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SHOT NOISE OF COTUNNELING CURRENT
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Abstract. We study the noise of the cotunneling current through one or several tunnel-
coupled quantum dots in the Coulomb blockade regime. The various regimes of weak and
strong, elastic and inelastic cotunneling are analyzed for quantum-dot systems (QDS)
with few-level, nearly-degenerate, and continuous electronic spectra. In the case of weak
cotunneling we prove a non-equilibrium fluctuation-dissipation theorem which leads to
a universal expression for the noise-to-current ratio (Fano factor). The noise of strong
inelastic cotunneling can be super-Poissonian due to switching between QDS states car-
rying currents of different strengths. The transport through a double-dot (DD) system
shows an Aharonov-Bohm effect both in noise and current. In the case of cotunneling
through a QDS with a continuous energy spectrum the Fano factor is very close to one.

1. Introduction

In recent years, there has been great interest in the shot noise in mesoscopic
systems [1], because it contains additional information about correlations,
which is not contained, e.g., in the linear response conductance. The shot
noise is characterized by the Fano factor F = S/eI, the dimensionless
ratio of the zero-frequency noise power S to the average current I. While
it assumes the Poissonian value F = 1 in the absence of correlations, it
becomes suppressed or enhanced when correlations set in as e.g. imposed
by the Pauli principle or due to interaction effects. In the present paper
we study the shot noise of the cotunneling [2, 3] current. We consider the
transport through a quantum-dot system (QDS) in the Coulomb blockade
(CB) regime, in which the quantization of charge on the QDS leads to a
suppression of the sequential tunneling current except under certain res-
onant conditions. We consider the transport away from these resonances
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2

and study the next-order contribution to the current 1 (see Fig. 1). We
find that in the weak cotunneling regime, i.e. when the cotunneling rate
I/e is small compared to the intrinsic relaxation rate win of the QDS to its
equilibrium state due to the coupling to the environment, I/e ≫ win, the
zero-frequency noise takes on its Poissonian value, as first obtained for a
special case in [6]. This result is generalized here, and we find a universal
relation between noise and current for the QDS in the first nonvanishing
order in the tunneling perturbation. Because of the universal character of
this result Eq. (12) we call it the nonequilibrium fluctuation-dissipation
theorem (FDT) [7] in analogy with linear response theory.

One might expect however that the cotunneling, being a two-particle
process, may lead to strong correlations in the shot noise and to the de-
viation of the Fano factor from its Poissonian value F = 1. We show in
Sec. 4 that this is indeed the case for the regime of strong cotunneling,
I/e ≫ win. Specifically, for a two-level QDS we predict giant (divergent)
super-Poissonian noise [8] (see Sec. 5): The QDS goes into an unstable mode
where it switches between states 1 and 2 with (generally) different currents.
In Sec. 6 we consider the transport through a double-dot (DD) system as an
example to illustrate this effect (see Eq. (37) and Fig. 2). The Fano factor
turns out to be a periodic function of the magnetic flux through the DD
leading to an Aharonov-Bohm effect in the noise [9]. In the case of weak
cotunneling we concentrate on the average current through the DD and find
that it shows Aharonov-Bohm oscillations, which are a two-particle effect
sensitive to spin entanglement.

Finally, in Sec. 7 we discuss the cotunneling through large QDS with
a continuum spectrum. In this case the correlations in the cotunneling
current described above do not play an essential role. In the regime of
low bias, elastic cotunneling dominates transport,[2] and thus the noise is
Poissonian. In the opposite case of large bias, the transport is governed
by inelastic cotunneling, and in Sec. 7 we study heating effects which are
relevant in this regime.

2. Model system

In general, the QDS can contain several dots, which can be coupled by tun-
nel junctions, the DD being a particular example [6]. The QDS is assumed
to be weakly coupled to external metallic leads which are kept at equilib-

1 The majority of papers on the noise of quantum dots consider the sequential tun-
neling regime, where a classical description (“orthodox” theory) is applicable [4]. In this
regime the noise is generally suppressed below its full Poissonian value F = 1. This
suppression can be interpreted [5] as being a result of the natural correlations imposed
by charge conservation.
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SHOT NOISE OF COTUNNELING CURRENT 3

rium with their associated reservoirs at the chemical potentials µl, l = 1, 2,
where the currents Il can be measured and the average current I through
the QDS is defined by Eq. (5). Using a standard tunneling Hamiltonian
approach [10], we write

H = H0 + V , H0 = HL + HS + Hint , (1)

HL =
∑

l=1,2

∑

k

εkc
†
lkclk , HS =

∑

p

εpd
†
pdp , (2)

V =
∑

l=1,2

(Dl + D†
l ), Dl =

∑

k,p

Tlkpc
†
lkdp , (3)

where the terms HL and HS describe the leads and QDS, respectively (with
k and p from a complete set of quantum numbers),and tunneling between
leads and QDS is described by the perturbation V . The interaction term
Hint does not need to be specified for our proof of the universality of noise
in Sec. 3. The N -electron QDS is in the cotunneling regime where there is
a finite energy cost ∆±(l,N) > 0 for the electron tunneling from the Fermi
level of the lead l to the QDS (+) and vice versa (−). This energy cost is of
the order of the charging energy EC and much larger than the temperature,
∆±(l,N) ∼ EC ≫ kBT , so that only processes of second order in V are
allowed.

µ1

µ2

T1 T2

∆  (1,Ν)+ +∆  (2,Ν)

δE

QDSlead 1 lead 2

∆µ

E1
2E

. .
 .

Figure 1. The quantum dot system (QDS) is coupled to two external leads l = 1, 2 via
tunneling barriers. The tunneling between the QDS and the leads is parametrized by the
tunneling amplitudes Tl, where the lead and QDS quantum numbers k and p have been
dropped for simplicity, see Eq. (3). The leads are at the chemical potentials µ1,2, with an
applied bias ∆µ = µ1 − µ2. The eigenstates of the QDS with one added electron (N + 1
electrons in total) are indicated by their energies E1, E2, etc., with average level-spacing
δE. In the cotunneling regime there is a finite energy cost ∆±(l, N) > 0 for the electron
tunneling from the Fermi level of the lead l to the QDS (+) and vice versa (−), so that
only processes of second order in V (visualized by two arrows) are allowed.
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To describe the transport through the QDS we apply standard meth-
ods [10] and adiabatically switch on the perturbation V in the distant
past, t = t0 → −∞. The perturbed state of the system is described
by the time-dependent density matrix ρ(t) = e−iH(t−t0)ρ0e

iH(t−t0), with
ρ0 being the grand canonical density matrix of the unperturbed system,
ρ0 = Z−1e−K/kBT , where we set K = H0 −

∑

l µlNl. Because of tunneling

the total number of electrons in each lead Nl =
∑

k c†lkclk is no longer

conserved. For the outgoing currents Îl = eṄl we have

Îl = ei [V,Nl] = ei(D†
l − Dl) . (4)

The observables of interest are the average current I ≡ I2 = −I1 through
the QDS, and the spectral density of the noise Sll′(ω) =

∫

dtSll′(t) exp(iωt),

Il = Trρ(0)Îl, Sll′(t) = ReTr ρ(0)δIl(t)δIl′(0) , (5)

where δIl = Îl − Il. Below we will use the interaction representation where
Eq. (5) can be rewritten by replacing ρ(0) → ρ0 and Îl(t) → U †(t)Îl(t)U(t),
with

U(t) = T exp

[

−i

∫ t

−∞

dt′ V (t′)

]

. (6)

In this representation, the time dependence of all operators is governed by
the unperturbed Hamiltonian H0.

3. Weak cotunneling: Non-equilibrium fluctuation-dissipation

theorem

In this section we prove the universality of noise of tunnel junctions in
the weak cotunneling regime I/e ≪ win keeping the first nonvanishing
order in the tunneling Hamiltonian V . Since our final result (12) can be
applied to quite general systems out-of-equilibrium we call this result the
non-equilibrium fluctuation-dissipation theorem (FDT). In particular, the
geometry of the QDS and the interaction Hint are completely arbitrary for
the discussion of the non-equilibrium FDT in this section.

We note that the two currents Îl are not independent, because [Î1, Î2] 6=
0, and thus all correlators Sll′ are nontrivial. The charge accumulation
on the QDS for a time of order ∆−1

± leads to an additional contribution
to the noise at finite frequency ω. Thus, we expect that for ω ∼ ∆± the
correlators Sll′ cannot be expressed through the steady-state current I only
and thus I has to be complemented by some other dissipative counterparts,
such as differential conductances Gll′ . On the other hand, at low enough
frequency, ω ≪ ∆±, the charge conservation on the QDS requires δIs =
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SHOT NOISE OF COTUNNELING CURRENT 5

(δI2 + δI1)/2 ≈ 0. Below we concentrate on the limit of low frequency and
neglect contributions of order of ω/∆± to the noise power. In the Appendix
we prove that Sss ∼ (ω/∆±)2 (see Eq. (65)), and this allows us to redefine
the current and the noise power as I ≡ Id = (I2−I1)/2 and S(ω) ≡ Sdd(ω). 2

In addition we require that the QDS is in the cotunneling regime, i.e. the
temperature is low enough, kBT ≪ ∆±, although the bias ∆µ is arbitrary
as soon as the sequential tunneling to the dot is forbidden, ∆± > 0. In
this limit the current through a QDS arises due to the direct hopping
of an electron from one lead to another (through a virtual state on the
dot) with an amplitude which depends on the energy cost ∆± of a virtual
state. Although this process can change the state of the QDS (inelastic
cotunneling), the fast energy relaxation in the weak cotunneling regime,
win ≫ I/e, immediately returns it to the equilibrium state (for the opposite
case, see Sec. 4). This allows us to apply a perturbation expansion with
respect to tunneling V and to keep only first nonvanishing contributions,
which we do next.

It is convenient to introduce the notation D̄l(t) ≡
∫ t
−∞

dt′ Dl(t
′). We

notice that all relevant matrix elements, 〈N |Dl(t)|N + 1〉 ∼ e−i∆+t, 〈N −
1|Dl(t)|N〉 ∼ ei∆−t, are fast oscillating functions of time. Thus, under
the above conditions we can write D̄l(∞) = 0, and even more general,
∫ +∞

−∞
dt Dl(t)e

±iωt = 0 (note that we have assumed earlier that ω ≪ ∆±).
Using these equalities and the cyclic property of the trace we obtain the
following results (for details of the derivation, see Appendix A),

I = e

∞
∫

−∞

dt 〈[A†(t), A(0)]〉, A = D2D̄
†
1 + D†

1D̄2 , (7)

S(ω) = e2

∞
∫

−∞

dt cos(ωt)〈{A†(t), A(0)}〉 , (8)

where we have dropped a small contribution of order ω/∆± and used the
notation 〈. . .〉 = Trρ0(. . .).

Next we apply the spectral decomposition to the correlators Eqs. (7)
and (8), a similar procedure to that which also leads to the equilibrium
fluctuation-dissipation theorem. The crucial observation is that [H0, Nl] =
0, l = 1, 2. Therefore, we are allowed to use for our spectral decomposition

2 We note that charge fluctuations, δQ(t)=2
∫ t

−∞
dt′δIs(t

′), on a QDS are also relevant
for device applications such as SET [11]. While we focus on current fluctuations in the
present paper, we mention here that in the cotunneling regime the noise power 〈δQ2〉ω
does not vanish at zero frequency, 〈δQ2〉ω=0 = 4ω−2Sss(ω)|ω→0 6= 0. Our formalism is
also suitable for studying such charge fluctuations; this will be addressed elsewhere.
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the basis |n〉 = |En, N1, N2〉 of eigenstates of the operator K = H0 −
∑

l µlNl, which also diagonalizes the grand-canonical density matrix ρ0,
ρn = 〈n|ρ0|n〉 = Z−1 exp[−En/kBT ]. We introduce the spectral function,

A(ω) = 2π
∑

n,m

(ρn + ρm)|〈m|A|n〉|2δ(ω + En − Em) , (9)

and rewrite Eqs. (7) and (8) in the matrix form in the basis |n〉 taking
into account that the operator A, which plays the role of the effective
cotunneling amplitude, creates (annihilates) an electron in the lead 2 (1)
(see Eqs. (3) and (7)). We obtain following expressions

I(∆µ) = e tanh

[

∆µ

2kBT

]

A(∆µ) , (10)

S(ω,∆µ) =
e2

2

∑

±

A(∆µ ± ω) . (11)

We note that because of additional integration over time t in the amplitude
A (see Eq. (7)), the spectral density A depends on µ1 and µ2 separately.
However, away from the resonances, ω ≪ ∆±, only ∆µ-dependence is
essential, and thus A can be regarded as being one-parameter function. 3

Comparing Eqs. (10) and (11), we obtain

S(ω,∆µ) =
e

2

∑

±

coth

[

∆µ ± ω

2kBT

]

I(∆µ ± ω) (12)

up to small terms on the order of ω/∆±. This equation represents our
nonequilibrium FDT for the transport through a QDS in the weak cotun-
neling regime. A special case with T, ω = 0, giving S = eI, has been derived
earlier [6]. To conclude this section we would like to list again the conditions
used in the derivation. The universality of noise to current relation Eq. (12)
proven here is valid in the regime in which it is sufficient to keep the first
nonvanishing order in the tunneling V which contributes to transport and
noise. This means that the QDS is in the weak cotunneling regime with
ω, kBT ≪ ∆±, and I/e ≪ win.

4. Strong cotunneling: Correlation correction to noise

In this section we consider the QDS in the strong cotunneling regime, win ≪
I/e. Under this assumption the intrinsic relaxation in the QDS is very slow

3 To be more precise, we neglect small ω-shift of the energy denominators ∆±, which
is equivalent to neglecting small terms of order ω/∆± in Eq. (11).
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SHOT NOISE OF COTUNNELING CURRENT 7

and will in fact be neglected. Thermal equilibration can only take place via
coupling to the leads (see Sec. 7). Due to this slow relaxation in the QDS we
find that there are non-Poissonian correlations ∆S in the current through
the QDS because the QDS has a “memory”; the state of the QDS after the
transmission of one electron influences the transmission of the next electron.
The microscopic theory of strong cotunneling has been developed in Ref. [5]
based on the density-operator formalism and using the projection operator
technique. Here we discuss the assumptions and present the results of the
theory, equations (14), (15), and (17-19), which are the basis for our further
analysis in the Secs. 5 and 6.

First, we assume that the system and bath are coupled only weakly
and only via the perturbation V , Eq. (3). The interaction part Hint of the
unperturbed Hamiltonian H0, Eq. (1), must therefore be separable into
a QDS and a lead part, Hint = H int

S + H int
L . Moreover, H0 conserves the

number of electrons in the leads, [H0, Nl] = 0, where Nl =
∑

k c†lkclk. The
assumption of weak coupling allows us to keep only the second-order in V
contributions to the “golden rule” rates (15) for the Master equation (14).

Second, we assume that in the distant past, t0 → −∞, the system is in
an equilibrium state

ρ0 = ρS ⊗ ρL, ρL =
1

ZL
e−KL/kBT , (13)

where ZL = Tr exp[−KL/kBT ], KL = HL−
∑

l µlNl, and µl is the chemical
potential of lead l. Note that both leads are kept at the same temperature
T . Physically, the product form of ρ0 in Eq. (13) describes the absence
of correlations between the QDS and the leads in the initial state at t0.
Furthermore, we assume that the initial state ρ0 is diagonal in the eigenbasis
of H0, i.e. that the initial state is an incoherent mixture of eigenstates of
the free Hamiltonian.

Finally, we consider the low-frequency noise, ω ≪ ∆±, i.e. we neglect
the accumulation of the charge on the QDS (in the same way as in the
Sec. 3). Thus we can write Sll(ω) = −Sl 6=l′(ω) ≡ S(ω). This restriction will
be lifted in the end of the Sec. 6.1.

We note that the above assumptions limit the generality of the results
of present section as compared to those of Sec. 3. On the other hand, they
allow us to reduce the problem of the noise calculations to the solution of
the Master equation

ρ̇n(t) =
∑

m

[wnmρm(t) − wmnρn(t)] , (14)

with the stationary state condition
∑

m(wnmρ̄m −wmnρ̄n) = 0. This “clas-
sical” master equation describes the dynamics of the QDS, i.e. it describes

cotunneling.tex; 6/06/2005; 13:06; p.7
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the rates with which the probabilities ρn for the QDS being in state |n〉
change. The rates wnm =

∑

l,l′=1,2 wnm(l′, l) are the sums of second-order
“golden rule” rates

wnm(l′, l) = 2π
∑

m̄,n̄

|〈n|(D†
l ,Dl′)|m〉|2δ(Em − En − ∆µll′)ρL,m̄. (15)

for all possible cotunneling transitions from lead l to lead l′. In the last
expression, ∆µll′ = µl − µl′ denotes the chemical potential drop between
lead l and lead l′, and ρL,m̄ = 〈m̄|ρL|m̄〉. We have defined the second order
hopping operator

(D†
l ,Dl′) = Dl′D̄

†
l + D†

l D̄l′ , (16)

where Dl is given in Eq. (3), and D̄l =
∫ 0
−∞

Dl(t)dt. Note, that (D†
l ,Dl′) is

the amplitude of cotunneling from the lead l to the lead l′ (in particular,

we can write A = (D†
1,D2), see Eq. (7)). The combined index m = (m, m̄)

contains both the QDS index m and the lead index m̄. Correspondingly,
the basis states used above are |m〉 = |m〉|m̄〉 with energy Em = Em +Em̄,
where |m〉 is an eigenstate of HS + H int

S with energy Em, and |m̄〉 is an
eigenstate of HL + H int

L − ∑

l µlNl with energy Em̄.
For the average current I and the noise power S(ω) we obtain [5]

I = e
∑

mn

wI
nmρ̄m, wI

nm = wnm(2, 1) − wnm(1, 2), (17)

S(ω) = e2
∑

mn

[wnm(2, 1) + wnm(1, 2)]ρ̄m + ∆S(ω), (18)

∆S(ω) = e2
∑

n,m,n′,m′

wI
nmδρmn′(ω)wI

n′m′ ρ̄m′ , (19)

where δρnm(ω) = ρnm(ω) − 2πδ(ω)ρ̄n, and ρ̄n is the stationary density
matrix. Here, ρnm(ω) is the Fourier-transformed conditional density matrix,
which is obtained from the symmetrized solution ρn(t) = ρn(−t) of the
master equation Eq. (14) with the initial condition ρn(0) = δnm.

An explicit result for the noise in this case can be obtained by making
further assumptions about the QDS and the coupling to the leads, see the
following sections. For the general case, we only estimate ∆S. The current
is of the order I ∼ ew, with w some typical value of the cotunneling rate
wnm, and thus δI ∼ ew. The time between switching from one dot-state to
another due to cotunneling is approximately τ ∼ w−1. The correction ∆S to
the Poissonian noise can be estimated as ∆S ∼ δI2τ ∼ e2w, which is of the
same order as the Poissonian contribution eI ∼ e2w. Thus the correction
to the Fano factor is of order unity. (Note however, that under certain
conditions the Fano factor can diverge, see Secs. 5 and 6.) In contrast to this,

cotunneling.tex; 6/06/2005; 13:06; p.8



SHOT NOISE OF COTUNNELING CURRENT 9

we find that for elastic cotunneling the off-diagonal rates vanish, wnm ∝
δnm, and therefore δρnn = 0 and ∆S = 0. Moreover, at zero temperature,
either wnn(2, 1) or wnn(1, 2) must be zero (depending on the sign of the bias
∆µ). As a consequence, for elastic cotunneling we find Poissonian noise,
F = S(0)/e|I| = 1.

5. Cotunneling through nearly degenerate states

Suppose the QDS has nearly degenerate states with energies En, and level
spacing δEnm = En − Em, which is much smaller than the average level
spacing δE. In the regime, ∆µ, kBT, δEnm ≪ δE, the only allowed cotun-
neling processes are the transitions between nearly degenerate states. The
noise power is given by Eqs. (18) and (19), and below we calculate the
correlation correction to the noise, ∆S. To proceed with our calculation we
rewrite Eq. (14) for δρ(t) as a second-order differential equation in matrix
form

δρ̈(t) = W 2δρ(t), δρ(0) = 1 − ρ̄, (20)

where W is defined as Wnm = wnm−δnm
∑

m′ wm′n. We solve this equation
by Fourier transformation,

δρ(ω) = − 2W

W 2 + ω21
, (21)

where we have used Wρ̄ = 0. We substitute δρ from this equation into
Eq. (19) and write the result in a compact matrix form,

∆S(ω) = −e2
∑

n,m

[

wI 2W

W 2 + ω21
wI ρ̄

]

nm

. (22)

This equation gives the formal solution of the noise problem for nearly
degenerate states. As an example we consider a two-level system.

Using the detailed balance equation, w21ρ1 = w12ρ2, we obtain for the
stationary probabilities ρ1 = w12/(w12 + w21), and ρ2 = w21/(w12 + w21).
From Eq. (17) we get

I = e
w12(w

I
11 + wI

21) + w21(w
I
22 + wI

12)

w12 + w21
. (23)

A straightforward calculation with the help of Eq. (21) gives for the cor-
rection to the Poissonian noise

∆S(ω) =
2e2(wI

11 + wI
21 − wI

22 − wI
12)

(w12 + w21)[ω2 + (w12 + w21)2]
×

×
[

wI
11w12w21 + wI

12w
2
21 − (1 ↔ 2)

]

. (24)

cotunneling.tex; 6/06/2005; 13:06; p.9
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In particular, the zero frequency noise ∆S(0) diverges if the “off-diagonal”
rates wnm vanish. This divergence has to be cut at ω, or at the relaxation
rate win due to coupling to the bath (since w12 in this case has to be
replaced with w12 + win). The physical origin of the divergence is rather
transparent: If the off-diagonal rates w12, w21 are small, the QDS goes into
an unstable state where it switches between states 1 and 2 with different
currents in general [12]. The longer the QDS stays in the state 1 or 2 the
larger the zero-frequency noise power is. However, if wI

11 +wI
21 = wI

22 +wI
12,

then ∆S(ω) is suppressed to 0. For instance, for the QDS in the spin-
degenerate state with an odd number of electrons ∆S(ω) = 0, since the two
states | ↑〉 and | ↓〉 are physically equivalent. The other example of such a
suppression of the correlation correction ∆S to noise is given by a multi-
level QDS, δE ≪ EC , where the off-diagonal rates are small compared to
the diagonal (elastic) rates [2]. Indeed, since the main contribution to the
elastic rates comes from transitions through many virtual states, which do
not participate in inelastic cotunneling, they do not depend on the initial
conditions, wI

11 = wI
22, and cancel in the numerator of Eq. (24), while they

are still present in the current. Thus the correction ∆S/I vanishes in this
case. Further below in this section we consider a few-level QDS, δE ∼ EC ,
where ∆S 6= 0.

To simplify further analysis we consider for a moment the case, where
the singularity in the noise is most pronounced, namely, ω = 0 and |δE12| ≪
∆µ, kBT , so that wI

12 = wI
21, and w12 = w21. Then, from Eqs. (23) and (24)

we obtain

I =
1

2
(I1 + I2) , In = e

∑

m=1,2

wI
mn , (25)

∆S(0) =
(I1 − I2)

2

4w12
, (26)

where In is the current through the n-th level of the QDS. Thus in case
|δE12| ≪ ∆µ, kBT the following regimes have to be distinguished: (1) If
kBT . ∆µ, then In ∝ ∆µ, w12 ∝ ∆µ, and thus both, the total current
I = e−1GD∆µ, and the total noise S = FGD∆µ are linear in the bias
∆µ (here GD is the conductance of the QDS). The total shot noise in this
regime is super-Poissonian with the Fano factor F ∼ I/(ew12) ≫ 1. (2) In
the regime ∆µ . kBT . F 1/2∆µ the noise correction (26) arises because
of the thermal switching the QDS between two states n = 1, 2, where the
currents are linear in the bias, In ∼ GD∆µ/e. The rate of switching is
w12 ∝ kBT , and thus ∆S ∼ FGD∆µ2/(kBT ). Since kBT/∆µ . F 1/2, the
noise correction ∆S is the dominant contribution to the noise, and thus the
total noise S can be interpreted as being a thermal telegraph noise [13]. (3)
Finally, in the regime F 1/2∆µ . kBT the first term on the rhs of Eq. (18)

cotunneling.tex; 6/06/2005; 13:06; p.10



SHOT NOISE OF COTUNNELING CURRENT 11

e
i
φ
/4

T


•
 B

2


1


µ
1
 µ
2
t
d


0.0

Ω=1
Ω=0.5

Ω=0.1

Ω=0.25

0.2 0.4 0.6 0.8 1.0
1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

φ/2π

F v=

0

v=3

v=1.5

0.2 0.4 0.6 0.8 1.0
1

2

3

4

5

∞

Ω=0.1

v=2

Figure 2. Left: Double-dot (DD) system containing two electrons and being weakly
coupled to metallic leads 1, 2, each of which is at the chemical potential µ1, µ2. The
tunneling amplitudes between dots and leads are denoted by T . The tunneling (td)
between the dots results in a singlet-triplet splitting J ∼ t2d/U with the singlet being
a ground state. The tunneling path between dots and leads 1 and 2 forms a closed
loop (shown by arrows) so that the Aharonov-Bohm phase φ will be accumulated by an
electron traversing the DD. Right: The Fano factor F = S(ω)/I , with the noise power
S(ω) given in Eqs. (18) and (37), is plotted as a function of the Aharonov-Bohm phase
φ for the normalized bias v ≡ ∆µ/J = 2 and for four different normalized frequencies
Ω ≡ ω/[G(2∆µ − J)] = 0.1, 0.25, 0.5, and 1. Inset: the same, but with fixed frequency
Ω = 0.1, where the bias v takes the values 1.5, 3, and ∞.

is the dominant contribution, and the total noise becomes an equilibrium
Nyquist noise, S = 2GDkBT .

6. Noise of double-dot system: Two-particle Aharonov-Bohm effect

We notice that for the noise power to be divergent the off-diagonal rates
w12 and w21 have to vanish simultaneously. However, the matrix wnm is
not symmetric since the off-diagonal rates depend on the bias in a different
way. On the other hand, both rates contain the same matrix element of

the cotunneling amplitude (D†
l ,Dl′), see Eqs. (15) and (16). Although in

general this matrix element is not small, it can vanish because of differ-
ent symmetries of the two states. To illustrate this effect we consider the
transport through a double-dot (DD) system (see Ref. [6] for details) as an
example. Two leads are equally coupled to two dots in such a way that a
closed loop is formed, and the dots are also connected, see Fig. 2. Thus, in
a magnetic field the tunneling is described by the Hamiltonian Eq. (3) with

Dl =
∑

s,j

Tljc
†
lsdjs , l, j = 1, 2 , (27)

T11 = T22 = T ∗
12 = T ∗

21 = eiφ/4T , (28)

where the last equation expresses the equal coupling of dots and leads and
φ is the Aharonov-Bohm phase. Each dot contains one electron, and weak
tunneling td between the dots causes the exchange splitting [14] J ∼ t2d/U
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(with U being the on-site repulsion) between one spin singlet and three
triplets

|S〉 =
1√
2
[d†1↑d

†
2↓− d†1↓d

†
2↑]|0〉 ,

|T0〉 =
1√
2
[d†1↑d

†
2↓+ d†1↓d

†
2↑]|0〉 , (29)

|T+〉 = d†1↑d
†
2↑|0〉 , |T−〉 = d†1↓d

†
2↓|0〉 .

In the case of zero magnetic field, φ = 0, the tunneling Hamiltonian V
is symmetric with respect to the exchange of electrons, 1 ↔ 2. Thus the
matrix element of the cotunneling transition between the singlet and three
triplets 〈S|V (E −H0)

−1V |Ti〉, i = 0,±, vanishes because these states have
different orbital symmetries. A weak magnetic field breaks the symmetry,
contributes to the off-diagonal rates, and thereby reduces noise. Next, we
consider weak and strong cotunneling regimes.

6.1. WEAK COTUNNELING

In this regime, I/e ≪ win, according to the non-equilibrium FDT (see
Sec. 3) the zero-frequency noise contains the same information as the av-
erage current (the Fano factor F = 1). Therefore, we first concentrate on
current. We focus on the regime, ∆µ ≫ J , where inelastic cotunneling [15]
occurs with singlet and triplet contributions being different, and where
we can neglect the dynamics generated by J compared to the one gener-
ated by the bias (”slow spins”). Close to the sequential tunneling peak,

∆− ≪ ∆+ ∼ U , we keep only the term D†
1D̄2 in the amplitude (7). After

some calculations we obtain

I = e−1C(ϕ)G∆µ, (30)

C(ϕ) =
∑

s,s′

[

〈d†1s′d1sd
†
1sd1s′〉 + cos ϕ〈d†1s′d1sd

†
2sd2s′〉

]

, (31)

where G = π(eνT 2/∆−)2 is the conductance of a single dot in the cotun-
neling regime [16], and we assumed Fermi liquid leads with the tunneling
density of states ν. Eq. (30) shows that the cotunneling current depends
on the properties of the equilibrium state of the DD through the coherence
factor C(ϕ) given in (31). The first term in C is the contribution from
the topologically trivial tunneling path (phase-incoherent part) which runs
from lead 1 through, say, dot 1 to lead 2 and back. The second term (phase-
coherent part) in C results from an exchange process of electron 1 with
electron 2 via the leads 1 and 2 such that a closed loop is formed enclosing
an area A (see Fig. 2). Note that for singlet and triplets the initial and
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final spin states are the same after such an exchange process. Thus, in the
presence of a magnetic field B, an Aharonov-Bohm phase factor ϕ = ABe/h
is acquired.

Next, we evaluate C(ϕ) explicitly in the singlet-triplet basis (29) and
discuss the applications to the physics of quantum entanglement (see the
Ref. [6]). Note that only the singlet |S〉 and the triplet |T0〉 are entangled
EPR pairs while the remaining triplets are not (they factorize). Assuming
that the DD is in one of these states we obtain the important result

C(ϕ) = 2 ∓ cos ϕ . (32)

Thus, we see that the singlet (upper sign) and the triplets (lower sign)
contribute with opposite sign to the phase-coherent part of the current. One
has to distinguish, however, carefully the entangled from the non-entangled
states. The phase-coherent part of the entangled states is a genuine two-

particle effect, while the one of the product states cannot be distinguished
from a phase-coherent single-particle effect. Indeed, this follows from the
observation that the phase-coherent part in C factorizes for the product
states T± while it does not so for S, T0. Also, for states such as | ↑↓〉 the
coherent part of C vanishes, showing that two different (and fixed) spin
states cannot lead to a phase-coherent contribution since we know which
electron goes which part of the loop.

Finally, we present our results [6] for the high-frequency noise in the
quantum range of frequancies, ω ∼ ∆− ≪ ∆+, and in the slow-spin regime
∆µ ≫ J . This range of frequancies is beyond the regime of the applicabil-
ity of the non-equilibrium FDT, and therefore there is no simple relation
between the average current and the noise (see the Sec. 3). After lengthy
calculations using the perturbation expansion of (6) up to third order in V
we obtain

S(ω) = (eπνT 2)2
[

Xω + X∗
−ω

]

,

ImXω =
C(ϕ)

2ω
[θ(µ1 − ω) − θ(µ2 − ω)] , (33)

ReXω =
C(ϕ)

2πω
sign(µ1 − µ2 + ω) ln |(µ1 + ω)(µ2 − ω)

µ1µ2
|

− 1

2πω

[

θ(ω − µ1) ln |µ2 − ω

µ2
| + θ(ω − µ2) ln |µ1 − ω

µ1
|
]

, (34)

where µl = ∆−(l). Thus the real part of S(ω) is even in ω, while the
imaginary part is odd. A remarkable feature here is that the noise acquires
an imaginary (i.e. odd-frequency) part for finite frequencies, in contrast
to single-barrier junctions, where ImS(ω) always vanishes since we have
δI1 = −δI2 for all times. In double-barrier junctions considered here we
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find that at small enough bias ∆µ ≪ ∆− = (∆−(1) + ∆−(2)) /2, the odd
part, ImS(ω), given in (33) exhibits two narrow peaks at ω = ±µ, which
in real time lead to slowly decaying oscillations,

Sodd(t) = π(eνT 2)2C(ϕ)
sin(∆µt/2)

t∆−
sin(t∆−). (35)

These oscillations again depend on the phase-coherence factor C with the
same properties as discussed before. These oscillations can be interpreted
as a temporary build-up of a charge-imbalance on the DD during an un-
certainty time ∼ 1/∆−, which results from cotunneling of electrons and an
associated time delay between out- and ingoing currents.

6.2. STRONG COTUNNELING

The fact that in the perturbation V all spin indices are traced out helps
us to map the four-level system to only two states |S〉 and |T 〉 classified
according to the orbital symmetry (since all triplets are antisymmetric in
orbital space). In Appendix B we derive the mapping to a two-level system
and calculate the transition rates wnm(l′, l) (n,m = 1 for a singlet and
n,m = 2 for all triplets) using Eqs. (15) and (16) with the operators Dl

given by Eq. (27). Doing this we obtain the following result

wnm(1, 1) = wnm(2, 2) = wnm(1, 2) = 0,

wnm = wI
nm =

π

2

(

νT 2

∆−

)2

×
{

(1+cos φ)∆µ (1−cos φ)(∆µ+J)
3(1−cos φ)(∆µ−J) 3(1+cos φ)∆µ

}

, (36)

which holds close to the sequential tunneling peak, ∆− ≪ ∆+ ∼ U (but
still ∆− ≫ J,∆µ), and for ∆µ > J . We substitute this equation into
the Eq. (24) and write the correction ∆S(ω) to the Poissonian noise as
a function of normalized bias v = ∆µ/J and normalized frequency Ω =
eω/[G(2∆µ − J)]

∆S(ω) = 6eGJ
(v2 − 1)[1 + (v − 1) cos φ]2(1 − cos φ)

(2v − 1)3[Ω2 + (1 − cos φ)2]
. (37)

From this equation it follows that the noise power has singularities as a
function of ω for zero magnetic field, and it has singularities at φ = 2πm
(where m is integer) as a function of the magnetic field (see Fig. 2). We
would like to emphasize that the noise is singular even if the exchange
between the dots is weak, J ≪ ∆µ. In the case ∆µ < J the transition from
the singlet to the triplet is forbidden by conservation of energy, w21(2, 1) =
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0, and we immediately obtain from Eq. (24) that ∆S(ω) = 0, i.e. the total
noise is Poissonian (as it is always the case for elastic cotunneling). In
the case of large bias, ∆µ ≫ J , two dots contribute independently to the
current I = 2e−1G∆µ, and from Eq. (37) we obtain the Fano factor

F =
3

8

cos2φ(1 − cos φ)

Ω2 + (1 − cos φ)2
+ 1, ∆µ ≫ J. (38)

This Fano factor controls the transition to the telegraph noise and then to
the equilibrium noise at high temperature, as described above. We notice
that if the coupling of the dots to the leads is not equal, then wnm(l, l) 6= 0
serves as a cut-off of the singularity in ∆S(ω).

Finally, we remark that the Fano factor is a periodic function of the
phase φ (see Fig. 2); this is nothing but an Aharonov-Bohm effect in the
noise of the cotunneling transport through the DD. However, in contrast
to the Aharonov-Bohm effect in the cotunneling current through the DD
which has been discussed earlier in the Sec. 6.1, the noise effect does not
allow us to probe the ground state of the DD, since the DD is already in a
mixture of the singlet and three triplet states.

7. Cotunneling through continuum of single-electron states

We consider now the transport through a multi-level QDS with δE ≪ EC .
In the low bias regime, ∆µ ≪ (δE EC)1/2, the elastic cotunneling dom-
inates transport [2], and according to the results of Sec. 4 the noise is
Poissonian. Here we consider the opposite regime of inelastic cotunneling,
∆µ ≫ (δE EC)1/2. Since a large number M of levels participate in trans-
port, we can neglect the correlations which we have studied in Secs. 5 and
6, since they become a 1/M -effect. Instead, we concentrate on the heating
effect, which is not relevant for the 2-level system considered before. The
condition for strong cotunneling has to be rewritten in a single-particle
form, τin ≫ τc, where τin is the single-particle energy relaxation time on
the QDS due to the coupling to the environment, and τc is the time of the
cotunneling transition, which can be estimated as τc ∼ eνD∆µ/I (where
νD is the density of QDS states). Since the energy relaxation rate on the
QDS is small, the multiple cotunneling transitions can cause high energy
excitations on the dot, and this leads to a nonvanishing backward tunneling,
wnm(1, 2) 6= 0. In the absence of correlations between cotunneling events,
Eqs. (17) and (18) can be rewritten in terms of forward and backward
tunneling currents I+ and I−,

I = I+ − I− , S = e(I+ + I−), (39)

I+ = e
∑

n,m

wnm(2, 1)ρ̄m , I− = e
∑

n,m

wnm(1, 2)ρ̄m , (40)
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where the transition rates are given by (15).
It is convenient to rewrite the currents I± in a single-particle basis.

To do so we substitute the rates Eq. (15) into Eq. (40) and neglect the
dependence of the tunneling amplitudes Eq. (3) on the quantum numbers
k and p, Tlkp ≡ Tl, which is a reasonable assumption for QDS with a large
number of electrons. Then we define the distribution function on the QDS
as

f(ε) = ν−1
D

∑

p

δ(ε − εp)Tr ρ̄d†pdp (41)

and replace the summation over p with an integration over ε. Doing this
we obtain the following expressions for T = 0

I± = C±
G1G2

2πe3

(

1

∆+
+

1

∆−

)2

(∆µ)3, (42)

C± =
1

∆µ3

∫ ∫

dεdε′Θ(ε− ε′± ∆µ)f(ε)[1 − f(ε′)], (43)

where G1,2 = πe2ννD|T1,2|2 are the tunneling conductances of the barriers
1 and 2, and where we have introduced the function Θ(ε) = εθ(ε) with
θ(ε) being the step-function. In particular, using the property Θ(ε+∆µ)−
Θ(ε − ∆µ) = ε + ∆µ and fixing

∫

dε[f(ε) − θ(−ε)] = 0, (44)

(since I± given by Eq. (42) and Eq. (43) do not depend on the shift ε →
ε + const) we arrive at the following general expression for the cotunneling
current

I = Λ
G1G2

12πe3

(

1

∆+
+

1

∆−

)2

(∆µ)3, (45)

Λ = 1 + 12Υ/(∆µ)2, (46)

Υ =

∫

dεε[f(ε) − θ(−ε)] ≥ 0, (47)

where the value νDΥ has the physical meaning of the energy acquired by
the QDS due to the cotunneling current through it.

We have deliberately introduced the functions C± in the Eq. (42) to
emphasize the fact that if the distribution f(ε) scales with the bias ∆µ (i.e.
f is a function of ε/∆µ), then C± become dimensionless universal numbers.
Thus both, the prefactor Λ (given by Eq. (46)) in the cotunneling current,
and the Fano factor,

F =
C+ + C−

C+ − C−
, (48)
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take their universal values, which do not depend on the bias ∆µ. We con-
sider now such universal regimes. The first example is the case of weak
cotunneling, τin ≪ τc, when the QDS is in its ground state, f(ε) = θ(−ε),
and the thermal energy of the QDS vanishes, Υ = 0. Then Λ = 1, and
Eq. (45) reproduces the results of Ref. [2]. As we have already mentioned,
the backward current vanishes, I− = 0, and the Fano factor acquires its
full Poissonian value F = 1, in agreement with our nonequilibrium FDT
proven in Sec. 3. In the limit of strong cotunneling, τin ≫ τc, the energy
relaxation on the QDS can be neglected. Depending on the electron-electron
scattering time τee two cases have to be distinguished: The regime of cold
electrons τee ≫ τc and regime of hot electrons τee ≪ τc on the QDS. Below
we discuss both regimes in detail and demonstrate their universality.

7.1. COLD ELECTRONS

In this regime the electron-electron scattering on the QDS can be neglected
and the distribution f(ε) has to be found from the master equation Eq. (14).

We multiply this equation by ν−1
D

∑

p δ(ε − εp)〈n|d†pdp|n〉, sum over n and

use the tunneling rates from Eq. (15). Doing this we obtain the standard
stationary kinetic equation which can be written in the following form

∫

dε′σ(ε′ − ε)f(ε′)[1 − f(ε)]

=

∫

dε′σ(ε − ε′)f(ε)[1 − f(ε′)], (49)

σ(ε) = 2λΘ(ε) +
∑

±

Θ(ε ± ∆µ), (50)

where λ = (G2
1 + G2

2)/(2G1G2) ≥ 1 arises from the equilibration rates
wmn(l, l). (We assume that if the limits of the integration over energy ε
are not specified, then the integral goes from −∞ to +∞.) From the form
of this equation we immediately conclude that its solution is a function
of ε/∆µ, and thus the cold electron regime is universal as defined in the
previous section. It is easy to check that the detailed balance does not hold,
and in addition σ(ε) 6= σ(−ε). Thus we face a difficult problem of solving
Eq. (49) in its full nonlinear form. Fortunately, there is a way to avoid this
problem and to reduce the equation to a linear form which we show next.

We group all nonlinear terms on the rhs of Eq. (49):
∫

dε′σ(ε′−ε)f(ε′) =
h(ε)f(ε), where h(ε) =

∫

dε′ {σ(ε′ − ε)f(ε′) + σ(ε − ε′)[1 − f(ε′)]}. The
trick is to rewrite the function h(ε) in terms of known functions. For doing
this we split the integral in h(ε) into two integrals over ε′ > 0 and ε′ < 0,
and then use Eq. (44) and the property of the kernel σ(ε)−σ(−ε) = 2(1+λ)ε
to regroup terms in such a way that h(ε) does not contain f(ε) explicitly.
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Taking into account Eq. (47) we arrive at the following linear integral
equation

∫

dε′σ(ε′ − ε)f(ε′) = [(1 + λ)(ε2 + 2Υ) + (∆µ)2]f(ε), (51)

where the parameter Υ is the only signature of the nonlinearity of Eq. (49).
Since Eq. (51) represents an eigenvalue problem for a linear operator,

it can in general have more than one solution. However, there is only one
physical solution, which satisfies the conditions

0 ≤ f(ε) ≤ 1, f(−∞) = 1, f(+∞) = 0. (52)

Indeed, using a standard procedure one can show that two solutions of the
integral equation (51), f1 and f2, corresponding to different parameters
Υ1 6= Υ2 should be orthogonal,

∫

dεf1(ε)f2(−ε) = 0. This contradicts the
conditions Eq. (52). The solution is also unique for the same Υ, i.e. it is
not degenerate (for a proof, see the Ref. [5]). From Eq. (49) and conditions
Eq. (52) it follows that if f(ε) is a solution then 1 − f(−ε) also satisfies
Eqs. (49) and (52). Since the solution is unique, it has to have the symmetry
f(ε) = 1 − f(−ε).

11 22 33 44 55 66 77 88 99 1010
1.61.6

1.71.7

1.81.8

1.91.9

2.02.0

2.12.1

2.22.2

GG

cold electrons
hot electrons

 1 1 / G / G 2 2

ΛΛ

Figure 3. The prefactor Λ in the expression (45) for the cotunneling current characterizes
a universal cotunneling transport in the regime of weak cotunneling, τin ≪ τc, (Λ = 1,
see Ref. [2]), and in the regime of strong cotunneling, τin ≫ τc (Λ > 1). Here Λ is plotted
as a function of G1/G2 (same as a function of G2/G1) for the strong cotunneling, for the
cold-electron case, τee ≫ τc (solid line) and for the hot-electron case, τee ≪ τc (dotted
line). G1,2 are the tunneling conductances of a junctions connecting leads 1 and 2 with
the QDS.

We solve Eqs. (51) and (52) numerically and use Eqs. (43) and (48) to
find that the Fano factor is very close to 1 (it does not exceed the value
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F ≈ 1.006). Next we use Eqs. (46) and (47) to calculate the prefactor Λ and
plot the result as a function of the ratio of tunneling conductances, G1/G2,
(Fig. 3, solid line). For equal coupling to the leads, G1 = G2, the prefactor
Λ takes its maximum value 2.173, and thus the cotunneling current is
approximately twice as large compared to its value for the case of weak
cotunneling, τin ≪ τc. Λ slowly decreases with increasing asymmetry of
coupling and tends to its minimum value Λ = 1 for the strongly asymmetric
coupling case G1/G2 or G2/G1 ≫ 1.

7.2. HOT ELECTRONS

In the regime of hot electrons, τee ≪ τc, the distribution is given by the
equilibrium Fermi function fF (ε) = [1 + exp(ε/kBTe)]

−1, while the electron
temperature Te has to be found self-consistently from the kinetic equation.
Eq. (49) has to be modified to take into account electron-electron interac-
tions. This can be done by adding the electron collision integral Iee(ε) to
the rhs of (49). Since the form of the distribution is known we need only the
energy balance equation, which can be derived by multiplying the modified
equation (49) by ε and integrating it over ε. The contribution from the
collision integral Iee(ε) vanishes, because the electron-electron scattering
conserves the energy of the system. Using the symmetry fF (ε) = 1−fF (−ε)
we arrive at the following equation

∫ ∫

dεdε′fF (ε′)[1 − fF (ε)]σ(ε′ − ε)ε = 0. (53)

Next we regroup the terms in this equation such that it contains only
integrals of the form

∫ ∞

0 dεfF (ε)(. . .). This allows us to get rid of nonlinear
terms, and we arrive at the following equation,

∫

dεε3[fF (ε) − θ(−ε)] + 3Υ2 =
(∆µ)4

8(1 + λ)
, (54)

which holds also for the regime of cold electrons. Finally, we calculate the
integral in Eq. (54) and express the result in terms of the dimensionless
parameter α = ∆µ/kBTe,

α = π [8(1 + λ)/5]1/4 . (55)

Thus, since the distribution again depends on the ratio ε/∆µ, the hot
electron regime is also universal.

The next step is to substitute the Fermi distribution function with the
temperature given by Eq. (55) into Eq. (43). We calculate the integrals and
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arrive at the closed analytical expressions for the values of interest,

Λ = 1 +
2π2

α2
= 1 +

√

5

2(1 + λ)
, (56)

F = 1 +
12

2π2 + α2

∞
∑

n=1

[

1

n2
+

2

αn3

]

e−αn, (57)

where again λ = (G2
1 + G2

2)/2G1G2 ≥ 1. It turns out that similar to the
case of cold electrons, Sec. 7.1, the Fano factor for hot electrons is very
close to 1 (namely, it does not exceed the value F ≈ 1.007). Therefore, we
do not expect that the super-Poissonian noise considered in this section
(i.e. the one which is due to heating of a large QDS caused by inelastic
cotunneling through it) will be easy to observe in experiments. On the
other hand, the transport-induced heating of a large QDS can be observed
in the cotunneling current through the prefactor Λ, which according to
Eq. (56) takes its maximum value Λ = 1 +

√

5/4 ≈ 2.118 for G1 = G2 and
slowly reaches its minimum value 1 with increasing (or decreasing) the ratio
G1/G2 (see Fig. 3, dotted line). Surprisingly, the two curves of Λ vs G1/G2

for the cold- and hot-electron regimes lie very close, which means that the
effect of the electron-electron scattering on the cotunneling transport is
rather weak.

8. Conclusions

Here we give a short summary of our results. In Sec. 3, we have derived the
non-equilibrium FDT, i.e. the universal relation (12) between the current
and the noise, for QDS in the weak cotunneling regime. Taking the limit
T, ω → 0, we show that the noise is Poissonian, i.e. F = 1.

In Sec. 4, we present the results of the microscopic theory of strong
cotunneling, Ref. [5]: The master equation, Eq. (14), the average current,
Eq. (17), and the current correlators, Eqs. (18) and (19), for a QDS system
coupled to leads in the strong cotunneling regime win ≪ I/e at small
frequencies, ω ≪ ∆±. In contrast to sequential tunneling, where shot noise
is either Poissonian (F = 1) or suppressed due to charge conservation
(F < 1), we find that the noise in the inelastic cotunneling regime can be
super-Poissonian (F > 1), with a correction being as large as the Poissonian
noise itself. In the regime of elastic cotunneling F = 1.

While the amount of super-Poissonian noise is merely estimated at the
end of Sec. 4, the noise of the cotunneling current is calculated for the
special case of a QDS with nearly degenerate states, i.e. δEnm ≪ δE, in
Sec. 5, where we apply our results from Sec. 4. The general solution Eq. (22)
is further analyzed for two nearly degenerate levels, with the result Eq. (24).
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More information is gained in the specific case of a DD coupled to leads
considered in Sec. 6, where we determine the average current Eqs. (30-31)
and noise Eqs. (33-34) in the weak cotunneling regime and the correlation
correction to noise Eq. (37) in the strong cotunneling regime as a function
of frequency, bias, and the Aharonov-Bohm phase threading the tunneling
loop, finding signatures of the Aharonov-Bohm effect and of the quantum
entanglement.

Finally, in Sec. 7, another important situation is studied in detail, the
cotunneling through a QDS with a continuous energy spectrum, δE ≪
∆µ ≪ EC . Here, the correlation between tunneling events plays a minor
role as a source of super-Poissonian noise, which is now caused by heating
effects opening the possibility for tunneling events in the reverse direction
and thus to an enhanced noise power. In Eq. (48), we express the Fano
factor F in the continuum case in terms of the dimensionless numbers C±,
defined in Eq. (43), which depend on the electronic distribution function
f(ε) in the QDS (in this regime, a description on the single-electron level is
appropriate). The current Eq. (45) is expressed in terms of the prefactor Λ,
Eq. (46). Both F and Λ are then calculated for different regimes. For weak
cotunneling, we immediately find F = 1, as anticipated earlier, while for
strong cotunneling we distinguish the two regimes of cold (τee ≫ τc) and
hot (τee ≪ τc) electrons. For both regimes we find that the Fano factor is
very close to one, while Λ is given in Fig. 3.
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Appendix A

In this Appendix we present the derivation of Eqs. 7 and 8. In order to
simplify the intermediate steps, we use the notation Ō(t) ≡

∫ t
−∞

dt′O(t′)
for any operator O, and O(0) ≡ O. We notice that, if an operator O is a

linear function of operators Dl and D†
l , then Ō(∞) = 0 (see the discussion

in Sec. 3). Next, the currents can be represented as the difference and the

sum of Î1 and Î2,

Îd = (Î2 − Î1)/2 = ie(X† − X)/2 , (58)

Îs = (Î1 + Î2)/2 = ie(Y † − Y )/2 , (59)

where X = D2 +D†
1, and Y = D1 +D2. While for the perturbation we have

V = X + X† = Y + Y † . (60)
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First we concentrate on the derivation of Eq. (7) and redefine the average
current Eq. (5) as I = Id (which gives the same result anyway, because the
average number of electrons on the QDS does not change Is = 0).

To proceed with our derivation, we make use of Eq. (6) and expand the
current up to fourth order in Tlkp:

I = i

0
∫

−∞

dt

t
∫

−∞

dt′〈ÎdV (t)V (t′)V̄ (t′)〉 − i

0
∫

−∞

dt〈V̄ ÎdV (t)V̄ (t)〉 + c.c. (61)

Next, we use the cyclic property of trace to shift the time dependence to
Îd. Then we complete the integral over time t and use Īd(∞) = 0. This
procedure allows us to combine first and second term in Eq. (61),

I = −i

0
∫

−∞

dt〈[ĪdV + V̄ Îd]V (t)V̄ (t)〉 + c.c. (62)

Now, using Eqs. (58) and (60) we replace operators in Eq. (62) with X

and X† in two steps: I = e
∫ 0
−∞

dt〈[X̄†X† − X̄X]V (t)V̄ (t)〉 + c.c., where

some terms cancel exactly. Then we work with V (t)V̄ (t) and notice that

some terms cancel, because they are linear in clk and c†lk. Thus we obtain

I = e
∫ 0
−∞

dt〈[X̄†X† − X̄X][X†(t)X̄†(t) + X(t)X̄(t)]〉 + c.c.. Two terms

X̄XXX̄ and X̄†X†X†X̄† describe tunneling of two electrons from the same
lead, and therefore they do not contribute to the normal current. We then
combine all other terms to extend the integral to +∞,

I = e

∞
∫

−∞

dt〈X̄†(t)X†(t)XX̄ − X̄XX†(t)X̄†(t)〉 (63)

Finally, we use
∫ ∞

−∞
dtX(t)X̄(t) = −

∫ ∞

−∞
dtX̄(t)X(t) (since X̄(∞) = 0) to

get Eq. (7) with A = XX̄ . Here, again, we drop terms D†
1D̄

†
1 and D2D̄2

responsible for tunneling of two electrons from the same lead, and obtain
A as in Eq. (7).

Next, we derive Eq. (8) for the noise power. At small frequencies ω ≪
∆± fluctuations of Is are suppressed because of charge conservation (see

below), and we can replace Î2 in the correlator Eq. (5) with Îd. We expand

S(ω) up to fourth order in Tlkp, use
∫ +∞

−∞
dt Îd(t)e

±iωt = 0, and repeat the
steps leading to Eq. (62). Doing this we obtain,

S(ω) = −
∞

∫

−∞

dt cos(ωt)〈[V̄ (t), Îd(t)][V̄ , Îd]〉 . (64)
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Then, we replace V and Îd with X and X†. We again keep only terms
relevant for cotunneling, and in addition we neglect terms of order ω/∆±

(applying same arguments as before, see Eq. (65)). We then arrive at Eq. (8)
with the operator A given by Eq. (7).

Finally, in order to show that fluctuations of Is are suppressed, we re-
place Îd in Eq. (64) with Îs, and then use the operators Y and Y † instead of
X and X†. In contrast to Eq. (63) terms such as Ȳ †Y †Y Ȳ do not contribute,
because they contain integrals of the form

∫ ∞

−∞
dt cos(ωt)Dl(t)D̄l′(t) = 0.

The only nonzero contribution can be written as

Sss(ω) =
e2ω2

4

∞
∫

−∞

dt cos(ωt)〈[Ȳ †(t), Ȳ (t)][Ȳ †, Ȳ ]〉 , (65)

where we have used integration by parts and the property Ȳ (∞) = 0.
Compared to Eq. (8) this expression contains an additional integration
over t, and thereby it is of order (ω/∆±)2.

Appendix B

In this Appendix we calculate the transition rates Eq. (15) for a DD coupled
to leads with the coupling described by Eqs. (27) and (28) and show that
the four-level system in the singlet-triplet basis Eq. (29) can be mapped
to a two-level system. For the moment we assume that the indices n and
m enumerate the singlet-triplet basis, n,m = S, T0, T+, T−. Close to the
sequential tunneling peak, ∆− ≪ ∆+, we keep only terms of the form

D†
l D̄l′ . Calculating the trace over the leads explicitly, we obtain at T = 0,

wnm(l′, l) =
πν2

2∆2
−

Θ(µl − µl′ − δEnm)

×
∑

j,j′

T ∗
ljTlj′T

∗
l′j′Tl′jMnm(j, j′) , (66)

Mnm(j, j′) =
∑

s,s′

〈n|d†sjds′j |m〉〈m|d†s′j′dsj′ |n〉 , (67)

with Θ(ε) = εθ(ε), and δEnm = 0,±J , and we have assumed td ≪ ∆−.
Since the quantum dots are the same we get Mnm(1, 1) = Mnm(2, 2),

and Mnm(1, 2) = Mnm(2, 1). We calculate these matrix elements in the
singlet-triplet basis explicitly,

M(1, 1) =
1

2









1 1 1 1
1 1 1 1
1 1 2 0
1 1 0 2









, (68)
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M(1, 2) =
1

2









1 −1 −1 −1
−1 1 1 1
−1 1 2 0
−1 1 0 2









. (69)

Assuming now equal coupling of the form Eq. (28) we find that for l = l′

the matrix elements of the singlet-triplet transition vanish (as we have
expected, see Sec. 5). On the other hand the triplets are degenerate, i.e.
δEnm = 0 in the triplet sector. Then from Eq. (66) it follows that wnm(l, l) =
0. Next, we have Θ(µ2 −µ1 − δEnm) = 0, since for nearly degenerate states
we assume ∆µ > |δEnm|, and thus wnm(1, 2) = 0. Finally, for wnm = wI

nm =
wnm(2, 1) we obtain,

wSS =
π

2

(

νT 2

∆−

)2

∆µ(1 + cos φ), (70)

wST =
π

2

(

νT 2

∆−

)2

(∆µ + J)(1 − cos φ), (71)

wTS =
π

2

(

νT 2

∆−

)2

(∆µ − J)(1 − cos φ), (72)

wTT =
π

2

(

νT 2

∆−

)2

∆µ

×





1 + cos φ 1 + cos φ 1 + cos φ
1 + cos φ 2 + 2 cos φ 0
1 + cos φ 0 2 + 2 cos φ



 . (73)

Next we prove the mapping to a two-level system. First we notice that
because the matrix wTT is symmetric, the detailed balance equation for the
stationary state gives ρ̄n/ρ̄m = wmn/wnm = 1, n,m ∈ T . Thus we can set
ρ̄n → ρ̄2/3, for n ∈ T . The specific form of the transition matrix Eqs. (70-
73) helps us to complete the mapping by setting (1/3)

∑4
m=2 w1m → w12,

∑4
n=2 wn1 → w21, and (1/3)

∑4
n,m=2 wnm → w22, so that we get the

new transition matrix Eq. (36), while the stationary master equation for
the new two-level density matrix does not change its form. If in addi-
tion we set (1/3)

∑4
m=2 δρ1m(t) → δρ12(t),

∑4
n=2 δρn1(t) → δρ21(t), and

(1/3)
∑4

n,m=2 δρnm(t) → δρ22(t), then the master equation Eq. (14) for

δρnm(t) and the initial condition δρnm(0) = δnm − ρ̄n do not change either.
Finally, one can see that under this mapping Eq. (19) for the correction
to the noise power ∆S(ω) remains unchanged. Thus we have accomplished
the mapping of our singlet-triplet system to the two-level system with the
new transition matrix given by Eq. (36).
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