recently in [28], but a complete quantitative description of this behaviour was not
reported before. This enhancement of the VS is due to the increase of the Ge content inside the Si well.

We analyse the statistics of the VS in figure 5 for three different cases: the ground state with Fz = 10 and
20 MVm−1 and the excited state (0,0,3) with Fz = 10 MVm−1, where we plot the real and imaginary parts of
the intervalley coupling∆ in the top panels and the probability density of the VS, p(EVS), in the bottom
panels. We consider four values of L. For the sake of comparison, one of this values is L= 0.026 nm, which is
a unrealistic interface width of only one ML. Note that QD excited states could be used for qubit realizations
if the lower energy levels were completely filled.

In all cases, we have a Rician-like distribution for the real and imaginary parts of the intervalley coupling
∆, where the distribution of points in the complex plane are circularly-symmetric. For a very sharp interface
(L= 0.026 nm), the VS changes only for a small amount in each sample, which means a relatively
deterministic distribution of VS, and we have a high VS value in each realisation. This is the desired scenario
for silicon spin qubit, but such a narrow interface is quite unrealistic. For a sharp but more realistic interface
(L= 0.078 nm), we still have a fairly deterministic distribution of VS, but the values are reduced. Comparing
the two ground state cases, we see that the electric field can shift up the distribution of VS. A similar effect is
also achieved by considering the excited state (0,0,3) in comparison with the ground state. For L= 0.14 nm,
the VS can be very small and the electric field cannot shift the distribution anymore, but only increase the VS
average value by making the distribution wider. If we keep increasing the width of the interface, the
distribution of VS becomes disorder-dominated, as can be seen for L= 1.68 nm, but with greater average VS.
Therefore, the increase of the average VS obtained in figure 4 is a consequence of a wider distribution of the

7



Mater. Quantum Technol. 3 (2023) 025004 J R F Lima and G Burkard

Figure 5. Top panels: the distribution of the intervalley coupling∆ in the complex plane for 104 realisations. Bottom panels:
histogram of the probability density of the VS. We consider here three cases: the ground state with Fz = 10 MVm−1 (left panels)
and Fz = 20 MVm−1 (right panels) and the state (0,0,3) with Fz = 10 MVm−1 (center panels). Each color represents a different
interface width (see legend on the bottom right).

VS. Even though the average VS for the cases L= 0.078 nm and L= 1.68 nm are similar, the distribution of
the VS values are very different.

In principle, we are interested in more deterministic distributions of VS, since this implies that one has
more control over its possible values. However, if the VS is distributed from very small values, the
disorder-dominated cases are more suitable for spin qubit applications. This is confirmed when we look at
figure 6, where we consider the distribution of VS as a function of the electric field for four values of L. The
first three values of L represent an interface width of 3, 4 and 5 ML, respectively. The markers describe the
average VS, the darker bars represent the 20–80 percentile range and the lighter bars represent the 5–95
percentile range. For Fz = 10 MVm−1 we have a great percentile of the realisations with a VS below 100 µeV
for almost all widths considered here, except for L= 0.078 nm. However, this is improved when we increase
the electric field and also when we consider the excited state (0,0,3). For instance, for the excited state, our
results predict that more than 95% of the devices should have a VS⩾ 160 µeV for L= 0.078 nm, while more
than 80% of the realisations will achieve a VS⩾ 85 µeV for L= 0.104 nm and L= 1.68 nm. When we
increase the electric field to 20 MVm−1 the results are even better, with more than 80% of the realisations
achieving a VS⩾ 100 µeV for L= 0.104 nm and L= 1.68 nm and all devices having a VS> 100 µeV for
L= 0.078 nm. The worst results were obtained for L= 0.14 nm (interface width of≈5 ML). So, we can
identify a width of 4 ML (∼0.55 nm) as a critical interface width, which means that for spin qubit
application, the best option is an interface width no greater than 4 ML. However, if such sharp interfaces
cannot be realised, it is better to consider the interface as wide as possible.

3.2. VS in the presence of a magnetic field
In figure 7 we can see the influence of the magnetic field on the VS. We consider here that the magnetic field
is in the x̂ direction, which means that By = 0. In the left panel, we plot the average VS as a function of L for
two distinct qubit states with Bx = 0 and Bx = 10 T. We can see that such a strong magnetic field can only
induce a small increase in the average VS, no matter if we consider the ground state or an excited state.

This is confirmed in the right panel, where we consider the average VS as a function of the magnetic field
for L= 0.14 nm. The average VS increases only 4% when the magnetic field goes from 0 to 10 T. So, we can
conclude that the magnetic field is not a good parameter for valley splitting engineering in Si-based
heterostructures.
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Figure 6. Distribution of VS for the ground state as function of the electric field for different interface width. The markers
describe the average VS, the lighter bars represent the 5–95 percentile range and the darker bars represent the 20–80 percentile
range. Inset: distribution of VS for the excited state (0,0,3) and Fz = 10 MVm−1.

Figure 7. (a) Average VS as a function of L for the ground state with Fz = 20 MVm−1 and the excited state (0,0,3) with Fz = 10
MVm−1. We compare here the VS with and without a magnetic field. (b) The average valley splitting as a function of a magnetic
field along the x̂ direction. We can see that the magnetic field has a very weak influence on the VS.

4. Conclusion

To conclude, the lifetime of silicon spin qubits depends directly on the value of the VS and the statistics of the
VS is very important for scalability. In this work, we develop a three dimensional model within the effective
mass theory for the calculation of the valley splitting of realistic silicon-based heterostructures, which takes
into account the alloy disorder at the interfaces and the lateral confinement. This model can be used to
predict the valley splitting in silicon as a function of various parameters. Here, we consider the influence of
the interface width and electromagnetic fields. Our results reveal that the electric field plays an important
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role in the distribution of VSs. For instance, for an interface width of 4 ML, we predict that 95% of the
devices have a VS<105 µeV for an electric field of 10MVm−1, while 80% of the samples have a VS>100
µeV when we consider an electric field of 20MVm−1. For the width of the interface, we obtain that the best
scenario for spin qubits is to fabricate devices with an interface⩽4 ML (∼0.55 nm). If such sharpness cannot
be achieved, then the best option is to consider an interface as wide as possible. We also calculate the
influence of the magnetic field, revealing that the magnetic field has a very weak effect on the VS. Therefore,
we can conclude that the magnetic field is not a good parameter for VS engineering. We believe that our
findings will contribute directly to a better fabrication of silicon-based heterostructures for spin qubits. A
recent experimental realisation together with Nemo 3D tight-binding simulations reveal the change of the VS
as a function of the shape and location of the QD [30]. We plan to use our theoretical model to calculate this
effect as well, since it is a calculation that cannot be done by any other model within the effective mass theory
proposed before.

Data availability statement

The data cannot be made publicly available upon publication because they are not available in a format that
is sufficiently accessible or reusable by other researchers. The data that support the findings of this study are
available upon reasonable request from the authors.

Acknowledgment

This work has been funded by the Federal Ministry of Education and Research (Germany), funding code
Grant No. 13N15657 (QUASAR).

Appendix A. Potential at the Si/SiGe interface

We are assuming here that the potential at the Si/SiGe interfaces is given by a distribution of delta functions
in equation (2). Here, we will describe the 3D location of each delta function, the number of delta functions
for each interface width and the calculation of the parameter λ.

A.1. Location of the Ge atoms
Since we are considering an elliptical QD, the location of Ge atoms (delta functions) in the xy plane for a
uniform distribution is given by

x= 2x0
√
rcosθ, (A1)

y= 2y0
√
r sinθ, (A2)

where r is a random value in the interval [0,1] and θ is a random angle in the interval [0,2π]. The square root
of r ensures a uniform distribution in the ellipse, otherwise most of the Ge atoms would be in the middle of
the ellipse. Also, we are taking into account only Ge atoms inside of an ellipse with twice of the semi-axis of
the QD. The contribution of extra Ge atoms to the VS is negligibly small.

In order to describe the distribution of Ge atoms at ẑ direction, we take, e.g. the top interface, which is
centered at z= 0. The distribution at the bottom interface can be obtained analogously. To model the smooth
interface at ẑ direction with a hyperbolic tangent function, we consider that the Ge atoms are located
randomly in this direction following a PDF given by

PDF=
1

2
[tanh(z/Lt)+ 1]. (A3)

We define the top interface region in the interval−2.7 · L< z< 2.7 · L, which is an interval where the
function in equation (A3) is approximately in the range between 0 and 1.

A.2. Number of Ge atoms
With the volume of the interface region and taking into account that SiGe has approximately
5× 1022 atoms cm−3, we can predict the number of delta functions, NGe, in the interface potential (2). In our
case, this is done by considering that the Ge concentration changes at the interface from 0% to 30%
following the hyperbolic tangent function in equation (A3). The number of Ge atoms at the interface for
some interface widths can be seen in table A1.
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Table A1. Total number of germanium atoms in the interface volume for some interface widths L.

L (nm) 0.14 0.28 0.42 0.56 0.70 0.84 0.98 1.12 1.26

NGe 12 825 25 650 38 475 51 299 64 124 76 949 89 774 102 599 115 424

Figure A1. Comparison between the average potential (4) (black line) with the potential (2) (red line) obtained over 104

realizations for L= 0.1 nm.

A.3. The parameterλ
We already know the number of Ge atoms at the interface and how we are modeling their 3D location. Let us
now calculate the parameter λ. This is done by comparing the average potential (4) with an average over a
specific number of realization for the potential (2).

The integral of Ū= (U0/2)[tanh(z/Lt)+ 1] over the volume of the top interface gives

U0

2
VI, (A4)

where V I is the volume of the interface. If we do the same for the average over a specific number of
realizations for the potential (2), this integral gives λNGe. This means that

λ=
U0VI

2NGe
= 10 meV · nm3. (A5)

In figure A1 we compare the average potential (4) with the potential (2) obtained over 104 realizations for
L= 0.1 nm. The plot was possible by considering a smeared-out delta function, where we replace each delta
function in the following way

δ(x− x0)→ lim
ϵ→0

1

2
√
πϵ

e−(x−x0)
2/(4ϵ). (A6)

We numerically used ϵ= 10−21 for our calculations.

Appendix B. Numerical calculation of eigenenergies and envelope functions

The equation (8) has an analytical solution only when Ũ is constant. This is the case within the lower and
upper SiGe barrier regions, as well as at the Si well. We solve this equation using the transfer matrix method,
which means that for the top and bottom interfaces, where Ũ depends on position, we decompose the
potential in successive constant rectangular barriers. In our calculations, we decompose each Si/SiGe
interface into 500 small regions. In each region of the heterostructure, including the small regions at the top
and bottom interfaces, the solution is given by

ψj
z,nz =

N
√
z0

[
cjAi(Ũj − z̃− ϵ̃z,nz)+ djBi(Ũj − z̃− ϵ̃z,nz)

]
, (B1)
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where Ai and Bi are the Airy functions of first and second kinds, respectively, cj and dj are constants to be
determined, N is a normalisation constant and j labels all the regions.

We can write the continuity of the envelope function and its first derivative at a specific interface between
two regions, say regions 1 and 2, as follows

M1(z̃12)

(
c1
d1

)
=M2(z̃12)

(
c2
d2

)
, (B2)

where z̃12 = z12/z0, z12 is the location in the ẑ axis of the interface between regions 1 and 2 and

Mj(z̃) =

(
Ai(Ũj − z̃− ϵ̃z,nz) Bi(Ũj − z̃− ϵ̃z,nz)

Ai ′(Ũj − z̃− ϵ̃z,nz) Bi ′(Ũj − z̃− ϵ̃z,nz)

)
. (B3)

Hence we find that (
c1
d1

)
=M12

(
c2
d2

)
, (B4)

whereM12 =M−1
1 (z̃12)M2(z̃12). If we label the lower and upper SiGe barriers as regions i and f, respectively,

we can write (
ci
0

)
=M

(
cf
df

)
, (B5)

where

M=Mi1M12M23. . .Mnf (B6)

and we consider di = 0, since the Bi function does not decay inside of the lower barrier.
From equation (B5), we have that

m21cf +m22df = 0, (B7)

wheremij are the coefficients for the matrixM. We also have that at z= db the envelope function has to be
equal to zero. Therefore,

cfAi(ζb)+ dfBi(ζb) = 0, (B8)

where ζb = U0/ϵ0 − db − ϵ̃z,nz . From the last two equations, we conclude that

m22 −m21
Bi(ζb)

Ai(ζb)
= 0. (B9)

The eigenenergies are obtained from equation (B9). Once we have these energies, we can obtain all the
coefficients cj and dj by solving a system of equations. Finally, with the energies and the coefficients, we can
normalise the envelope function and obtain the constant N.

ORCID iDs

Jonas R F Lima https://orcid.org/0000-0003-1645-5213
Guido Burkard https://orcid.org/0000-0001-9053-2200

References

[1] Zwanenburg F A, Dzurak A S, Morello A, Simmons M Y, Hollenberg L C L, Klimeck G, Rogge S, Coppersmith S N and
Eriksson M A 2013 Rev. Mod. Phys. 85 961–1019

[2] Burkard G, Ladd T D, Nichol J M, Pan A and Petta J R 2021 Semiconductor spin qubits (arXiv:2112.08863)
[3] Morello A et al 2010 Nature 467 687–91
[4] Yang C H, Rossi A, Ruskov R, Lai N S, Mohiyaddin F A, Lee S, Tahan C, Klimeck G, Morello A and Dzurak A S 2013 Nat. Commun.

4 2069
[5] Borjans F, Zajac D, Hazard T and Petta J 2019 Phys. Rev. Appl. 11 044063
[6] Assali L V C, Petrilli H M, Capaz R B, Koiller B, Hu X and Das Sarma S 2011 Phys. Rev. B 83 165301
[7] Tyryshkin A M et al 2012 Nat. Mater. 11 143–7
[8] Steger M, Saeedi K, Thewalt M L W, Morton J J L, Riemann H, Abrosimov N V, Becker P and Pohl H-J 2012 Science 336 1280–3
[9] Veldhorst M et al 2014 Nat. Nanotechnol. 9 981–5

12

https://orcid.org/0000-0003-1645-5213
https://orcid.org/0000-0003-1645-5213
https://orcid.org/0000-0001-9053-2200
https://orcid.org/0000-0001-9053-2200
https://doi.org/10.1103/RevModPhys.85.961
https://doi.org/10.1103/RevModPhys.85.961
https://arxiv.org/abs/2112.08863
https://doi.org/10.1038/nature09392
https://doi.org/10.1038/nature09392
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1038/ncomms3069
https://doi.org/10.1103/PhysRevApplied.11.044063
https://doi.org/10.1103/PhysRevApplied.11.044063
https://doi.org/10.1103/PhysRevB.83.165301
https://doi.org/10.1103/PhysRevB.83.165301
https://doi.org/10.1038/nmat3182
https://doi.org/10.1038/nmat3182
https://doi.org/10.1126/science.1217635
https://doi.org/10.1126/science.1217635
https://doi.org/10.1038/nnano.2014.216
https://doi.org/10.1038/nnano.2014.216


Mater. Quantum Technol. 3 (2023) 025004 J R F Lima and G Burkard

[10] Yoneda J et al 2018 Nat. Nanotechnol. 13 102–6
[11] Zajac D M, Sigillito A J, Russ M, Borjans F, Taylor J M, Burkard G and Petta J R 2018 Science 359 439–42
[12] Watson T F et al 2018 Nature 555 633–7
[13] Huang W et al 2019 Nature 569 532–6
[14] Xue X, Russ M, Samkharadze N, Undseth B, Sammak A, Scappucci G and Vandersypen L M K 2022 Nature 601 343–7
[15] Noiri A, Takeda K, Nakajima T, Kobayashi T, Sammak A, Scappucci G and Tarucha S 2022 Nature 601 338–42
[16] Takeda K, Noiri A, Nakajima T, Yoneda J, Kobayashi T and Tarucha S 2021 Nat. Nanotechnol. 16 965–9
[17] Mi X, Benito M, Putz S, Zajac D M, Taylor J M, Burkard G and Petta J R 2018 Nature 555 599–603
[18] Samkharadze N, Zheng G, Kalhor N, Brousse D, Sammak A, Mendes U C, Blais A, Scappucci G and Vandersypen L M K 2018

Science 359 1123–7
[19] Borselli M G et al 2011 Appl. Phys. Lett. 98 123118
[20] Shi Z, Simmons C B, Prance J R, King Gamble J, Friesen M, Savage D E, Lagally M G, Coppersmith S N and Eriksson M A 2011

Appl. Phys. Lett. 99 233108
[21] Zajac D M, Hazard T M, Mi X, Wang K and Petta J R 2015 Appl. Phys. Lett. 106 223507
[22] Hollmann A et al 2020 Phys. Rev. Appl. 13 034068
[23] Chen E H et al 2021 Phys. Rev. Appl. 15 044033
[24] Scarlino P, Kawakami E, Jullien T, Ward D R, Savage D E, Lagally M G, Friesen M, Coppersmith S N, Eriksson M A and

Vandersypen L M K 2017 Phys. Rev. B 95 165429
[25] Mi X, Kohler S and Petta J R 2018 Phys. Rev. B 98 161404
[26] Mi X, Péterfalvi C G, Burkard G and Petta J R 2017 Phys. Rev. Lett. 119 176803
[27] Huang P and Hu X 2014 Phys. Rev. B 90 235315
[28] Paquelet Wuetz B et al 2022 Nat. Commun. 13 7730
[29] McJunkin T et al 2021 Phys. Rev. B 104 085406
[30] McJunkin T et al 2022 Nat. Commun. 13 7777
[31] Feng Y and Joynt R 2022 Phys. Rev. B 106 085304
[32] Boykin T B, Klimeck G, Eriksson M A, Friesen M, Coppersmith S N, von Allmen P, Oyafuso F and Lee S 2004 Appl. Phys. Lett.

84 115–7
[33] Klimeck G, Ahmed S S, Kharche N, Korkusinski M, Usman M, Prada M and Boykin T B 2007 IEEE Trans. Electron Devices

54 2090–9
[34] Kharche N, Prada M, Boykin T B and Klimeck G 2007 Appl. Phys. Lett. 90 092109
[35] Friesen M, Chutia S, Tahan C and Coppersmith S N 2007 Phys. Rev. B 75 115318
[36] Saraiva A L, Calderón M J, Capaz R B, Hu X, Das Sarma S and Koiller B 2011 Phys. Rev. B 84 155320
[37] Wu Y and Culcer D 2012 Phys. Rev. B 86 035321
[38] Tariq B and Hu X 2019 Phys. Rev. B 100 125309
[39] Saraiva A L, Calderón M J, Hu X, Das Sarma S and Koiller B 2009 Phys. Rev. B 80 081305
[40] Friesen M, Eriksson M A and Coppersmith S N 2006 Appl. Phys. Lett. 89 202106
[41] Hosseinkhani A and Burkard G 2020 Phys. Rev. Res. 2 043180
[42] Liu Y et al 2022 J. Appl. Phys. 132 085302
[43] Liu Y, Gradwohl K P, Lu C H, Yamamoto Y, Remmele T, Corley-Wiciak C, Teubner T, Richter C, Albrecht M and Boeck T 2023 ECS

J. Solid State Sci. Technol. 12 024006

13

https://doi.org/10.1038/s41565-017-0014-x
https://doi.org/10.1038/s41565-017-0014-x
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1126/science.aao5965
https://doi.org/10.1038/nature25766
https://doi.org/10.1038/nature25766
https://doi.org/10.1038/s41586-019-1197-0
https://doi.org/10.1038/s41586-019-1197-0
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1038/s41586-021-04273-w
https://doi.org/10.1038/s41586-021-04182-y
https://doi.org/10.1038/s41586-021-04182-y
https://doi.org/10.1038/s41565-021-00925-0
https://doi.org/10.1038/s41565-021-00925-0
https://doi.org/10.1038/nature25769
https://doi.org/10.1038/nature25769
https://doi.org/10.1126/science.aar4054
https://doi.org/10.1126/science.aar4054
https://doi.org/10.1063/1.3569717
https://doi.org/10.1063/1.3569717
https://doi.org/10.1063/1.3666232
https://doi.org/10.1063/1.3666232
https://doi.org/10.1063/1.4922249
https://doi.org/10.1063/1.4922249
https://doi.org/10.1103/PhysRevApplied.13.034068
https://doi.org/10.1103/PhysRevApplied.13.034068
https://doi.org/10.1103/PhysRevApplied.15.044033
https://doi.org/10.1103/PhysRevApplied.15.044033
https://doi.org/10.1103/PhysRevB.95.165429
https://doi.org/10.1103/PhysRevB.95.165429
https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevB.98.161404
https://doi.org/10.1103/PhysRevLett.119.176803
https://doi.org/10.1103/PhysRevLett.119.176803
https://doi.org/10.1103/PhysRevB.90.235315
https://doi.org/10.1103/PhysRevB.90.235315
https://doi.org/10.1038/s41467-022-35458-0
https://doi.org/10.1038/s41467-022-35458-0
https://doi.org/10.1103/PhysRevB.104.085406
https://doi.org/10.1103/PhysRevB.104.085406
https://doi.org/10.1038/s41467-022-35510-z
https://doi.org/10.1038/s41467-022-35510-z
https://doi.org/10.1103/PhysRevB.106.085304
https://doi.org/10.1103/PhysRevB.106.085304
https://doi.org/10.1063/1.1637718
https://doi.org/10.1063/1.1637718
https://doi.org/10.1109/TED.2007.904877
https://doi.org/10.1109/TED.2007.904877
https://doi.org/10.1063/1.2591432
https://doi.org/10.1063/1.2591432
https://doi.org/10.1103/PhysRevB.75.115318
https://doi.org/10.1103/PhysRevB.75.115318
https://doi.org/10.1103/PhysRevB.84.155320
https://doi.org/10.1103/PhysRevB.84.155320
https://doi.org/10.1103/PhysRevB.86.035321
https://doi.org/10.1103/PhysRevB.86.035321
https://doi.org/10.1103/PhysRevB.100.125309
https://doi.org/10.1103/PhysRevB.100.125309
https://doi.org/10.1103/PhysRevB.80.081305
https://doi.org/10.1103/PhysRevB.80.081305
https://doi.org/10.1063/1.2387975
https://doi.org/10.1063/1.2387975
https://doi.org/10.1103/PhysRevResearch.2.043180
https://doi.org/10.1103/PhysRevResearch.2.043180
https://doi.org/10.1063/5.0101753
https://doi.org/10.1063/5.0101753
https://doi.org/10.1149/2162-8777/acb734
https://doi.org/10.1149/2162-8777/acb734

	Interface and electromagnetic effects in the valley splitting of Si quantum dots
	1. Introduction
	2. Model
	2.1. Envelope function without magnetic field
	2.2. Envelope function in the presence of a magnetic field

	3. Results
	3.1. VS in the absence of a magnetic field
	3.2. VS in the presence of a magnetic field

	4. Conclusion
	Appendix A. Potential at the Si/SiGe interface
	A.1.  Location of the Ge atoms
	A.2.  Number of Ge atoms
	A.3.  The parameter λ

	Appendix B. Numerical calculation of eigenenergies and envelope functions
	References


