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Photoinduced pure spin-current injection in graphene with Rashba spin-orbit interaction
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We propose a photoexcitation scheme for pure spin-current generation in graphene subject to a Rashba
spin-orbit coupling. Although excitation using circularly polarized light does not result in optical orientation of
spins in graphene unless an additional magnetic field is present, we show that excitation with linearly polarized
light at normal incidence yields spin-current injection without magnetic field. Spins are polarized within the
graphene plane and are displaced in opposite directions, with no net charge displacement. The direction of the
spin current is determined by the linear polarization axis of the light, and the injection rate is proportional
to the intensity. The technique is tunable via an applied bias voltage and is accessible over a wide frequency
range. We predict a spin-current polarization as high as 75% for photon frequencies comparable to the Rashba
frequency. Spin-current injection via optical methods removes the need for ferromagnetic contacts, which have
been identified as a possible source of spin scattering in electrical spin injection in graphene.
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I. INTRODUCTION

The isolation of graphene, a single layer of graphite, has
opened the door to research on atomically thin crystals with
Dirac-like electrons [1]. In addition to the high mobility of
charge carriers in graphene, rendering it attractive for use
in electronics, long spin relaxation times are expected due
to the spinless atomic nucleus of 12C and the small spin-
orbit coupling, further promoting graphene as an interesting
material for spintronics applications [2,3].

The first studies of spin injection in graphene have reported
a diffusive spin current injected via ferromagnetic contacts,
initially in a two-terminal geometry [4] and soon after
in a nonlocal four-terminal geometry [5–7]. The technique
is improved when inserting MgO as an insulating tunnel
barrier [8] and achieves up to 60% spin polarization when using
a second layer of graphene as the tunnel barrier [9]. Thus far,
the obtained spin lifetimes are low compared to expectations,
and the ferromagnetic contacts remain a possible source of
spin scattering explaining this discrepancy [10]. The efforts
towards electrical spin injection in graphene are reviewed by
Shiraishi [11]. Others have reported spin-current injection
in graphene using dynamical [12,13] and thermal [14,15]
methods.

Optical orientation is another means of injecting spin-
polarized carriers into semiconductors exhibiting spin-orbit
coupling [16]. Spin photocurrents resulting from absorption of
linearly polarized light have been proposed and demonstrated
in GaAs quantum wells [17–20]. Although graphene spin-
tronics offers very interesting prospects, the optical injection
and control of spin currents in graphene have yet to be
investigated. Optical methods are motivated by the relatively
strong 2.3% absorption of light by a single graphene sheet
over a wide range of frequencies [21]. Since light interacts
with the orbital degree of freedom, any optical manipulation
of the spin degree of freedom relies on the presence of
coupling between these two degrees of freedom. Graphene’s
weak spin-orbit interaction (SOI), which limits the application
range for spin photoinjection and, conversely, for spin readout
by optical methods [22], is increased through heavy-atom
intercalation [23], impurities [24], or hydrogenation [25,26].

In contrast to intrinsic SOI, Rashba-type SOI is tunable and
can be increased to a strength sufficiently large that optical
spin injection in graphene with an in-plane magnetic field has
recently been proposed [27].

In this paper, optical spin-current injection is investigated in
graphene subject to a Rashba spin-orbit coupling. Due to the
chirality of graphene electrons and the nature of the optical
matrix element, we show that photoexcitation results in the
injection of a pure spin current, without accompanying charge
current. We thus predict spin-current injection in graphene via
optical methods without contacts, eliminating a possible
source of spin scattering. The paper is organized as follows.
The effective Hamiltonian and matrix elements used for the
calculations are presented in Sec. II. Spin-current injection and
its polarization are calculated in Sec. III. We summarize and
discuss our results in Sec. IV.

II. HAMILTONIAN AND MATRIX ELEMENTS

Band electrons in single-layer graphene are described by the
usual Dirac Hamiltonian in the linear dispersion regime [28],

H0 = �vF (τσxkx + σyky), (1)

where vF is the Fermi velocity, σ are the Pauli matrices, here
acting on graphene’s A and B sublattice space, and k is the
in-plane crystal momentum relative to the K point (τ = 1)
or the K ′ point (τ = −1). An external out-of-plane electric
field breaks inversion symmetry and introduces the Rashba
spin-orbit coupling term

HR = ��R(τσxSy − σySx), (2)

where �R is the Rashba frequency and S is the electron
spin [28]. This can be induced by the substrate or by
additional gates generating a voltage gradient perpendicular to
the sample. The result of diagonalizing H0 + HR yields four
energy bands with an isotropic band dispersion quadratic in
k for k � �R/2vF and linear in k for k � �R/vF , shown
in Fig. 1(a). The lowest-energy conduction band c1 and
highest-energy valence band v2 are degenerate at the K point,
and so-called “split-off” conduction band c2 and valence band
v1 are respectively shifted up and down by an energy ��R

1098-0121/2014/90(3)/035210(6) 035210-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.90.035210


JULIEN RIOUX AND GUIDO BURKARD PHYSICAL REVIEW B 90, 035210 (2014)

(a)

k

E

EF

v1, S // φ̂

v2, S //−φ̂

c1, S //−φ̂

c2, S // φ̂

h̄ΩR

h̄ΩR

K (K’)

(b)

(c)

kx

ky

k̂
φ̂

h̄
2

ΩR vF k
0

S

FIG. 1. (Color online) (a) Energy-momentum dispersion of
graphene with Rashba spin-orbit coupling; (b) vectors defining the
orientation in the graphene plane; and (c) magnitude of the spin
expectation value as a function of crystal momentum.

from the charge neutrality point [29]. In the two gapless
bands the expectation value of the electron spin 〈S〉 is oriented
antiparallel with φ̂ = ẑ × k̂, where k̂ is the unit vector parallel
to the direction of k [cf. Fig. 1(b)] and ẑ is normal to the
graphene plane, while 〈S〉 is oriented parallel with φ̂ for the
split-off bands. In all cases, the expectation value of spin has
a magnitude

|〈S〉| = vF �k√
�2

R + 4v2
F k2

, (3)

shown in Fig. 1(c), reaching �/2 for large k � �R/vF .
The interaction of the material with an external vector

potential A describing an electromagnetic field is treated
within minimal coupling by substituting �k by �k − eA in
the Hamiltonian. The linear response under photoexcitation is
readily obtained from the matrix elements, between initial and
final states, of the A · v interaction term appearing in minimal
coupling. Matrix elements of the velocity operator v = σvF

and of the spin operator are given in the Appendix.

III. SPIN-CURRENT INJECTION IN GRAPHENE

In this section, we consider photoexcitation of a graphene
layer with Rashba SOI under a monochromatic electric field

E(t) = E(ω)e−iωt + E∗(ω)eiωt . (4)

The k-dependent spin polarization of the eigenstates [cf.
Eq. (3)] is exploited to inject photoinduced spin currents. The
spin textures in the K and K ′ valleys are exactly the same,
thus carriers of momentum k near K and K ′ are excited with
equal spin polarization. Moreover, carriers at −k are excited
with opposite spin polarization, resulting in a pure spin current
at normal incidence.

We use the generally accepted symmetrized spin-current
operator Js = 1

2 (vS + Sv) [30], where juxtaposed vectors form
the dyadic product. The injection rate J̇s is derived by solving
the Heisenberg equation of motion and keeping the nonzero
term at lowest order in the field. The resulting spin-current
injection rate is linear in intensity and is written in component

notation [19,31]

J̇ ab
s = μabcd

1 (ω)Ec∗(ω)Ed (ω), (5)

where Roman superscripts indicate Cartesian components
and repeated superscripts are summed over. The response
pseudotensor μabcd

1 (ω), derived at a level equivalent to Fermi’s
golden rule and including both contributions of electrons and
holes, is

μabcd
1 (ω) = 2πe2

�2ω2

∑
cv

∫
d2k

4π2

[
(Js)

ab
cc − (Js)

ab
vv

]
×vc∗

cv (k)vd
cv(k) δ[ωcv(k) − ω], (6)

where

(Js)
ab
cc (k) ≡

∑
m

1

2

[
va

cm(k)Sb
mc(k) + Sa

cm(k)vb
mc(k)

]
(7)

is the diagonal matrix element of the spin-current operator,
vmn(k) and Smn(k) indicate matrix elements of, respectively,
the velocity and spin operators, and ωcv(k) ≡ [Ec(k) −
Ev(k)]/� is the energy difference between conduction and
valence bands; the sum over m includes all band indices,
while the sum over c (v) includes conduction (valence) bands
only. Within the Dirac model of Sec. II, only one independent
nonzero component exists: μ

xyxx

1 (ω). There are in total eight
nonzero components, related by

μ
xyxx

1 = μ
yxxx

1 = μ
yyxy

1 = μ
yyyx

1 = −μ
xxxy

1 = −μ
xxyx

1

= −μ
xyyy

1 = −μ
yxyy

1 . (8)

Evaluating the charge current injection in the same approach
yields a vanishing response tensor η1 [19], thus the spin current
presented here is pure, without accompanying charge current.

A general oscillatory electric field for a normally incident
wave has the form E(ω) = Eωeiϕω (x̂ω + ŷωeiδϕω )/

√
2, where

the amplitude Eω and the phase parameters ϕω and δϕω are
chosen to be real for an appropriate choice of orthonormal
vectors x̂ω and ŷω in the graphene plane. From Eq. (5) and the
symmetry of μabcd

1 (ω) given above, the injection rate of the
spin current is given by the general dyadic expression

J̇s = μ
xyxx

1 (ω)|Eω|2 cos(δϕω)(ŷωŷω − x̂ωx̂ω). (9)

Due to the cosine dependence on the Stokes parameter δϕω,
the spin-current injection is zero for circularly polarized light
(δϕω = ±π

2 ) and maximum for linearly polarized light (δϕω =
0), in which latter case we obtain

J̇s = μ
xyxx

1 (ω)|Eω|2(êωê⊥
ω + ê⊥

ω êω), (10)

where êω ≡ (x̂ω + ŷω)/
√

2 is the linear polarization axis and
ê⊥
ω = ẑ × êω is an in-plane unit vector perpendicular to the

polarization axis. Equation (10) is the main result of this
paper. Linearly polarized light induces a spin-current injection
proportional to the intensity, with the direction determined by
the polarization axis. Within the isotropic model presented
here, the magnitude of the current is insensitive to rotation of
the crystal axes with respect to the normal.

The single independent component μ
xyxx

1 (ω) of the injec-
tion tensor gives the magnitude of the resulting current. We
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FIG. 2. (Color online) Spin-current injection strength for
graphene with Rashba spin-orbit interaction. The single independent
component μ

xyxx

1 (ω) of the total spin-current injection tensor
[Eq. (11)], as well as the individual contributions μ̄1a–c(ω) [Eq. (12)],
are shown as a function of the light frequency ω for the case of
intrinsic graphene (EF = 0).

find that it is built up from three contributions,

μ
xyxx

1 (ω) = μ̄1a(ω) �(ω − ωF ) + 1
2 μ̄1b(ω)[�(ω − ωF − �R)

+�(ω − ωF + �R)] + μ̄1c(ω) �(ω − ωF ), (11)

where �ωF ≡ 2 |EF | is twice the Fermi level and �(x) is the
Heaviside step function. The three contributions μ̄1a–c(ω) cor-
respond, in order, to contributions arising from the following
band-to-band transitions [cf. Fig. 1(a)]: (a) from v2 to c1, (b)
from v2 to c2 and from v1 to c1 with equal contribution, and
(c) from v1 to c2. They are given by

μ̄1a(ω) = μ̄1(ω)
(ω + 2�R)2

(ω + �R)2
, (12a)

μ̄1b(ω) = −2μ̄1(ω)
�3

R

ω3
�(ω − �R), (12b)

μ̄1c(ω) = −μ̄1(ω)
(ω − 2�R)2

(ω − �R)2
�(ω − 2�R), (12c)

where μ̄1(ω) ≡ e2vF (16�ω)−1 including the valley degen-
eracy. The individual contributions μ̄1a–c(ω) and the total
spin-current injection tensor for intrinsic graphene are plotted
as a function of the light frequency in Fig. 2.

At photon energy less than the Rashba frequency, only
μ̄1a arising from the low-energy bands contributes to the total
spin-current injection, as transitions involving other bands are
energetically forbidden. This contribution is maximal in the
limit ω → 0, decreases monotonically with frequency, and
mostly dictates the total spin-current injection everywhere
except near the onset at ω = �R and in the ω � �R limit.
At photon energy equal to the Rashba frequency, ω = �R ,
transitions involving one split-off band start contributing.
This contribution, μ̄1b, opposes the previous contribution,

(a)

ωa

(b)

ωb

(c)

ωb

FIG. 3. (Color online) Photoinduced pure spin-current injection
schemes. (a) Intrinsic graphene at low energy, ωa < �R , yields the
strongest spin-current injection. (b) For midrange energy, �R < ωb <

2�R , the spin-current injection strength improves by tuning the Fermi
level to |EF | = 1

2 ��R to Pauli block half of the transitions involving a
split-off band. (c) For the same frequency range, further increasing the
Fermi level to |EF | = ��R results in the Pauli blocking of transitions
involving the gapless bands. This yields a reversal of the spin-current
injection.

μ̄1a , and has a sharp onset where the two contributions are
roughly of the same amplitude, resulting in a sharp dip in
the total spin-current injection. However, μ̄1b decreases to
zero fairly quickly with increasing frequency, and μ̄1a is
again the dominant contribution. Another onset occurs at
ω = 2�R , where transitions from the split-off valence to the
split-off conduction band start occurring. This contribution,
μ̄1c, is initially small, increases with increasing frequency, and
opposes the initial contribution, μ̄1a . At photon energy much
larger than the Rashba frequency, ω � �R , the contributions
μ̄1a and μ̄1c tend to μ̄1 and −μ̄1, respectively, and the overall
spin-current injection is zero.

For intrinsic graphene, the spin-current injection strength
μ

xyxx

1 (ω) is positive at all frequencies. The strongest spin-
current injection is achieved when ω < �R , a situation
illustrated in Fig. 3(a). The spin-current injection decreases
significantly for frequency above ω = �R , once transitions
involving one split-off band start contributing. It is possible
to alleviate this effect by tuning the Fermi level EF away
from the charge neutrality point, as in Fig. 3(b). The transition
from the lowest valence band is then Pauli blocked, and the
diminishing contribution originating from μ̄1b is reduced.
This results in an increased total spin-current injection for
frequencies in the range ωF < ω < ωF + �R . This Pauli-
blocking scheme also scales to higher energies, allowing one
to increase the photoexcitation effect in a tunable range of
frequencies. The maximal spin-current injection at a given
frequency ω is achieved by tuning the Fermi level such
that EF = (2�ω − ��R) /4. Examples of nonzero doping are
given in Fig. 4, showing the reduction of the dip in spin-current
injection that occurs for intrinsic graphene at ω = �R by
tuning the Fermi level to ωF = �R . For larger values of the
Fermi level, when ωF > �R , the sign of μ

xyxx

1 (ω) is also
affected by the doping, taking negative values for ω < ωF

and positive values for ω > ωF . This occurs since the positive
and usually dominant contribution arising from the gapless
bands, μ̄1a , is Pauli blocked for ω < ωF , as illustrated in
Fig. 3(c). As seen in Fig. 4, the benefits of the Pauli-blocking
scheme to increase the spin-current injection strength are really
substantial only from ω = �R to about ω = 3�R .
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FIG. 4. (Color online) Spin-current injection strength μ
xyxx

1 (ω)
for graphene with Rashba spin-orbit interaction [Eq. (11)] for varying
values of the Fermi level (EF = 0, 1

2 ��R,��R, 3
2 ��R).

A measure of the polarization P of the injected spin current
is obtained by taking the ratio of the injection rates between
spin-current injection and carrier injection, and normalizing
by the maximal velocity vF and spin �/2 for the carriers. Just
as the spin-current injection rate, Eq. (5), the injection rate for
the density of conduction electrons is proportional to the light
intensity and is written as

ṅ = ξab
1 (ω)Ea∗(ω)Eb(ω). (13)

The response tensor ξab
1 (ω) is computed using Fermi’s golden

rule [32], yielding, for the intrinsic graphene Hamiltonian
including Rashba spin-orbit coupling,

ξab
1 (ω) = σ0δ

ab

(�ω)

(
ω + 2�R

ω + �R

+ 2
�2

R

ω2
�(ω − �R)

+ ω − 2�R

ω − �R

�(ω − 2�R)

)
, (14)

where σ0 is the universal optical conductivity of freestanding
graphene, σ0 = e2/4� [21,33].

For linearly polarized light, which yields the maximal spin-
current polarization, we have

P = |J̇s |
�

2 vF ṅ
=

∣∣μxxxy

1 (ω)
∣∣

�

2 vF

∣∣ξxx
1 (ω)

∣∣ . (15)

This measure is plotted as a function of light frequency in
Fig. 5, showing the spin-current polarization for intrinsic
graphene (EF = 0) and the maximally achievable polarization
making use of the Pauli-blocking scheme [EF = (2�ω −
��R)/4]. Photoinduced spin-current injection with linearly
polarized light yields up to 100% polarization in the limit
ω → 0. The polarization decreases with increasing frequency
but remains greater than 75% for ω < �R . At the onset for
transitions involving a split-off band, ω = �R , the polarization
drops sharply to 3.6% (25% in the maximal case) before
steadily recovering and reaching 42% (52% in the maximal

P
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FIG. 5. (Color online) Spin-current polarization per carrier, P ,
for graphene with Rashba spin-orbit interaction [Eq. (15)] for intrinsic
graphene (EF = 0) and for the maximal case making use of Pauli
blocking [EF = (2�ω − ��R)/4].

case) at the next onset, ω = 2�R . Although the polarization
then decreases monotonically, it remains as large as 20% at
ω = 5�R .

IV. SUMMARY

The injection of pure spin currents in graphene with Rashba
spin-orbit coupling via photoexcitation has been presented.
The spin-current injection strength is zero for circularly
polarized light and maximal for linearly polarized light, with
the spin-current injection rate given in Eq. (10). The injection
rate is proportional to the light intensity and the direction of
the current follows the polarization axis. Multiple regimes
of excitation have been proposed, covering a wide range
of photon frequencies. The technique achieves very high
spin-current polarization, above 75% at frequencies below the
Rashba frequency, roughly 50% at twice the Rashba frequency,
and remains as high as 20% at five times the Rashba frequency.
In comparison, electrical injection has recently achieved 60%
polarization [9].

The injection of a pure spin current is interesting for
spintronics applications, and such currents could be detected
via electrical edge currents [28], electrical currents [34],
pump-probe spectroscopy [20], or Faraday rotation [35].
Spin-current injection via optical methods removes the need
for ferromagnetic contacts, which have been identified as a
possible source of spin scattering in electrical spin injection
in graphene. Since carriers are injected ballistically with
high carrier velocities, on the order of the Fermi velocity,
the spin separation can reach a commensurate distance after
excitation before the spin current decays, its lifetime limited
by momentum relaxation [36]. A careful treatment of the
subsequent carrier dynamics after injection, including the
effect of disorder, inhomogeneity in doping level, and SOI
strength, is of interest and the topic of future work.
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The range of frequencies yielding large spin-current
polarization is increased by a larger spin-orbit coupling
strength. A number of studies have reported enhanced SOI
in graphene [23–26]. The optical injection of a spin current
in bilayer graphene represents another interesting avenue as
it presents a stronger SOI [37]. While the dependence of
the magnitude μ

xyxx

1 (ω) as a function of light frequency for
bilayer graphene is necessarily more complicated than that of
graphene, due to the additional available interband transitions,
at the simplest level an isotropic band structure model can be
used so that the symmetry considerations of the present paper
hold.

In previous proposals of optical spin-current injection in
low-dimensional structures, spin displacement results from the
interference of absorption pathways for left and right circularly
polarized components of the linearly polarized light [17–20].
Due to the completely different band symmetry, such optical
orientation of the electron spin under circularly polarized light
is not possible in graphene without applying an additional mag-
netic field [27]. Nevertheless, we have shown that optical pure
spin-current injection in graphene is possible, with in-plane
spin and velocity components and without a magnetic field.
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APPENDIX: MATRIX ELEMENTS

The matrix elements necessary to calculate the spin-current
injection tensor μabcd

1 (ω) according to Eq. (6) are as follows.
The velocity operator v = σvF , written in the eigenstate basis
{c1,v2,c2,v1}, takes the form

v = �R√
�2

R + 4v2
F k2

(
�k
m∗ A vF B

vF B† �k
m∗ A

)
, (A1)

where

A ≡
(

k̂ iτ φ̂

−iτ φ̂ −k̂

)
, (A2)

B ≡
(

−iφ̂ −τ k̂

τ k̂ iφ̂

)
, (A3)

and m∗ = ��R/2v2
F is the effective mass describing the quadratic band dispersion of graphene with Rashba SOI in the limit

k → 0. The spin operator written in the same eigenstate basis takes the form

S = �

2

1√
�2

R + 4v2
F k2

(
−C D

D† C

)
, (A4)

where

C ≡
(

2vF kφ̂ −τ�Rẑ

−τ�Rẑ 2kvF φ̂

)
, (A5)

D ≡
⎛
⎝2vF kẑ + i

√
�2

R + 4v2
F k2 k̂ τ�Rφ̂

τ�Rφ̂ 2vF kẑ + i

√
�2

R + 4v2
F k2 k̂

⎞
⎠. (A6)

From these one can obtain matrix elements of the spin-current operator following Eq. (7).
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