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Circuit theory for decoherence in superconducting charge qubits
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Based on a network graph analysis of the underlying circuit, a quantum theory of arbitrary superconducting
charge qubits is derived. Describing the dissipative elements of the circuit with a Caldeira-Leggett model, we
calculate the decoherence and leakage rates of a charge qubit. The analysis includes decoherence due to a
dissipative circuit element such as a voltage source or the quasiparticle resistances of the Josephson junctions
in the circuit. The theory presented here is dual to the quantum circuit theory for superconducting flux qubits.

In contrast to spin-boson models, the full Hilbert space structure of the qubit and its coupling to the dissipative
environment are taken into account. Moreover, both self- and mutual inductances of the circuit are fully
included.
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I. INTRODUCTION count self- and mutual inductances in the underlying SC cir-

Various types of quantum bits with Josephson junctions irfuit. . - .
superconductingSC) circuits are now investigated in theo- __ Vhile the circuit theory developed in Secs. II-IV can be

retical and experimental studid.The two types of macro- 2&Pplied to any SC charge qubit, its usefulness will be illus-
scopic SC qubits, the chary@ and flu¥-12 qubits, are dis- trated with some specific examples of charge qubit circuits

tinguished by the relative size of the charging enegyand that have been studied before in Sec. V, where we reproduce

the Josephson enerd; of their junctionst? In flux qubits, and extend some previously known results. However, we

also known as persistent-current qubits, the Josephson ehtress that the circuit theory results are more general than

ergy dominatesE,> Ec, and the state of the qubit is repre- previously applied methods for the following reasaimsThe

. . . . erived Hamiltonian is not priori truncated to a two-
Se”tgﬂzas the orientation of a persistent current in a S imensional subspace, which allows us to treat leakage and
loop”~“In contrast to flux qubits, charge qubits operate in

. tp derivethe matrix element of the system-bath coupli@ip.
the regimeEc> E,, and are represented as the charge state Ofe capacitance matrix of the circuit is fully taken into ac-

a small SC islandpresencell), or absence)0), of an extra o nt “and no assumption about the relative magnitude of
Cooper pair which is capacitively coupled to SC ledd$ gate and Josephson capacitances has to be rfiaderhe
(Fig. 1). The quantroniurhis a charge qubit that operates in jnquctance matrix of the circuit is fully taken into account.

a regime close t&c~E;. Any number of dissipative elemeni (external imped-
Both types of SC qubits suffer from decoherence that isances, resistancesan be included in the circuit theory. In
caused by several sources. In flux qubits, the Johnsorpyr treatment of the system-bath Hamiltonian and the deco-
Nyquist noise from lossy circuit element®.g., current herence and relaxation rates in Sec. IV, we choose to restrict

sources has been identified as one important cause obyrselves to the case of a single impedadci order to
decoherenc&2° A systematic theory of decoherence of akeep the notation simple. However, the analysis can readily

qubit from such dissipative elements, based on the networke extended to multiple impedances in analogy to SC flux
graph analysfs of the underlying SC circuit, was developed qubits??

for SC flux qubits?? and successfully applied to study the
effect of asymmetries in a persistent-current gébiReco- =
herence in charge qubits has previously been investigated
using the spin-boson modef*
Here, we develop a general network graph theory for z B G
charge qubits and give examples for its application. As in the
case of the circuit theory for flux qubits, we are not restricted
to a Hilbert space of the SC device whichaspriori trun-
cated to two levels only. In other words, in contrast to the A
spin-boson model, our theory is capable of describaak-
ageerrors?® i.e., unwanted transitions to states that are out- -1V E I

side the subspace spanned by the logical qubit si@tesd

|1). The description presented here is an extension of earlier
results on the SC flux qubfsand has potential applications  FiG. 1. Circuit graph of a single voltage-biased charge box.
to hybrid charge-flux qubits.The role of the self- and mu- Branches represent a Josephson jundi®y), capacitance&C; and
tual inductances in SC charge qubits has been previouslg,), a voltage sourc¥, and the impedancg The nodes are shown
studied?® in particular as a means of coupling two SC chargeas black dots; the node connecting the juncti&j) to the gate
qubits?* Here, we fully and systematically take into ac- capacitanceC, represents the SC island.
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Il. NETWORK GRAPH THEORY (i) There are no loops containing nothing else than Jo-
sephson junction§)), external impedance&), and voltage

ang?ﬁepgl:?;ﬁ-\%Iizlsesfeclggg n'é\;%g)efg\ﬁhlgr;?:&?sflzws sources(V). This assumption is physically motivated be-
g cause all loops have a finite self-inductance.

general SC charge qubit in an appropriate form for their later™ .. ; -
use in the derivation of the classical equations of motion of (".) Voltage sourcegV) and impedancefZ) are not in

- ductively shunted.
the circuit(Sec. IlI).

) . (iii) There are sufficiently many capacitdi®) in the cir-
Our analysigsee also Ref. 2tarts with the representa- _ . . : .
tion of the ysé( circuit as a (?irected graph, in ?Nhich thecun to independently shunt all inductors. A more precise

branched,,b,, ... ,bg represent one of the following lumped zalrlrr:aﬂkt?lsse;eggllgzlment Is that the capacitance matrbas
circuit elements: a Josephson junction, inductance, capaci- Using assumptior(i), we may split up the current and

tance, voltage 'source, or an ex_ternal |mpeda(m?cg., are- voltage vectors as
sistance The circuit graph of a single, voltage-biased charge

box in Fig. 1 is a simple example of a circuit graph. In our Lo =510, Tep= (ICJ,IC,IK), (6)
examples, we neglect the quasiparticle resistance of the junc-
tions because it makes the analysis simpler and because they V= (Vo VLViV2), V= (Ve Ve Vi) (7)

are typically less important than the impedances of the volt-

age sources; however, the shunt resistances can easily e chord current and voltage vectdggandV ., in Egs.(6)
included as additional impedances in the circuit. The nexand (7) contain the branch currents and voltages of the ca-
step is to find dree of the graph, i.e., a loop-free subgraph pacitors(C;,C) and chord inductoréK); the tree current and
which connects all nodefor each connected piece of the voltage vectord, and V, contain the branch currents and
graph, we choose a connected subtre€he branches voltages of tree inductord), Josephson junctior(s), exter-
f1,f5, ... ,fr outside the tree are the so-calledords each  nal impedanceéZ), and bias voltage sourcég).28 The loop
chordf;, when added to the tree, gives rise to a unique loopmatrix F then acquires the block form,

a fundamental loopF; of the circuit. The topological infor-

mation about the graph which is of importance for our analy- L Fye Fi
sis can be represented in the fundamental loop mdtrix Fo 0 Fc Fik ®)
=1,... F;j=1,... B), 0 Fye Fuk )
1 if b € F; (same direction 0 Fze Fx
Fi(j” =1-1 if b; € 7 (opposite direction (1 The form of the first column in Eq8) reflects the fact that
0 ifberF the C, capacitances ardy definition shunted in parallel to
i i

the Josephson junctions. Moreover, assumption above
where the direction of the fundamental logpis defined to  impliesF,x=F,«=0. In order to derive the equations of mo-
be opposite to the direction of its defining chdidAccord-  tion, we formally define the branch charges and flukgs
ingly, the currents I=(l4,...,lg) and voltages V. =C,K,J,L,Z,V),
=(V4,...,Vp) associated with the branches 1, B.of the .
graph are split up into tree and chord currents and voltages, Ix(t) = Qx(V), 9

L=y len), V=(ViVen. ) Vy(t) = (i)x(t), (10

With this ordering, the fundamental loop matrix assumes thg,ere the formal fluxes of the Josephson branches are the SC

form phase differences across the junctions, according to the sec-
FL = (-FT1) (3)  ond Josephson relation,
and we will simply refer to the matri¥ in the following. P, = £, (12)
Using Eq.(3), we write Kirchhoff's laws in the following Oy 2m
useful form?22 . _ )
with ®y=h/2e. The current-voltage relatiof€VRs) of the
Flgn=—1y (4) Josephson, capacitance, and external impedance branches are
I,=1.sine=1 sin<2 q”) (12)
) = = T |,
F'Vi = V- @, 5 pT ST @,
Whv_areq)x:(d)l, ,fI)F) denote the externqlly Qpplied mag- Qc=CVe, (13)
netic fluxes threading loops 1, . F ,of the circuit. The par-
tition of branch types into tree and chord branchedual to V=7 %] (14)
the flux qubit casé?i.e., the roles of tree and chord branches z “
are interchanged. where the convolution is defined af=g)(t)=/" f(t
Before we proceed, we summarize the assumptions aboutr)g(7)d7. The CVR for the inductive branches has the fol-
the circuit that will be used in the following. lowing matrix form:
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@ )L Lu\(l)_ u) _(cjv>= .
<(I)K>_(LEK Lk )<|K>_Lt<||< , (19 Cv= CLy = FcChve. (29)

whereL and Ly are the self-inductances of the chord and . T
tree branch indﬁctors, respectively, off-diagonal elements de- Cz(w) =iwCFzcZ (@)FzcC. (24
scribing the mutual inductances among chord inductors and We can further rewrite the dissipative term in E#j9) by
tree inductors separately, ahgy is the mutual inductance using Eq.(5) (capacitance partsolving forV, and substi-
matrix between tree and chord inductors. Since the total intuting the solution back into Eq19), with the result
ductance matrix is symmetric and positive, ivdl_v> 0 for

all real vectorsy, its inverse exists, and we find (C+Cp)xD=Q-CyV, (25
T - - - where we have introduced
<|L>:( Lt -L 1LLKLK1)((I)L>:L—1((I)L> o
T — — =L = —
Ik —Lg Lt Lt Py Py Cz(w) =mCz(w)m’, (26)
16 _
" m=FeCFl.=| (27)
with the definitions m=J7clFzc= )
L=l - Ly, (17)

Cyw) = iwZ(w)[1+F2cCFldwZ(@)] ™. (29
L_K: Le— L[ L7 k. (18 Using the symmetry ofC;(w), we can show thaEZ(w) is
also a symmetric matrix.
We obtain the equation of motion from E@5) by taking
lll. CLASSICAL EQUATION OF MOTION the derivative with respect to time, and using E®). with

In this section, we derive the classical equation of motioanK’L and Eq.(16),

of the dynamical variable®=(d;,®,) of the circuit.

We now combine Kirchhoff’s laws, Eq$4) and (5), and
the CVRs, Eqs(12)—(18), in order to derive the classical )
equations of motion of the circuit. These will then be used inWith the potential
Sec. IV to find the Hamiltonian suitable for quantization. The 1
details of the derivation are explained in Appendix A. U(®) =-Lj" cose+ ECI’TM o@ +PND,, (30

Equations(A3) and (A9) can be summarized as

(C+cz>*<'1'>=c'g=—%, (29)

where®=(dq¢/27,P,) and
Mo=0L'g", N=gL (01", (3D
with the (N +Ng) X (N;+N,) block matrix

CP=Q-C\V - FCy* Ve, (19)

with the combined flux vecto® =(®;,® ) =(Pye/ 27, D)),
and the canonical charge

_ O _FJK
Q:_(gi>_fKQK' (20) g—<1L —FLK)' (32)

- - —_ Using L{=L,, we observe thamM=M,. In the absence of
Note that in the SC charge qubits studied in Ref. 6, the Jo- St ) T 0 O ~
sephson junctions lead tgotherwise only capacitively ct;]ord mdqcto;s(K),bwe f|nchf> MO(I)._(;)LL D andNb—Q,
coupled SC islands, with the consequence that there are n1eréas in the absence of tree in uctdks, we obtain
i T 3@ ™M@ +DND, =5 (F 0+ D)L Mo+, +const
chord inductors(K), and Q=—-(Q;,Q.)'. However, the 2 0+ T x~ 2\PgkPT PR L (IFgkP™ P St
quantronium circuitg, which have hybrid charge and flux  BY Pringing the dissipative term in Eq29) to the right-
nature, cannot be described without chord inductors. In th8@nd side and using assumptigin), we find the equation of

following, we will derive our theory for the most general Motion

case including chord inductors, but further below, we will . Ju oy
also discuss the much simpler special case without chord C‘I’:‘E —Cg* CQ, (33
inductors. In Eqs(19) and(20), we have also introduced the
notation with the dissipation matrix
Fix Co(@) =[1 +Cx(w)C T Cow) = MK (0)m',  (34)
Fx= (21
FLx and the frequency-dependent kernel
for X=C,K, and the capacitance matrices K () = Ez(w)[l + rﬁ'TC—lrﬁEZ(w)]—l_ (35)
C= <CIT°t CJ") = (CJ O) + fCC]:(T:, (22) Since botkEZ(w) andC are symmetric matrices, we find that
Ci CL 0 0 K(w), and thus alsa4(w), are symmetric. Moreover, we
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know thatCy(t) inherits two additional properties fro&(t): Jw)=-ImK(w). (40)
it is also real and causal, i.&4(t)=0 for t<0. In a pertur-
bation expansion irZ?, the lowest-order term ik (w) is
simply K (w) =iwZ (w)+0(Z)2.

In deriving Eq.(33), we have used assumptidiii) that
the matrixC has full rank, such thaf™! exists. Since all
junctions are capacitively shunted, we know t8gj; has full
rank, henceN;<rankC<N;+N,, whereNy is the number of
branches of typ&X. The case rank<<N;+N, occurs if there . _
are not suffici};%tly many capacitancés in the circuit to inde- ponlV) = =1 @nmpnn(t) = 2 Rumpu(1). (43
pendently shunt all inductors. In that case, B2f), without
the dissipative part, contains=N;+N, —rankC constraints ~With wym=w,~wp, and with the Redfield tensor,
that can be used to eliminatedegrees of freedom. In the

Note that the kerneK has become a scalar because we are
now only dealing with a single external impedance.

From the Hamiltoniari, the master equation for the evo-
lution of the system density matrix can be deriédn the
Born-Markov approximation, the matrix elements,,
=(n|pdm), whereHgn)=wy|n), obey the Redfield equatiéh

— (+)
case of SC flux qubit® it was assumed that only the junc- Ramii= amz Pornc* & kz Flrrm lmnk Flmnk' (42
tions are shunted by capacitofankC=Nj), thus| is the
. 1)
number of tree inductors. where(FImnk =I' ;e @nd
w 1 g iBond2
IV. QUANTUM THEORY Rel'yn= g(m *Q)im(m -Q)n“J(|w“k|)sinhhﬁ|wnk|/2'

The purpose of this section is to derive the Hamiltonian of
the circuit, including its dissipative elements, and then to . 1
quantize this Hamiltonian in order to have a description of '™ Tlnk= = 7 (M- Q)m(m 'Q)nk;Pf do——>
the quantum dissipative dynamics of the circuit from which a
master equation and, finally, the decoherence rates can be x( B coth@>
derived. @7 Onk 5 )
The Hamiltonian of the circuit,

J(a))

2
w — Wpk
(43

andm=C"'m.

The Redfield equatiotdl) can be derived for arbitrary
SC circuits. The SC circuit can represent a single qubit or a
o ] ) ] i o number of qubits. In order to make connection with single-
giving rise to the_equanon of_mot|o(|$3) without dissipation qubit experiments, we apply the theory to the case of a SC
(2=0), can readily be quantized with the commutator rule cjrcyit representing a single qubit. Restricting ourselves to

CAT—i% s the two lowest levels and working in the secular

[©, Q] =173 37) approximatior?? the Redfield equatior(41) turns into a
A somewhat subtle point here is that while the inductor fluxBloch equation with the relaxatigiT,;) and decoherendd,)
variables®, are defined on an infinite domain, the Joseph-times,
son flux variablegb;=(®y/2m)¢ are defined on a compact
domain since they are periodic with peridg. Upon impos- 1_4
ing Eq. (37), this leads to charge operatd@s with a con- T, #
tinuous spectrum an@; with a discrete spectrum with ei-
genvaluesQ;=2en, with n; integer? 1 1 1

In order to describe the dissipative dynamics of the SC T = oT. + T, (45)
circuit, we construct a Caldeira-Leggett Hamiltorffark{ 2 1oe
=HstHg+Hsp that reproduces the classical dissipative
equation of motion Eq(33). For simplicity, we will restrict == %|<O|m -Q[0) - (1)m - Q|1)? ? 2kgT.

1
Hs= E(Q -CW)CHQ-CW)+U(@),  (36)

(44)

thl
2keT’

ourselves to the case of a single impedaAdeere, where a Ty o |40
single bath of harmonic oscillators can be used to model the (46)

dissipative environment, . . o
In the semiclassical approximatiéf,(0|Q|1)=(1/2)(A/

=S ( P, L o ) 3y @vAQ and (0Q0)~(1QIL)=(e/wp)AQ, where AQ
2m, 2 =Qy—Q; is the “distance” between two localized low-energy
. classical charge stat€3, and Q, € is the classical energy
We choose the system-bath coupling to be of the form gjfference and\ the tunneling amplitude between them, and
o= o wo1=VA A2+ & is the energy splitting between the two quan-
Hsp=C'M Q2 cx, =M -CQY CoX,y (39 tum eigenstates in this energy double well. Within this ap-
“ “ proximation, we find
such that it reproduces the classical equation of motion Eq.
(33), with a spectral density of the bath modésr a deriva- 1_ E| AQ|2( )
tion, see Appendix B h

a a

(47)

kT'
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FIG. 2. A flux-controlled Josephson junction.
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The leakage rates from the logical st&te0,1 to statesn

=2,3,...outside the computational subspace can be esti-

mated as

1

4 ©
— =2 [(Km - QInA)(wncoth
TL ﬁn:2

ﬁwnk
. 49
2kgT 49

V. EXAMPLES

A. Single charge box

PHYSICAL REVIEW B 71, 144511(2005
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FIG. 3. Two inductively coupled charge boxes.

B. Flux-controlled Josephson junction

A flux-controlled Josephson junction is a SC loop with
two junctions which acts as an effective Josephson junction
with a flux-dependent Josephson ener@e circuit Fig. 2
we use to describe the flux-controlled junction comprises a
chord inductancéK) with inductancel. The tree consists of
the two Josephson branches. The only relevant loop matrix is
Fix=(1-1T. In the limit L—0, and if E;;=E;,, we find
Flc@+®,=¢1— @+ ®,—0, which leads us to the Hamil-
tonian

The voltage-biased charge box is shown in Fig. 1, where

the inductance of the leads has been neglected for simplicity 5
(noL andK branches The tree of the graph is given by the

Josephson, voltage source, and impedance branches. For the

loop matrices, we simply find

Fic=Fvc=Fzc=1. (50)
With the capacitances
C=C=Cy+Cy Cy=Cy, (51)
we arrive at the Hamiltonian,
+C,V)?
S:(QJ—Q—)+EJ COS¢. (52)

2Ct

The coupling to the environment is characterized roy

He=——- Ej(Py)cose, (55)
2C
where e=p1t 7T(I)X/CD0, E: CJ1+ CJ21 and EJ((DX)
=2E; co27®d,/ D).

C. Inductively coupled charge boxes

We now turn to the case of two charge boxes of the type
discussed in Sec. V A, coupled via an inductive 166ms
shown in Fig. 3. Here, the tree consists of all Josephson,
voltage source, and impedance branches, plus the inductive
branchL, and the loop matrices are

10

0 1), Fic=(11). (56)

Fic=Fvc=Fzc= (

=(Cy/Ciop)- As an example, we give here the relaxation andwith the two capacitance matric&=diagC,,C,) and C,

dephasing times, witm=|m|=Cgy/Cy,

4 ReZ(wm) h(l)oj_

1
— = 27am?4|(0|n|1)|?

coth , (53
T, Ry LT okeT 63
1 4 ReZ(0) 2ksT
= 27r?[(0[n|0) — (l|n|1>|2—()—B, (54)
s Rp 7

where n=Q/2e and Ry=h/€’. In the semiclassical limit,
(0|n|1)=(1/2)(A/ wpy)An and (0|n|0)—{1|n|1) = (e/ wgy) AN.

With An=1, we reproduce the results in Ref. 1. Typical

leakage rates are of the form of T/ with the matrix ele-
ment replaced b¥0|n|k)| and [(1|n|k)|, wherek=2 labels a

=diagCy;,Cy), we find Cq=C+C;, Cy;=C, C; =C],

=(C,,C,)T, andC_=C,+C,. The vectorm consists of the
two partsm;=C and m =(C;C,). With Eqg. (36) and the
inverse of the total capacitance matrix,

1 (C1+CyCp-C5 C,C, -CiCxp
ct== GG, (C1+Cy)Cy—Ci -CCy
"\ -ccy -CCn  CnC
o1 Ceffz Coffi1
=| Ciitrz Ceiiz Catfiz |» (57)
Coff1 Ceifirz Cofir

state other than the two-qubit states, and wit replaced  where y=(C,+C,)C;,C;,—C5C;,—C35C;;, the Hamiltonian

by Wik (|:0,l)

of the coupled system can be written as
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i+ C\V)? Po7 .
Hs= 2 <M +Ej COSQDi) —Flcp=Ve-FloV - FloVy - FLV;
i=1,2 2Cefi, 2m
N (QL+CyVi +CoVp)? N ﬁ =CTIQc— Flc® - FUcVy—FlcZ * I,
2Cefi1 2L (AL)
L Qu+ C1V)(Qyz + CyVy) multiply this equation byF;cC, and use Eq(4) (impedance
Cefr 12 part), with the result
(Qy + CV)(QL+ CyVy + CoVy) ® . :
-y e L 2 (5g) —CF ) cCFlép = F3cQc = FycCFo®, — F3cCFLVy
i=1,2 Cei Li 2m

~ F3cCFIZF2c* Qc. (A2)
While the last term in Eq(58) couples each qubit to tHeC .
mode associated with the inductorand is thus responsible Then we make use of E¢4) (Josephson parand obtain
for the inductive coupling of the qubits, the second to last ¢, . .
term provides a direct capacitive coupling between the qu- 2—Ctot€0 =-Qy~FuQk — Cy®L - Cy Vv~ FycCz* Ve,
bits. In the limitC; < Cj;, we reproduce the results of Ref. 1;
however, there are additional terms of ord&fCj;, in par- (A3)
ticular the new termp1/Ceft,1, in the Hamiltonian that ca- \yhere we have defined the frequency-dependent capacity
pacitively couples the qubits directly. Since the coupled SYST,(w) =i wCF1Z (w)F,cC and
tem involves at least four levelmore if excited states of the c

LC coupling circuit or higher qubit levels are includedt Ciot= Cy+ F3cCF, (A4)
can no longer be described by a two-level Bloch equation
with parameterd’; and T,. We can, however, fix one of the Cy= FJCCFIC (A5)

qubits to be in a particular state, s@y, and then look at the
“decoherence rates” of the other qubit. To lowest order in

— T
C;/Cjy;, these rates due to the impedarfehave the form Cov=FycCFvc (AB)
[4i=Ci/(C,+Cy)] We find thatC,(w) is a symmetric matrix since both andZ
are symmetric. Using Eq5) (capacitance partagain, we

1 4 ReZ 5 obtain

== 27Tqi24|<00|n|_|10>|2Mw01 coth—2t , ®

T Ra 2keT Flc® =C'Qc- 2_0':}04.0 ~FloVy - FcZ * 13,

(59) T
(A7)

which we multiply withF, -C, with the result

1 4 ReZ(0) 2kgT
= =2mq7{(00/n [00) - (10l [10)F == =2 T Do . ,
¢ RQ FLCCFLC(I)L = FLCQC - ZTFLCCFJC¢ - FLCCFVCVV
(60)
~FLcCFIZFzc* Qc. (A8)
With the definitionsC, =F <CF|. and C_y=F cCF{., we
ACKNOWLEDGMENTS find

Valuable discussions with David DiVincenzo are grate- - ¢ =-0Q, - F _%CT 5= Ci Ny —F ~Co*V
fully acknowledged. 1=~ Qu=FuQx oq ¥ T vV T ez Ve

(A9)

APPENDIX A: DERIVATION OF THE EQUATIONS Equations(A3) and (A9) are rewritten in a more compact
OF MOTION form in Eq. (19).

This appendix contains the derivation of E9). Note,
first, that the externally applied magnetic flu®, only
threads loops with a finite self-inductan@e., those pertain- In this section, the form of the system-bath coupling op-
ing to a chord inductorK), and not, e.g., the circuit loop eratorHgsgand its spectral densitf(w), Egs.(39) and(40),
formed by a junctiord and its junction capacitancgy, there-  are derived in detail.
fore ®,=(Df,, P, Pk)=(0,0,P%). Using this fact and We first inspect the Hamilton equations for the bath coor-
Egs.(5) (capacitance parand (11), we obtain dinates,

APPENDIX B: SYSTEM-BATH DYNAMICS
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. _ " _pa
o= = Pa (B1)
Py My
. JH 2 — 1
pa:_gz_mawaxa_cam -C Qv (BZ)

then take their derivative with respect to time, and solve

them in Fourier space. We obtain

_cm-C'Q 83
Xo(w) = = ad)’ (B3)
_ iwc,m-C1Q
Po(®) =M oX(w) = ——F——— (B4)
w —w

[e3

Next, we look at the Hamilton equations for the system co-

ordinates,

d= % = C‘l(Q + rﬁ% caxa>, (B5)

PHYSICAL REVIEW B 71, 144511(2005

(B6)

Combining Egs(B5) and(B6) with Egs.(B1) and(B4), we
obtain

- |
C(I):——+m2ca%

U .
-—-K=m(m-C'Q),
%]

oD
(B7)
where
C2
Klw)==-2 —* (B8)
o O W,
directly determines the bath spectral density
™ Ci
Jw) = 52 lw-w,)=-ImK(w). (B9
By comparing Eq(B7) with Eq. (33), we find
Cy(w) =K(w)mm'. (B10)
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