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2Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary

3Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary

The direct bandgap found in hexagonal germanium and some of its alloys with silicon allows for an optically
active material within the group-IV semiconductor family with various potential technological applications.
However, there remain some unanswered questions regarding several aspects of the band structiure, including
the strength of the electric dipole transitions at the center of the Brillouin zone. Using the k · p method near the
Γ point, including 10 bands, and taking spin-orbit coupling into account, we obtain a self-consistent model that
produces the correct band curvatures, with previously unknown inverse effective mass parameters, to describe
2H-Ge via fitting to ab initio data and to calculate effective masses for electrons and holes. To understand the
weak dipole coupling between the lowest conduction band and the top valance band, we start from a spinless
12-band model and show that when adding spin-orbit coupling, the lowest conduction band hybridizes with
a higher-lying conduction band, which cannot be explained by the spinful 10-band model. With the help of
Löwdin’s partitioning, we derive the effective low-energy Hamiltonian for the conduction bands for the possible
spin dynamics and nanostructure studies and in a similar manner, we give the best fit parameters for the valance-
band-only model that can be used in the transport studies. Finally, using the self-consistent 10-band model, we
include the effects of a magnetic field and predict the electron and hole g-factor of the conduction and valance
bands.

I. INTRODUCTION

Optical activity plays a crucial role in semiconductor mate-
rials due to the possible optoelectronic integration which is vi-
tal for optoelectronics and integrated photonics, optical modu-
lation, and light emission. [1–3]. However, silicon technology
cannot be used for these purposes due to the indirect band-gap
of cubic Si (3C-Si) although much effort has been made to
turn 3C-Si into an efficient emitter [4, 5]. In recent years, the
hexagonal 2H-Ge phase of germanium has peaked in interest
due to the its direct bandgap. Experiments by Fadaly et al.
[6], showed that hexagonal germanium has a weak but non-
zero optical activity. It has also been demonstrated that the
radiative lifetime can be increased by more than three orders
of magnitude when a certain percentage of germanium atoms
are replaced by silicion, which makes it as optically active as
GaAs. Similar results are also obtained theoretically by Rödl
et al. [6] by using ab initio calculations of the radiative life-
time of hex-Ge near the Γ point. Interestingly, the radiative
lifetime obtained from experiments and ab initio calculations
show a disagreement by almost an order of magnitude that is
yet to be explained.

While Ge and Si share similar chemical properties, their
behavior is different in the hexagonal crystal structure. Simi-
lar to 3C-Si, hexagonal Si (2H-Si) which is described by the
lonsdalite crystal structure also has an indirect band-gap with
the lowest conduction band (CB) located at the M-point in its
Brioullin zone, rather than the X-point [6] as in the case for
3C-Si. In contrast to Si, the transition from cubic (3C-Ge) to
lonsdalite (2H-Ge) germanium is concomitant with the high-
symmetry L point along the [111] axis in the cubic phase fold-
ing onto the Γ point in the hexagonal phase. The folding of the
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high symmetry point L to Γ is important as the lowest CB in
3C-Ge is located at the L point, which maps to the Γ point,
making hex-Ge a direct band-gap semiconductor, with a band
gap of 0.3 eV [6]. Belonging to the P63/mmc space group, the
point group for 2H-Ge at the Γ point of the Brillouin zone is
D6h. This is quite similar to the wurtzite crystal structure with
the C6v point group at Γ, and we can write D6h = C6v ⊗ Cs
with Cs = 1l⊗σh and σh being the mirror symmetry, such that
correctly symmetrized C6v bases can be used for the group
D6h.

It is well known that k · p theory [7] is one of the low-cost
alternatives to ab initio calculations for band energies which
makes it applicable also to nanoscale and low-dimensional
structures. In the past, k · p theory has been extensively used
for different materials such as cubic Si and Ge [8–10], III-
V compounds in the wurtzite phase [11–13], monolayers of
transition metal dichalcogenides [14, 15], and for calculating
the Landé g-factor [16, 17], Landau levels [18, 19], and strain
effects [20–22]. As the method is based on group-theoretical
selection rules [23], it is a very powerful tool for calculations
of optical transition matrix elements, in which we can explain
the low optical activity of the lowest CB for 2H-Ge and other
possible transitions, as well as the effect of the spin-orbit cou-
pling. k · p theory is a semi-empirical method and requires
a number of material-specific parameters either from experi-
ments [8, 11] or ab initio calculations [24].

In this work, we derive a 10 × 10 k · p Hamiltonian to de-
scribe the band structure of 2H-Ge, in accordance with ab
initio calculations. We show that Löwdin’s formalism must
be used to correctly describe the lowest CB in kx (Γ → M)
and highest valence band (VB) in kz (Γ → A) direction. We
also find the best fit values for the optical transition elements
(Kane or momentum p matrix elements) and Bir-Pikus param-
eters, similarly to the work of Chuang and Chang (CC) [11].
Using these parameters, we obtain the effective masses for 5
bands (2-CB and 3-VB) via parabolic fit. To understand the
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weak optical activity of the lowest CB, we develop a 12 × 12
spinless model and show that the band is only optically active
when spin-orbit coupling (SOC) is considered. We also de-
velop low-energy effective models for electrons and holes for
the possible usage in the heterostructures and transport prop-
erties. Finally, we evaluate the g-factor for the highest energy
VBs and the second-lowest CB.

This paper is organized as follows: In Sec. II, we begin by
presenting the ab-inito methods used to parametrize the k · p
model. In Sec. III we present the multi-band k · p model, to-
gether with Löwdin’s formalism. In Sec. IV, we describe the
general fitting procedure to our 10 × 10 model, the fitted opti-
cal transition elements, inverse mass parameters and the effec-
tive masses for different directions, as well as the weak optical
activity of the lowest conduction band with a possible expla-
nation. We also derive the effective low-energy Hamiltonian
for the second-lowest conduction band in Sec. V and compare
the findings wit the originally derived k · p model. Finally, in
Sec. VI, using the 10-band Hamiltonian, we investigate the g-
factor of electrons and holes when a magnetic field is applied
parallel to the main axis of rotation. The discussion of how the
selection rules can be used to determine non-zero elements for
the k · p model can be found in the Appendix A. Appendix B
has the definitions for the expressions used in the text. The
allowed optical transitions from the VBs to CB or CB+1 can
be found Appendix C with the addition of the selection rules
with and without SOC. Finally, Appendix D has the spinless
12 × 12 k · p Hamilonian.

II. AB INITIO CALCULATIONS

First-principles calculations were carried out by using the
Vienna ab-initio simulation package (VASP) [25–27] with a
plane-wave basis set employed within the framework of the
projector augmented-wave method [28, 29]. Geometry relax-
ation were performed by using PBEsol exchange correlation
functionals with a cut-off energy of 500 eV, a 12 × 12 × 6
Monkhorst-Pack grid sampling of the Brillouin zone and a
force criteria of 1 meV/Å. The obtained structural parameters
(a = 3.994 Å, c = 6.589 Å and u = 0.3743, see Fig. 1) are rea-
sonably close to the reported values by Rödl et al. [30]. Band
structure calculations were performed both with and without
the inclusion of the spin-orbit coupling using the MBJLDA
meta-GGA method [31]. This meta-GGA method is reported
to give reliable near-gap energies with a significantly lower
calculational cost compared to hybrid functionals (such as
HSE06) [30].

For the identification of the band symmetries the python
tool irRep was used, which can directly read the Kohn-Sham
orbitals of several density functional codes and identifies the
irreducible presentation of each bands [32]. If spin-orbit cou-
pling is included, the double crystallographic groups and their
representations are incorporated [33]. We then translated the
result of this tool to the notation of [34] and found a com-
pelling agreement with the irreducibles published in Ref [30].

a2H

c2H

2H

(u.c)2H

1

Figure 1. Lonsdaleite or hexagonal diamond (2H) structure where
atoms (red balls) are arranged in a hexagonal stacking. The gray
lines represent the bonds between atoms. Structural parameters are
shown by arrows. Solid black lines indicate the unit cell while the
dashed lines visualize the hexagonal structure.

III. k · p FRAMEWORK

The k · p method has been shown to effectively describe the
band structure of the semiconductors around high symmetry
points in the Brillouin zone in various studies [11, 35, 36].
The basic approach is to write the Schrödinger equation in
terms of the cell periodic part un,k(r) of the Bloch wavefunc-
tion eik·run,k, near the band edge as,

Hun,k(r) =
(
H0 + Hfree + Hk·p + HSO

)
un,k(r) = Eun,k(r), (1)

where

H0 =
p2

2m0
+ V(r),

Hfree =
ℏ2k2

2m0
,

Hk·p =
ℏ

m0
k · p,

HSO =
ℏ

4m2
0c2

[
∇V(r) × p

]
· σ.

(2)

and where n is the band index, k is the crystal momentum, m0
is the free electron mass, V(r) is the periodic potential, and
σ = (σx, σy, σz) are the Pauli spin matrices. The k-dependent
spin-orbit coupling terms are absent throughout this study
as they vanish due to the inversion symmetry. Eq. (1) can
be solved using perturbation theory, expanding the un,k(r)
in terms of the known un,k=0(r), around k = 0. To obtain
the effective band structure using distant band contributions,
there are many methods such as folding-down [37] where one
writes a pseudo-Schrödinger equation and using norm con-
served spinors, obtains a real Schrödinger-type equation by
performing a series expansion or Löwdin’s formalism (also
known as quasi-degenerate perturbation theory or Schrieffer-
Wolff transformation) [38–40], the method we use in this pa-
per, where the basis functions at the Γ point can be divided
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Table I. Basis functions for the D6h point group adapted form CC
[11] where

〈
r|Γn

α

〉
= un

α(r). Unlike in CC, there is no s − pz mixing.
|S x⟩ and

∣∣∣S y

〉
transform like axial vectors, |z⟩ transforms like a vector

and |1l⟩ transforms like the identity.

u |u⟩ D6h irrep.
CB + 1 1 |iz ↑⟩ Γ−2

CB 2
∣∣∣Γ−3 ↑〉 Γ−3

VB 3 − 1
√

2

∣∣∣S x + iS y ↑
〉

Γ+5

VB − 1 4 1
√

2

∣∣∣S x − iS y ↑
〉

Γ+5
VB − 2 5 |1l ↑⟩ Γ+1
CB + 1 6 |iz ↓⟩ Γ−2

CB 7
∣∣∣Γ−3 ↓〉 Γ−3

VB 8 1
√

2

∣∣∣S x − iS y ↓
〉

Γ+5

VB − 1 9 − 1
√

2

∣∣∣S x + iS y ↓
〉

Γ+5
VB − 2 10 |1l ↓⟩ Γ+1

into the sets A and B. Set A consists of the bands we would
like to describe, whereas set B contains all other bands that
might give a relevant non-zero contribution to the bands in
set A. Using Löwdin’s method and neglecting SOC for now,
distant band contributions can be described as,

Hn×n(k) j j′ =
∑
α,β

Dαβ
j j′kαkβ,

Dαβ
j j′ =

ℏ2

2m0

∑
γ∈B

pαjγpβγ j′ + pβjγpαγ j′

m0

(
E0 − Eγ

) ,

(3)

where ( j, j′) and γ belong to the set A and B, respectively. We
should note that set B contributions can only arise as second
or higher order k-dependent perturbation which can be seen

from Eq. (3).

A. Five-band model

To describe the effective Hamiltonian of lonsdalite germa-
nium, we focus on the following five bands: the first conduc-
tion band (CB), second conduction band (CB+1), and the first,
second, and the third valance bands (VB), (VB-1), (VB-2), re-
spectively. Including the two-fold spin degeneracy then leads
to a total of ten bands. In order to be able to describe the
band structure using k · p theory, the correct symmetry group
and the irreps corresponding to each band have to be known
near the point of interest [41, 42], that is Γ in our case. Pre-
vious studies [30, 43] on 2H-Ge have already determined the
double-group representation of the bands at the Γ point. How-
ever, to effectively use the k · p method, the relevant single-
group representations are needed. Note that, in general differ-
ent single-group representations can correspond to the same
double-group representation. Therefore, we performed ab ini-
tio calculations and obtained the single group basis set, in-
cluding the two-dimensional spin-1/2 Hilbert space (LS ba-
sis), near the Γ point (k = 0), see Table I.

The notation suggests that un,k(r) of the energy band n
transforms as the irrep (orbital part)

∣∣∣Γn
α

〉
of the point group

D6h. Here we follow the Köster’s notation [34] where S x is
an axial vector in the x-direction, not to be confused with the
projections of the spin up and down (↑, ↓). Using symmetry
considerations of the D6h point group and selection rules (see
Appendix A) with the basis vectors listed in Table I, we con-
struct the 10× 10 Kane-like Hamiltonian to describe the band
structure of 2H-Ge near Γ point,

HKane =
ℏ2k2

2m0
+



Ecb+1 0 −i
√

2
P2k+ −i

√
2
P2k− P1kz 0 0 0 0 0

0 Ecb 0 0 0 0 0 0 0 0

i
√

2
P2k− 0 Ev + ∆1 + ∆2 0 0 0 0 0 0 0

i
√

2
P2k+ 0 0 Ev + ∆1 − ∆2 0 0 0 0 0

√
2i∆3

P1kz 0 0 0 Ev 0 0 0
√

2i∆3 0

0 0 0 0 0 Ecb+1 0 −i
√

2
P2k− −i

√
2
P2k+ P1kz

0 0 0 0 0 0 Ecb 0 0 0

0 0 0 0 0 i
√

2
P2k+ 0 Ev + ∆1 + ∆2 0 0

0 0 0 0 −
√

2i∆3
i
√

2
P2k− 0 0 Ev + ∆1 − ∆2 0

0 0 0 −
√

2i∆3 0 P1kz 0 0 0 Ev



, (4)

where Ecb+1 and Ecb are the band energies for for the two low- est conduction bands at k = 0, Ev is the reference energy, ∆1 is
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the crystal field splitting, ∆2 and ∆3 are the SOC parameters,
P1,2 are the momentum matrix elements and k± = kx ± iky is
the crystal momentum. Note that HKane equals H from Eq. (1)
restricted to the 10 above-mentioned bands.

Due to the presence of inversion symmetry, the nonzero el-
ements of the k · p Hamiltonian for a lonsdalite crystal (such
as hex-Ge) differ from those in the case of a wurtzite crystal.
For instance, the SOC term between the CB and VB, origi-
nally neglected by Chuang and Chang [11] but later added to
the Hamiltonian by Refs. [44–46], is zero for hex-Ge due to
the inversion symmetry.

It is obvious from Eq. (4) that in the kz direction, the top
valance band does not have a k-dependent term and its effec-
tive mass is the same as the free electron mass (m0); hence, be-
ing a valence band, it has the wrong curvature if the contribu-
tions from the other bands are omitted. Also, the lowest con-
duction band couples neither via the k · p nor the SOC term
to any other band in set A, where bands in set A are shown in
Table I and all other bands are in set B. Hence, the effective
mass along the kz direction would be the same as the in-plane
effective mass but this is contradictory to ab initio results of
Ref. [30]. Overall, we find that the model cannot produce the
curvature of the energy bands correctly and in this sense it is
not self-consistent. To fix this problem, we use Löwdin parti-
tioning as explained in Eq. (3) to find the contributions from
the bands in set B. Hence, using the Kane-like Hamlitonian
with the distant band contrubtions, the Hamiltonian for which
we will be using for the fitting becomes

Hhex−Ge
10×10 = HKane + H(2)

k·p (5)

where H(2)
k·p is the Hamiltonian of the distant band contribu-

tions and its definition can be found in Eq. (B5). We should
note that, we disregard the renormalized spin-orbit interaction
from the bands in set B to set A.

B. Optical Activity of the Lowest CBs

From the discussion in Sec. III it follows that the CB does
not have non-vanishing dipole matrix elements with the VB
and, hence, for the 10 × 10 model, the CB appears to be op-
tically dark. However, as it can be seen from the Table VII,
when spin-orbit coupling is turned on, the optical transition
becomes allowed if the polarization of the exciting light is
perpendicular to the out-of-plane rotation axis. To verify
this claim, we investigate 12 × 12 spinless k · p model that
is presented in Table IX. Looking at the table, we see that
⟨CB + 5 |k+p− + k−p+|VB⟩ = γ3k−. Similarly, the SOC ma-
trix element between CB+5 and CB is nonzero. Hence, it is
now plausible to conclude that CB, when the SOC is turned
on, consists of a linear combination of the irreps Γ−3 (CB) and
Γ−6 (CB+5), which explains the very weak dipole transition
from VB to CB found in Ref. [30]. We should also point out
that in the double-group representation, we have Γ−3 ⊗Γ

+
7 = Γ

−
8

and Γ−6 ⊗ Γ
+
7 = Γ

−
8 ⊕ Γ

−
7 where Γ+7 is the double group repre-

sentation of the spinor. Hence, when SOC is considered, both
bands belong to the same double group, which makes the hy-
bridization argument more plausible. Similar arguments can

be used for the transitions to the CB+1 band. From Table VIII,
one can check that C transitions (VB-2 → CB+1) in the x-y
polarization are only allowed when SOC is considered and
hence it is weak compared to A (VB → CB+1) and B (VB-
1 → CB+1) transitions where the same transition is allowed
even the SOC is turned off. These arguments are consistent
with the dipole matrix elements presented in Ref. [30].

IV. NUMERICAL FITTING PROCEDURE OF THE k · p
HAMILTONIAN

Although the k · p method is effective for the description of
the coupling of the bands, it still requires an input either from
ab initio calculations [24, 47] or experiments [8, 11, 21] as
the applied group-theoretic derivation cannot provide numer-
ical values for material-specific non-zero parameters. To find
the best fit parameters of the Eq. (4) with the addition of the
other band contributions described in Eq. (5), we first deter-
mine the parameters that appear in k-independent terms from
the ab initio calculations at k = 0. Setting Evb = 0 , we can
read off the conduction band energies (see Appendix B) and
the crystal field splitting ∆1 directly from the DFT band struc-
ture calculations described in Sec. II which were performed
without SOC. Diagonalizing Eq. (4) at k = 0, we obtain for
the band-edge energy differences as

Evb − Evb−1 =
∆1 + 3∆2

2
−

√(
∆1 − ∆2

2

)2

+ 2∆2
3,

Evb − Evb−2 =
∆1 + 3∆2

2
+

√(
∆1 − ∆2

2

)2

+ 2∆2
3.

(6)

where Evb, Evb−1 and Evb−2 are the band energies of the top
three valance bands at k = 0. Since we have already fixed
the value of ∆1 using the DFT calculations where SOC was
switched off, using Eq. (6) one can obtain the value of ∆2
and ∆3 by making use of DFT calculations where SOC was
taken into account. It is also noted by Ref. [30] that cubic
approximation (∆2 = ∆3) does not work for 2H-Ge.

For the parameters that appear in the k-dependent terms,
we choose our fitting region as |k| ≤ 0.1 Å

−1
due to the lim-

itations of the k · p method. While fitting, we minimize the
objective function r =

∑
k,n

[
Ek·p,n(k) − En(k)

]2
where n runs

from 1 to 10 and k runs along lines from Γ in two selected
high-symmetry directions up to a cut-off point, and where
Ek·p,n(k) and En(k) are the fitted and ab initio values, respec-
tively, which are both plotted in Fig. 2.

For the calculation of the effective masses, we used a
parabolic fit in the vicinity of the Γ point; the compiled val-
ues can be found in Table III. The Γ−8c band shows a highly
anisotropic effective mass which is expected as the dipole ma-
trix elements vanish in the z-direction but not in the x and y di-
rections. The Γ−7c band shows a very light anisotropy whereas
all the valance bands are anisotropic.
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Table II. Parameters for the Hamiltonian Hhex−Ge
10×10 for 2H-Ge, com-

posed of HKane and H(2)
k·p parameters. The optical transition ma-

trix elements p⊥, p∥ are related to the parameters P1, P2 appear-
ing in Eq. (4) by P2 = −i ℏme

〈
Γ2c−

∣∣∣p̂∥∣∣∣Γ1c+

〉
= −i ℏme

p∥ and P1 =

−i ℏme

〈
Γ2c− | p̂⊥| S y

〉
= −i ℏme

p⊥ and they are given in units of ℏ/a0. In-

verse effective masses are given in units of ℏ2

2m0
and energy splittings

are given in eV. Here, we define p̂∥ = p̂x + ip̂y and p̂⊥ = p̂z. For
comparison, we have included the notations ∆cf , ∆

∥
so, and ∆⊥so for the

energy splittings used in Ref. [30].

Parameter Hhex−Ge
10×10

Optical Transition Matrix Elements
p⊥ 0.4829
p∥ 0.6431

Conduction Band Effective Parameters
Ac2⊥ 3.4615
Ac1⊥ 9.5120
Ac2∥ 2.4091

Valance Band Effective Parameters
A1 -4.3636
A2 -1.9231
A3 2.4545
A4 -2.3323
A5 2.3590

Energy Splittings
∆1 = ∆cf 0.2688
∆2 = ∆

∥
so/3 0.0934

∆3 = ∆
⊥
so/3 0.0908

V. LOW ENERGY EFFECTIVE MODELS

For certain problems, involving n of p-doped samples,
wires, or quntum dots, the 10 × 10 model introduced in
Eq. (5) is not very convenient to use. In this section we pro-
vide simpler effective models for the conduction and valence
bands separately. We compare the effective masses found by
Löwdin’s partitioning to see if this simpler models can yield
comparable results compared to the Hamiltonian we consider
in Eq. (5). Additionally, we also provide the best fitting pa-
rameters for a valance band only model.

We start our discussion with the CB+1 band. One may use
the Löwdin’s partitioning we have introduced in the Eq. 3 and
this time the states that form set A are the |iz ↑⟩ and |iz ↓⟩ from
the Table. I and all other elements of the table form set B. The
effective Hamiltonian can be written as,

HCB+1 =
[
α1k2

z + α2

(
k2

x + k2
y

)]
1l2×2, (7)

Table III. The electron and hole masses obtained from the model in
Eq. (5) and, for comparison, from DFT calculations (in units of m0).
It should be noted that, effective mass in the x − y plane is isotropic.

Bands (Single Irreps) Direction Hhex−Ge
10×10 DFT (Ref. [30])

Γ+9v (Γ+5v) Γ→ A 0.51 0.53
Γ→ M 0.08 0.07

Γ+7v (Γ+5v) Γ→ A 0.12 0.12
Γ→ M 0.10 0.10

Γ+7v (Γ+1v) Γ→ A 0.05 0.05
Γ→ M 0.31 0.32

Γ−8c (Γ−3c) Γ→ A 0.99 1.09
Γ→ M 0.12 0.09

Γ−7c (Γ−2c) Γ→ A 0.04 0.04
Γ→ M 0.05 0.05

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

E
 (

eV
)

kx(1/Å)kz(1/Å)

7c

-
(

2c

-
)

8c

-
(

3c

-
)

9v

+
(

5v

+
)

7v

+
(

5v

+
)

7v

+
(

1v

+
)

k.p
DFT

Figure 2. Band structure of hex-Ge around the Γ point. k · p (solid
red lines) fit for the 10 band 2H-Ge, up to the 0.1 Å

−1
to ab initio

(black symbols) for Γ → A (kz) and Γ → M (kx) directions. The or-
dering of the heavy-hole(HH)-light-hole(LH) and crystal-field split-
off hole(CH) is due to crystal field splitting being larger than SOC.
The combination of inversion and time-reversal symmetry implies
that the band structure is doubly degenerate everywhere.
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with the definitions of α1 and α2 is given by

α1 = Ac2∥ +
P2

1

Ec − Ev
,

α2 = Ac2⊥ +
1
2

P2
2

Ec − Ev − ∆1 − ∆2
+

1
2

P2
2

Ec − Ev − ∆1 + ∆2
.

(8)

Here we ignored the third-order corrections that are second-
order in k and linear in the SOC. Although there are non-zero
terms between the spin-up and spin-down channels, they sum
up to zero using all the bands that form the set B. From Eq. (7)
and using Table IV for the values that appear in the Eq. (8) ,
we can calculate the effective mass of the CB+1 band in the kz
and kx directions. In the Γ → A direction, the effective mass
of the electron is m⊥cb+1/m0 = 0.04 and in the Γ → M and
Γ → K directions it is m∥cb+1/m0 = 0.05. These values are in
very good agreement with the values that are found from 10-
band fit. From Fig. 3, it can be seen that the one-band model
fits well to ab initio up to 0.05 Å

−1
in each direction. We can

conclude that the minimal model derived in Eq. (7) can in-
deed give correctly that the effective masses of the CB+1 are
slightly anisotropic.

Regarding the CB, it does not couple to any other bands in
Eq. (4) and from Eq. (5), there is no distant-band contribu-
tions to the CB in the kz direction. Therefore, the effective
mass m⊥cb of the CB is very close to the free electron mass
in this direction (see Table III). However, one can check that
there is a deep-lying valance band (namely Γ+6 from Table IX)
which couples to CB in the kx − ky plane. Due to this cou-
pling, the effective mass m∥cb of the electron in the Γ→ M and
Γ→ K directions is different from the free-electron mass, see
Table III. This means that the dispersion of the CB is highly
anisotropic. The effective Hamiltonian for the CB can be writ-
ten is the same general form as Eq. (7), with effective masses
m⊥cb and m∥cb given in Table III.

Finally, we also give a 6 × 6 fit of the valance band only
model (Hhex−Ge

6×6 ). We add both conduction bands from Eq. (5)
as distant band contributions to the 6 × 6 valance band only
Hamiltonian. To obtain the best fitting parameters, we use
the same approach from Sec. IV. We use the energy splittings
from Table IV and only inverse mass parameters (A1, A2, ...)
are used in the fitting. As it can be seen from the Fig. 4, there
are certain deviations from the ab initio data, especially for
the Γ+1v band in the kz direction, but the overall agreement is
still very good.

VI. EFFECTIVE g-FACTORS

In this section, we investigate Landé g-factors when a mag-
netic field is applied along the c crystal axis. Due to the exter-
nal magnetic field in the z-direction, crystal momenta in the
perpendicular to applied magnetic field direction do not com-
mute. Using the definitions from Eq. (3), we can split the per-

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

E
 (

eV
)

k
x
(1/Å)k

z
(1/Å)

7c

-
(

2c

-
)

k.p
DFT

Figure 3. Second-lowest conduction band described by the 2-band
(spinful CB+1) low-energy effective Hamiltonian for the 2H-Ge.
The original fitting region k ≤ 0.1 Å

−1
has been preserved to show

the deviations after 0.05 Å
−1

.

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

E
 (

eV
)

9v

+
(

5v

+
)

7v

+
(

5v

+
)

7v

+
(

1v

+
)

k
x
(1/Å)k

z
(1/Å)

k.p
DFT

Figure 4. Valence band structure of hex-Ge derived from the 6-band
(spinful VBs) fit. The original fitting region k ≤ 0.1 Å

−1
has been

preserved to show the deviations, especially for the lower-lying Γ+1v
valance band.
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Table IV. Parameter sets of the Hamiltonian Hhex−Ge
6×6 for 2H-Ge. The

units and energy splittings are same as for Table IV.

Parameter Hhex−Ge
6×6

Valance Band Effective Parameters
A1 -18.7342
A2 -2.5316
A3 16.7089
A4 -6.6835
A5 -7.2152

turbative terms into a symmetric and an anti-symmetric part,

Dαβ
j j′kαkβ =

1
2

(
Dαβ

j j′

)S {
kα, kβ

}
+

1
2

(
Dαβ

j j′

)A [
kα, kβ

]
, (9)

with the definitions,(
Dαβ

j j′

)S
=

1
2

[
Dαβ

j j′ + Dαβ
j′ j

]
,(

Dαβ
j j′

)A
=

1
2

[
Dαβ

j j′ − Dαβ
j′ j

]
.

(10)

It has been shown that, from the symmetric part one can ob-
tain the effective mass terms while the Landé g-factor can be
extracted from the anti-symmetric part [16, 17]. Hence, we
can write the effective g-factor of the electron as,

g∗ = g0 +
g0

im0

∑
γ

⟨c ↑ |px| γ⟩
〈
γ
∣∣∣py

∣∣∣ c ↑〉
Ec − Eγ

−

〈
c ↑

∣∣∣py

∣∣∣ γ〉 ⟨γ |px| c ↑⟩

Ec − Eγ
,

(11)

where c stands for the conduction band and g0 = 2 is the
bare electron g-factor. Here we should note that, as there are
no k · p terms between the lowest conduction band and the
three valance bands that we have considered in Table I, the
g-factor of the CB can be taken as g0 in the model introduced
in Sec. III.

For the CB + 1, we have

g∗CB+1 = g0 +
g0 p2

⊥

m0

(
−1

Ecb+1 − Evb
+

1
Ecb+1 − Evb−1

)
, (12)

where Evb and Evb−1 can be written as,

Evb = Ev + ∆1 + ∆2,

Evb−1 = Ev +
∆1 − ∆2

2
+

√(
∆1 − ∆2

2

)2

+ 2∆2
3.

(13)

As can be readily seen from Eq. (13), without SOC terms
(∆2 and ∆3), gCB+1 would be equal to g0. Similar arguments
can be made to find the g-factor of the holes. In Table VI,
we give the g-factor of the electron and holes. The relative

g-factor difference between electron and holes can be under-
stood via Eq. (11). For the CB+1 band, the non-zero contri-
butions are coming from VB and VB+1 bands with opposite
signs. Conversely, for the valance bands, the only non-zero
contribution is possible via CB+1, which explains the relative
difference between electron and holes in this 10 × 10 model.
Here we should also point out that, the irreps used in our
model are not hybridized single group irreps as used in the
literature by Gutche-Jahne [13] and hence, the g-factors are
mainly determined by the momentum matrix elements in our
10 × 10 model.

Table V. Calculated values for the effective g-factors when a mag-
netic field is applied in the z-direction using the 10 × 10 k · p model.
The lowest conduction band is uncoupled and hence its g-factor is
g0 = 2.

HGe
10×10

gCB+1 -1.189
gCB 2
gVB -17.984

gVB−1 18.795

VII. CONCLUSIONS

In this paper, using ab initio analysis, we first inferred the
irreps of the two lowest conduction and three highest valance
bands for the Germanium in the lonsdelite phase. We devel-
oped 10 × 10 k · p model to fit to the DFT band structure
near Γ. Using the model, we extracted the dipole matrix el-
ements and the inverse effective masses for the conduction
and valance bands that fit to the ab initio band structure up to
0.1 Å

−1
. We also calculated the effective masses of electrons

and holes in the vicinity of the Γ point and find bands with
both anisotropic and isotropic masses. As the 10 × 10 k · p
model is not sufficient to explain the optical transition prop-
erties of the lowest conduction band, we added more bands
to the original model and showed that due to the SOC, lowest
conduction band hybridizes with a higher lying band which
gives a weak optical transition when circularly polarized light
is used. Using similar arguments, we also explained the transi-
tion amplitudes from the top three valance bands to the second
lowest conduction band. Using the Hamiltonian we have de-
rived, we calculated the effective g-factor of the electrons and
holes for a magnetic field along the c-axis of the crystal. In
conclusion, we created a k · p model that captures important
features of the 2H-Ge and we showed that physical parame-
ters like the g-factor of the electron and holes can be found us-
ing the Hamiltonian at hand. In real samples, the symmetries
of the lonsdaleite structure can be broken by various defects,
which would affect, among others, the optical selection rules
that we obtained. We leave the study of the effects of such
symmetry breaking to a future work.
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Appendix A: Selection Rules

In order to determine the non-zero matrix elements within
the k · p framework, we can first decide whether products of
the form Γi ⊗ Γ j ⊗ Γk contain the identity irrep (Γ1). Only in
this case, the corresponding matrix element will be non-zero.
Here Γ j corresponds to either p or ∇V(r) × p and Γi and Γk to
irreps of the bands. In short, under any symmetry operation
Ĝ, 〈

ψαi

∣∣∣∣pβj ∣∣∣∣ψγk〉 = 〈
Ĝψαi

∣∣∣∣Ĝpβj
∣∣∣∣ Ĝψγk〉 . (A1)

The relation Eq. (A1) can be used to determine whether
a matrix element equals zero for symmetry reasons. Un-

der a rotation operator, the equality becomes
〈
ψαi

∣∣∣∣pβj ∣∣∣∣ψγk〉 =
eiπr

〈
ψαi

∣∣∣∣pβj ∣∣∣∣ψγk〉 where r can take values depending on the ro-
tation symmetry, e.g., r = 1/3 for a 60◦ rotation. Depend-
ing on the value of the exp function, the momentum ma-
trix elements are zero or non-zero. Besides the rotational

symmetries, the D6h point group also has mirror and inver-
sion symmetries. For example, under the inversion symme-
try

〈
Γ+5 |k · p|Γ

+
5

〉
= −

〈
Γ+5 |k · p|Γ

+
5

〉
as the coordinates are not

paired and hence this matrix element vanishes.

Appendix B: Perturbation Hamiltonians and Definitions

In this appendix, we present the matrix form of the Hamil-
tonians of Eq. (1) and the corresponding parameters. H10x10
in Eq. (4) can be written asH0+H f ree+Hk·p+HS O, and here
we provide the definitions of the matrix elements.
H0 = diag [Ecb+1, Ecb, Ev + ∆1, Ev + ∆1, Ev] for each spin

channel, with
〈
Γ

S x
5v+ |H0|Γ

S x
5v+

〉
=

〈
Γ

S y

5v+ |H0|Γ
S y

5v+

〉
= Ev + ∆1,

⟨Γ2c− |H0|Γ2c−⟩ = Ecb+1 and ⟨Γ3c− |H0|Γ3c−⟩ = Ecb.
For the first order k · p Hamiltonian we have, Hk·p =

1
2
ℏ

me
(k+ p̂− + k− p̂+) + ℏ

me
kz p̂∥ where k± = kx ± iky with

P2 = −i ℏme

〈
Γ2c−

∣∣∣ p̂∥∣∣∣Γ1c+

〉
and P1 = −i ℏme

〈
Γ2c− | p̂⊥| S y

〉
=

i ℏme

〈
Γ2c−

∣∣∣ p̂y

∣∣∣ S x

〉
.

For the SOC terms, we have

∆2 =
iℏ

4m2
0c2

〈
Γ

S x
5v+

∣∣∣∣∣∂V
∂x

py −
∂V
∂y

px

∣∣∣∣∣ΓS y

5v+

〉
∆3 =

iℏ
4m2

0c2

〈
Γ1v+

∣∣∣∣∣∂V
∂y

pz −
∂V
∂z

py

∣∣∣∣∣ΓS x
5v+

〉
=

iℏ
4m2

0c2

〈
Γ1v+

∣∣∣∣∣∂V
∂z

px −
∂V
∂x

pz

∣∣∣∣∣ΓS y

5v

〉 (B1)

Hence, Eq. (4) can be written as the sum,

Hfree +

H(1)
k·p 0
0 H(1)

k·p

 + [
∆diag ∆off-diag
∆∗off-diag ∆diag

]
. (B2)

Matrix representation of the distant band contributions, Hdist.,
in the S x, S y and 1l basis can be written as,

Hdist. =



Ac2⊥(k2
x + k2

y ) + Ac2∥k2
z 0 0 0 0

0 Ac1⊥(k2
x + k2

y ) + Ac1∥k2
z 0 0 0

0 0 L1k2
x + M1k2

y + M2k2
z N1kxky N2kxkz

0 0 N1kxky M1k2
x + L1k2

y + M2k2
z N2kykz

0 0 N2kxkz N2kykz M3(k2
x + k2

y ) + L2k2
z



. (B3)



9

with the definitions,

Ac1⊥ =
ℏ2

2m0

1 + B∑
γ

2px
Γ3cγ

px
γΓ3c

m0

(
E0 − Eγ

)  , Ac1∥ =
ℏ2

2m0

1 + B∑
γ

2pz
Γ3cγ

pz
γΓ3c

m0

(
E0 − Eγ

)  ,
Ac2⊥ =

ℏ2

2m0

1 + B∑
γ

2px
Γ2cγ

px
γΓ2c

m0

(
E0 − Eγ

)  , Ac2∥ =
ℏ2

2m0

1 + B∑
γ

2pz
Γ2cγ

pz
γΓ2c

m0

(
E0 − Eγ

)  ,
L1 =

ℏ2

2m0

1 + B∑
γ

2px
S xγ

px
γS x

mo

(
E0 − Eγ

)  , L2 =
ℏ2

2m0

1 + B∑
γ

2pz
1γpz

γ1

m0

(
E0 − Eγ

)  ,
M1 =

ℏ2

2m0

1 + B∑
γ

2py
S xγ

py
γS x

m0

(
E0 − Eγ

)  ,M2 =
ℏ2

2m0

1 + B∑
γ

2pz
S xγ

pz
γS x

m0

(
E0 − Eγ

)  ,
M3 =

ℏ2

2m0

1 + B∑
γ

2px
1γpx

γ1

m0

(
E0 − Eγ

)  ,N1 =
ℏ2

m2
0

B∑
γ

px
S xγ

py
S yγ
+ py

S xγ
px

S yγ
,

(B4)

where the relation between band parameters (L1,M1, ...) and inverse effective mass parameters (A1, A2, ...) are the same as in
Ref. [11], with E0 is the energy of the band of interest and Eγ is the band energy of the distant band. Note that, due to the
inversion symmetry, there are no coupling terms between CB and VB, unlike in the case of wurtzite materials. Because of the
hexagonal symmetry we can write N1 = L1 − M1 and N2 = 0 for our case. In the kz direction, since the lowest conduction band
does not couple to any other band, Ac1∥ = ℏ

2/(2m0). Using the bases we have introduced in Table I, and following the notation
of Ref. [11] we can write the Eq. (B3) as,

H(2)
k·p =



C2 0 0 0 0 0 0 0 0 0
0 C1 0 0 0 0 0 0 0 0
0 0 λ + α −K∗ −T ∗ 0 0 0 0 0
0 0 −K λ + α T 0 0 0 0 0
0 0 −T T ∗ λ 0 0 0 0 0
0 0 0 0 0 C2 0 0 0 0
0 0 0 0 0 0 C1 0 0 0
0 0 0 0 0 0 0 λ + α −K T
0 0 0 0 0 0 0 −K∗ λ + α −T ∗

0 0 0 0 0 0 0 T ∗ −T λ


. (B5)

with the definitions,

C2 = Ac2⊥(k2
x + k2

y ) + Ac2∥k2
z ,C1 = Ac1⊥(k2

x + k2
y ) + Ac1∥k2

z ,

λ = A1k2
z + A2

(
k2

x + k2
y )
)
, α = A1k2

z + A2

(
k2

x + k2
y )
)
,

K = A5k2
+,T = A6

(
kx + iky)

)
kz.

(B6)

Appendix C: Optical Selection Rules for 2H-Ge

Here we present the optical transition rules for the hexagonal germanium. Table VI shows the general dipole transition rules
for the VB’s (first row) and CB’s (first column). Table VII shows the possible transitions between CB and VB, VB-1 and VB-
2 with both SOC on and off and similarly Table VIII shows the transitions to the CB+1. Similar analysis has been done by
Ref. [23] for the wurtzite structure. We should point out that CB+1 of the lonsdelite structure and CB of the wurtzite structure
behaves exactly same in terms of allowed optical transitions, for with and without SOC. CB (Γ−8 ) of the lonsdelite, however, does
not exist in the wurtzite. Thus, Table VII is lonsdelite spesific allowed optical transitions.

Appendix D: Twelve-band model at the Γ point

In this Appendix, we provide the twelve-band (without spin) k · p model that is mentioned in the Sec. IV. This is and extended
version of the 5× 5 spinless model introduced in Sec.III. The basis functions we use are the same as in Table I, with the addition
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Table VI. Selection rules for the direct optical transitions with and without SOC for the D6h point group. For the irreps, the parenthesis is used
to describe the single group representations of the double groups. For the optical transitions, parentheses (brackets) used when the SOC is (is
not) taken into account. Capital letters are used when the transition is allowed with SOC and without SOC. Also it should be noted that, we
don’t specify how the irreps change under the inversion symmetry here. Hence, the table should only be used when irreps in the rows and
columns are in opposite parity.

- Γ7(Γ1) Γ7(Γ2) Γ7(Γ5) Γ8(Γ3) Γ8(Γ4) Γ8(Γ6)

Γ7(Γ1) (x,y,z) (x,y),Z X,Y,(z) - - -
Γ7(Γ2) (x,y),Z (x,y,z) X,Y,(z) - - -
Γ7(Γ5) X,Y,(z) (X,Y),z Z,(x,y) - - [x,y]
Γ9(Γ5) X,Y X,Y [z],(x,y) (x,y) (x,y) X,Y
Γ9(Γ6) (x,y) (x,y) X,Y X,Y X,Y [z],(x,y)

Table VII. Selection rules for the lowest conduction band. Transitions from the top three valance band to lowest conduction band is forbidden
when SOC is turned off, and dipole allowed when SOC is on. Parenthesis is used to describe the irrep when SOC is neglected.

Transitions (CB) A : (Γ8(Γ3)← Γ9(Γ5), B : Γ8(Γ3)← Γ7(Γ5), C : (Γ8(Γ3)← Γ7(Γ1)

Neglecting spin-orbit - - -
With spin-orbit Γ5(x, y) + Γ6 Γ3 + Γ4 + Γ6 Γ3 + Γ4 + Γ6

Table VIII. Selection rules for the second conduction band. For the A and B transitions, optical activity is fully allowed in the x-y directions,
even without SOC is on but no optical activity in the z direction. For the C transition, z direction is optically active when SOC is off, and all
directions are active when SOC is on.

Transitions (CB+1) A : Γ7(Γ2)← Γ9(Γ5), B : Γ7(Γ2)← Γ7(Γ5), C : Γ7(Γ2)← Γ7(Γ1)

Neglecting spin-orbit Γ5(x, y) Γ5(x, y) Γ2(z)
With spin-orbit Γ5(x, y) + Γ6 Γ1 + Γ2(z) + Γ5(x, y) Γ1 + Γ2(z) + Γ5(x, y)

Table IX. 12 × 12 k.p matrix elements at the Γ point. H(1)
k.p represents the first order k.p terms that has been found in Eq. (B2).

Hk.p CB+6 CB+5 CB+4 CB+3 CB+2 CB+1 CB VB VB-1 VB-2 VB-3 VB-4
CB+6 0 0 0 0 0 0 0 0 γ1k+ 0 γ2kz 0
CB+5 0 0 0 0 0 0 0 γ3k− 0 0 0 γ4kz

CB+4 0 0 0 0 0 0 0 γ5k+ γ6k− γ7kz 0 0
CB+3 0 0 0 0 0 0 0 0 γ8kz γ9k+ γ10k− 0
CB+2 0 0 0 0 0 0 0 γ11kz 0 γ12k− 0 γ13k+
CB+1 0 0 0 0 0 0 0

CB 0 0 0 0 0 γ14k+ γ15k−
VB 0 γ∗3k+ γ∗5k− 0 γ∗11kz 0 0

VB-1 γ∗1k− 0 γ∗6k+ γ∗8kz 0 0 0
VB-2 0 0 γ∗7kz γ∗9k− γ∗12k+ 0 0
VB-3 γ∗2kz 0 0 γ∗10k+ 0 0 0 0 0 0 0 0
VB-4 0 γ∗4kz 0 0 γ∗13k− 0 0 0 0 0 0 0

H(1)
k.p




of CB+6 and CB+5 that transform as Γ−6 , CB+4 as Γ−2 , CB+3 and CB+2 as Γ−5 for the conduction bands. Similarly, for the
valance bands we have VB-3 and VB-4, which transform as Γ+6 of the D6h point group.

[1] R. Soref, The past, present, and future of silicon photonics,
IEEE Journal of selected topics in quantum electronics 12, 1678
(2006).

[2] Z. Sun, A. Martinez, and F. Wang, Optical modulators with 2d
layered materials, Nature Photonics 10, 227 (2016).

[3] S. Nakamura, The roles of structural imperfections in ingan-
based blue light-emitting diodes and laser diodes, Science 281,

956 (1998).
[4] L. Canham, Gaining light from silicon, Nature 408, 411 (2000).
[5] M. A. Green, J. Zhao, A. Wang, P. J. Reece, and M. Gal, Effi-

cient silicon light-emitting diodes, Nature 412, 805 (2001).
[6] E. M. Fadaly, A. Dijkstra, J. R. Suckert, D. Ziss, M. A.

Van Tilburg, C. Mao, Y. Ren, V. T. van Lange, K. Korzun,
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[32] M. Iraola, J. L. Mañes, B. Bradlyn, M. K. Horton, T. Neupert,
M. G. Vergniory, and S. S. Tsirkin, Irrep: symmetry eigenval-
ues and irreducible representations of ab initio band structures,
Computer Physics Communications 272, 108226 (2022).

[33] L. Elcoro, B. Bradlyn, Z. Wang, M. G. Vergniory, J. Cano,
C. Felser, B. A. Bernevig, D. Orobengoa, G. Flor, and M. I.
Aroyo, Double crystallographic groups and their representa-
tions on the Bilbao crystallographic server, Journal of Applied
Crystallography 50, 1457 (2017).

[34] G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Prop-
erties of the thirty-two point groups, Vol. 24 (MIT press Cam-
bridge, MA, 1963).

[35] R. K. Willardson and A. C. Beer, Semiconductors and semimet-
als (Academic press, 1977).

[36] G. Bastard and J. Brum, Electronic states in semiconductor het-
erostructures, IEEE Journal of Quantum Electronics 22, 1625
(1986).

[37] E. McCann and M. Koshino, The electronic properties of bi-
layer graphene, Reports on Progress in physics 76, 056503
(2013).
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