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Hyperfine interaction �HFI� in carbon nanotube and graphene quantum dots is due to the presence of 13C
atoms. We theoretically show that in these structures the short-range nature of the HFI gives rise to a coupling
between the valley degree of freedom of the electron and the nuclear spin, in addition to the usual electron
spin-nuclear spin coupling. We predict that this property of the HFI affects the Pauli blockade transport in
carbon-based double quantum dots. In particular, we show that transport is blocked only if both the spin and
the valley degeneracies of the quantum dot levels are lifted, e.g., by an appropriately oriented magnetic field.
The blockade is caused by four “supertriplet” states in the �1,1� charge configuration.
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In the past decade, fundamental steps have been made
toward the realization of quantum information processing,
including isolation, manipulation, and readout of single elec-
tron spins in the solid state.1 However, the majority of the
existing quantum dot �QD� spin qubits is fabricated in mate-
rial systems, where hyperfine interaction �HFI� with nuclear
spins limits the device performance via spin decoherence.
Carbon structures, such as carbon nanotubes �CNTs� or
graphene, are expected to have weak HFI, due to the small
1% natural abundance of spin-carrying 13C nuclei. This ex-
pectation has motivated intensive theoretical investigation2–5

and the experimental realization of QDs in carbon
nanostructures.6–15 A further perspective of carbon-based
quantum information processing has been opened by propos-
als suggesting to utilize the valley degree of freedom of the
delocalized electrons as a qubit.16,17 Relaxation and decoher-
ence mechanisms of these valley qubits are yet to be ex-
plored. One possible source of those is the short-range dis-
order, which is known to couple the two different valley
states.18

Double quantum dot �DQD� structures in the two-electron
regime are particularly well suited for studying the effects of
HFI.19–23 In the so-called Pauli blockade regime, the mea-
surement of the direct current through a serially coupled
GaAs DQD, as a function of the external magnetic field, has
been used to infer the hyperfine energy scale.20,21 Another
experiment in GaAs DQDs showed that HFI can be utilized
to perform coherent rotations between the states of a singlet-
triplet qubit and, at the same time, acts as a source of
decoherence.22

The effect of the HFI in carbon is most pronounced in
fully 13C-enriched samples.5,9,10,24–26 Such nanotube DQD
devices have been used recently to estimate the energy scale
of the atomic HFI as �100 �eV, using transport10 and
singlet-triplet dephasing time9 measurements. In contrast,
theory predicts an atomic hyperfine energy scale
�1 �eV.5,24 This discrepancy between theory and experi-
ment, together with unexplained features of the dephasing
time measurements of Ref. 9, show that additional theoreti-
cal efforts have to be made to gain a complete understanding
of the role of HFI in carbon-based QDs.

Here, we study the influence of the 13C nuclear spins on
the spin and valley degrees of freedom of the electrons in

carbon-based QDs. In particular, we derive the 4�4 Hamil-
tonian describing the effect of HFI on a single fourfold-�spin
and valley�degenerate QD energy level. We find that due to
the short-range nature of the HFI, it couples the nuclear spins
not only with the spin but also with the valley degree of
freedom of the electron. The effective hyperfine Hamiltonian
can be expressed as

Hhf = S · �h�0��0 + �
i=x,y,z

h�i��i� . �1�

Here S= �sx ,sy ,sz� /2 is the spin operator, �0 is the unit op-
erator in valley space, si��i� denotes the Pauli matrices acting
in spin �valley� space, and the quantities h�0,x,y,z� are different
linear combinations of the individual nuclear-spin operators
�see below�. Equation �1� should be contrasted with the
widely used 2�2 hyperfine Hamiltonian Hhf,GaAs=S ·h,
which describes the effect of the nuclear spin on a twofold-
degenerate level in a GaAs QD, and incorporates only a
single Overhauser field h. We estimate that the order of mag-
nitude of the valley-conserving ���0� and valley-mixing
parts of Hhf are the same.

As a physical consequence of the valley coupling due to
the HFI, we predict that the response of the Pauli blockade
leakage current through a carbon-based DQD to an applied
external magnetic field is remarkably different from the case
of GaAs DQDs. In the Pauli or spin blockade regime,1 the
transport from the source to the drain through a serially
coupled DQD occurs via the �0,1�→ �1,1�→ �0,2�→ �0,1�
cycle, �nL ,nR� denoting the charge state with nL �nR� elec-
trons in the left �right� QD �see Fig. 1 �inset��. In a GaAs
DQD, blocking of the current occurs when there is at least
one two-electron energy eigenstate in the �1,1� charge con-
figuration, having a spin-wave function, which is symmetric
under particle exchange �i.e., a triplet�. Due to HFI, this con-
dition is achieved only in the presence of an external mag-
netic field, which splits two triplet states apart from the sin-
glet state and prevents hyperfine-induced mixing of
those.20,21 In carbon-based QDs with fourfold level degen-
eracy, the current is blocked only if there is at least one
energy eigenstate in the �1,1� charge configuration with a
combined spin-valley wave function, which is symmetric un-
der particle exchange �“supertriplet”�. In order to distinguish
this effect from the spin blockade in conventional DQDs, we
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call it the spin-valley blockade. We show that in contrast to
GaAs, in carbon DQDs a spin �Zeeman� splitting is insuffi-
cient to maintain the blockade in the presence of HFI, which,
however, can be recovered by simultaneously introducing
spin and valley splittings.

We consider the lowest-lying orbital level of an electro-
statically defined QD in monolayer graphene with a finite
gap.3 �Nevertheless, the concepts and the formalism we use
are readily generalizable to other types of graphene or CNT
QDs.� In the absence of nuclear spins and external magnetic
field, this level is fourfold �spin and valley� degenerate. In
the presence of an external magnetic field, both the spin and
valley degeneracies can be split: an in-plane magnetic field
causes only a spin splitting �s=ge�BB via the Zeeman effect,
whereas an out-of-plane �z� component introduces a valley
splitting �v�Bz� as well.3 We consider the regime, where the
energy difference between the lowest-lying and the second
orbital levels is much larger than �s and �v. We describe the
system using the tight-binding �TB� model. The TB wave
functions, corresponding to the four sublevels of the lowest-
lying orbital level and characterized by the spin and valley
quantum numbers s� �↑ ,↓�	�+,−� and v� �K ,K��	�+,−�,
are ��sv�l�=
�celle

ivK·rl���
�v��rl��	s. Here �� �A ,B� is the

sublattice index, l is the unit-cell index, �cell is the unit-cell
area, rl� is the position of the carbon atom on sublattice � in
the lth unit cell, and 	+= �1,0� and 	−= �0,1� are the two
possible spin states. The four smoothly varying functions
��

�v� can be obtained by solving the Dirac-like envelope
function equation.3,27 The functions ��

�v� and �sv are normal-
ized: 
d2r���A

�v��r��2+ ��B
�v��r��2�=1 and �l����sv�l��2=1.

The nuclear spin of the carbon atom on site l� is denoted
by Il�, being zero if the atom is a 12C and a spin-1/2 operator
if the atom is 13C. In graphene and CNTs, the HFI is known
to be short range: its major contribution to the TB Hamil-
tonian is the on-site matrix element on the site of the nuclear
spin.5 Therefore, the elements of the TB Hamiltonian matrix,
describing the HFI, are �Hhf,tb�l�,l���=
ll�
���SAIl�, where
A=diag�Ax ,Ay ,Az� is a diagonal matrix.

The effective Hamiltonian describing the influence of the
HFI on the four sublevels is constructed by expressing Hhf,tb
in the subspace spanned by the four TB wave functions �sv.
The resulting matrix can be expressed in terms of the spin

and valley operators, as shown in Eq. �1�, using

h�k� = �cellA�
l�

Il�Fl�
�k� �k = 0,x,y,z� , �2�

where Fl�
�0�=�vf l�

�v� /2, Fl�
�z�=�vvf l�

�v� /2, Fl�
�x/y�

=Re / Im�e−2iK·rl�gl��, with f l�
�v�= ���

�v��rl���2 and gl�
=��

�+���rl����
�−��rl��. Note that in the presence of time-

reversal symmetry, h�z�=0. Under normal conditions, the
nuclear spins are completely randomized by thermal fluctua-
tions, which implies that the components of the hyperfine
fields have zero mean and their variances are

��hj
�k��2� = �cell

2 Aj
2�

4�
l�

�Fl�
�k��2 �k = 0,x,y,z� . �3�

We have used ��Il�� j
2�=� /4 and � denotes the abundance of

13C atoms in the QD. Using the slowly varying nature of the
envelope functions, we find �l��Fl�

�x,y��2= 1
2�l��gl��2. In the

N→� limit �N is the number of atoms in the QD�, the dis-
tributions of the hyperfine fields hj

�k� converge to Gaussians.
Furthermore, hj

�x� and hj
�y� become independent from hj

�0�, hj
�z�

and each other.
To determine the variances of the hyperfine field pre-

cisely, one needs to know the envelope functions ��
�v�.

However, a simple estimation can be given using the as-
sumption ���

�v��2�1 /�cellN. This choice satisfies the normal-
ization condition, and it results in ��hj

�0��2�=Aj
2� /4N,

��hj
�x/y��2�=Aj

2� /8N, and ��hj
�z��2�=0. We will use these values

in the following calculations.
The Hamiltonian Hhf in Eq. �1� shows that the HFI in

carbon-based QDs results both in spin and valley mixings,
and our estimates of the hyperfine field variances suggest
that the valley-conserving and valley-mixing contributions in
Hhf have the same order of magnitude. We emphasize that
this result is due to the short-range nature of the HFI. We
anticipate a similar result in silicon QDs,28,29 where electrons
also possess a valley degree of freedom. We highlight three
possible physical consequences of the valley-mixing nature
of Hhf. �i� HFI can be a source of valley relaxation and de-
coherence in “valleytronics” devices, such as valley filters,
valley valves,16 or QD valley qubits.17 �ii� Spin-orbit cou-
pling in CNT QDs can split the fourfold-degenerate ground-
state dot level into two doublets �K↑, K�↓ and K�↑, K↓� at
B=0.7 Spin-orbit coupling is stronger than the HFI; hence, a
fully valley-conserving Hhf would not be able to cause mix-
ing within or between the Kramers doublets. According to
our result, Hhf is not valley conserving and causes mixing
within the Kramers doublet. This finding may facilitate the
understanding of yet unexplained features of recent experi-
ments on 13C nanotubes.9,10 �iii� As we show below, the
valley-mixing character of the HFI introduces remarkable
features in the behavior of the Pauli blockade leakage current
through a carbon-based DQD.

Our goal is to calculate the average leakage current
through a DQD in the Pauli blockade regime as a function of
spin and valley splittings. To this end, we have generalized
the master-equation formalism used in Ref. 21. We focus on
the parameter regime, where the result �11� of Ref. 21 is
valid. �i� The energy detuning �	E�0,2�−E�1,1� between
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h h
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0

FIG. 1. �Color online� Averaged leakage current �I� due to hy-
perfine interaction in a graphene DQD, as a function of spin and
valley splittings. Imax�0.34e
in. Inset: transport through a DQD.
Dot R is always occupied by at least one electron.
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the �0,2� and �1,1� charge states is much larger than
the coherent tunneling strength between the two dots �t�,
the characteristic energy scale describing the HFI
�hhf=
�� /4N�� jAj

2�, and the spin and valley splittings
��s ,�v�. This condition suppresses the coherent tunneling
between the dots; therefore, the hybridization between �1,1�
and �0,2� charge states is negligible. �ii� The �1,1�→ �0,2�
transition is an energetically downhill inelastic tunneling
process characterized by the rate 
in. �iii� t2 / ����hhf, which
enables one to neglect the exchange splitting within �1,1�
charge states. �iv� 
L�
R�
in, where the rate 
L �
R�
describes the �0,1�→ �1,1� ��0,2�→ �0,1�� transition. �v�

L�hhf, which enables one to use a classical master equa-
tion to describe the transport process. Studying the Pauli
blockade problem under the above-specified conditions is
motivated by the fact that the theory for GaAs DQDs in this
parameter regime has been successful in describing recent
experimental results.20 We also adopt the constant interaction
feature of the model used in Ref. 21. Investigation of param-
eter regimes, where the Coulomb interaction results in
Wigner molecule formation,30–32 is beyond the scope of this
Rapid Communication.

Our approach deviates from the one used in Ref. 21
in the form of the single-particle Hamiltonians of
the two QDs, incorporating external magnetic field
and HFI: HD=HD,magn+HD,hf, where D� �L ,R�, HD,magn
=ge�BSD ·B+�v�Bz��z,D /2 and HD,hf=SD ·�i=0,x,y,zhD

�i��i,D.
According to our above analysis, we treat hD

�0,x,y,z� as uncor-
related stationary random fields21 and use our previous esti-
mates for their variances. For our purposes, we can neglect
the spin anisotropy of the HFI �Refs. 5 and 24� and use
Aj =Aiso and, therefore, hhf=Aiso


3� /4N. Evaluating hhf with
the measured9,10 value Aiso=100 �eV and assuming
N=7.5�104 atoms in a QD, we find hhf�30 neV �300 neV�
for 13C abundance �=1%�100%�; using the theoretical
estimate5,24 Aiso=1 �eV, we find hhf�0.3 neV �3 neV�. Un-
der the above-specified conditions, we set up a classical mas-
ter equation for the occupation probabilities of the �1,1�
eigenstates of HL+HR. By solving the master equation nu-
merically, we calculate the stationary current I for many re-
alizations of the nuclear fields and average those to obtain
�I�. In Fig. 1, we plot �I� as a function of spin and valley
splittings obtained by averaging for 200 random realizations
of the hyperfine fields. Two cuts along the horizontal �black�
and vertical �green� lines of Fig. 1 are shown on Fig. 2 ob-
tained by averaging over 3000 random realizations of the
nuclear fields. For comparison, in Fig. 2 we also plotted the
result corresponding to the case of GaAs DQDs �dashed�.

One of the characteristic features of the spin-valley block-
ade is the cross-shaped pattern in the �I��s ,�v�� density plot
in Fig. 1. This pattern indicates that the current is strongly
suppressed only if both the spin and valley splittings ��s and
�v� exceed the energy scale of the hyperfine coupling. As
mentioned earlier, a physical situation, where �s is finite but
�v=0, is when an in-plane magnetic field is applied to the
system. This situation corresponds to the black line in Fig. 1
and the solid black curve �I��s�� in Fig. 2. It is apparent from
Fig. 2 that the current decreases with increasing �s; but in-
stead of approaching zero, it saturates to a finite value around
0.2e
in. This is in stark contrast to the case of GaAs DQDs,

where �s�hhf leads to a sharp decay of the current �dashed
curve�.

To present a qualitative interpretation of our results, we
make use of the analogy between the spin and valley degrees
of freedom. We describe the states of the �1,1� charge con-
figuration by using the simultaneous eigenbasis of the total
spin operator �SL+SR�2, the spin projection on the direction
of the magnetic field �SL+SR� ·B /B, the total valley operator
��L+�R�2 /4, and the z component of the valley operator
��z,L+�z,R� /2. The corresponding quantum numbers are
s� �0,1�, ms� �−s , . . . ,s�, v� �0,1�, and mv� �−v , . . . ,v�.
We denote these basis states with �s ,ms ,v ,mv�. These are
eigenstates of the system Hamiltonian in the absence of HFI.
The combined spin-valley wave functions of the ten states,
fulfilling s=v, are supertriplets; therefore, these states cannot
be squeezed into a �0,2� charge configuration. In contrast, the
spin-valley wave functions of the six states with s�v are
supersinglets; hence, their transition to �0,2� is allowed.

The energy diagram of the 16 states of the �1,1� charge
configuration, corresponding to the three highlighted points
of Fig. 1, are presented in Fig. 3. Figure 3�a� shows the
situation, where �s=�v=0. In this case, there is a 16-fold-
degenerate level, and the HFI mixes supersinglet and super-
triplet states effectively. This results in a maximal current
through the DQD. The Zeeman effect splits the states with
different ms quantum numbers �Fig. 3�b�� and suppresses

GaAs
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FIG. 2. �Color online� Averaged leakage current �I� as a function
of �upper solid line, black� spin splitting �s for zero valley splitting
�v=0, �lower solid line, green� valley splitting �v for �s=9, and
�dashed� �s in a GaAs DQD �dashed line based on Eq. �11� of Ref.
21�.
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FIG. 3. �Color online� Schematic energy diagrams of the �1,1�
charge configuration corresponding to the three highlighted points
of Fig. 1. The effect of hyperfine interaction is excluded. Dashed
lines: transport-blocking supertriplet states.
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hyperfine-induced hybridization between them if �s�hhf,
which leads to a decrease in the leakage current. However,
the valley-mixing contribution of the HFI still induces strong
mixing within the states with the same ms. This mixing pre-
vents the appearance of “pure” supertriplet energy eigen-
states, which would block the transport; therefore, the cur-
rent does not drop to zero. As mentioned earlier, this
behavior is in contrast to the case of GaAs DQDs. Figure
3�c� shows the energy diagram when both �s and �v are
finite. If those are larger than the HFI, then the four super-
triplet states �1, �1,1 , �1� become decoupled from supers-
inglets. Thus, the system gets trapped whenever any of these
four states is occupied during the transport process, which
results in a strong suppression of the current. Note that only
two blocked states remain if �s��v. In that case,
�1,1 ,1 ,−1� and �1,−1,1 ,1� become degenerate with the
fourfold degenerate �s ,0 ,v ,0� and mix with those due to
HFI, slightly enhancing the current, visible along the diago-
nal ��s�= ��v� lines in Fig. 1.

Another characteristic of the spin-valley blockade is the
appearance of a dip in the green �I��v�� curve in Fig. 2 at

�v=0. Similar dip structures have been predicted33,34 and
measured10,20,35 in conventional semiconductors and they
were attributed to various microscopic origins, including co-
tunneling, spin-orbit interaction, and exchange coupling. In
our case, the dip has a different origin: it is due to the strong
valley anisotropy of the HFI, i.e., that in our above estima-
tions hj

�z� vanishes and, therefore, Hhf does not include the �z

operator.
We have established the form of the Hamiltonian describ-

ing the effect of HFI on a fourfold-degenerate energy level in
a carbon-based QD. We have found that the short-range na-
ture of the HFI leads to a significant nuclear spin-electron
valley coupling. We have calculated the effect of this inter-
action on the leakage current through a DQD in the Pauli
blockade regime. Our findings may have profound conse-
quences for both spin and valley manipulations in carbon-
based QDs.
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