
ar
X

iv
:1

40
9.

65
21

v1
  [

co
nd

-m
at

.m
es

-h
al

l]
  2

3 
Se

p 
20

14

Influence of Hyperfine Interaction on the Entanglement of Photons Generated by

Biexciton Recombination

Erik Welander, Julia Hildmann,∗ and Guido Burkard
Department of Physics, University of Konstanz, D-78457 Konstanz, Germany

The quantum state of the emitted light from the cascade recombination of a biexciton in a quantum
dot is theoretically investigated including exciton fine structure splitting (FSS) and electron-nuclear
spin hyperfine interactions. In an ideal situation, the emitted photons are entangled in polarization
making the biexciton recombination process a candidate source of entangled photons necessary for
the growing field of quantum communication and computation. The coherence of the exciton states
in real quantum dots is affected by a finite FSS and the hyperfine interactions via the effective
magnetic field known as the Overhauser field. We investigate the influence of both sources of
decoherence and find that the FSS combined with a stochastic exciton lifetime is responsible for the
main loss of entanglement. Furthermore, we examine the possibility of reducing the decoherence
from the Overhauser field by partially polarizing the nuclear spins and applying an external magnetic
field. We find that an increase in entanglement depends on the degree as well as the direction of
the nuclear spin polarization.

PACS numbers: 78.67.Hc, 03.67.Bg, 73.21.La, 71.70.Jp

I. INTRODUCTION

A reliable source of entangled photons is a require-
ment for many protocols used in the rapidly develop-
ing field of quantum communication1. An established
method for creating polarization entangled photons is by
parametric down-conversion2,3. However, this technique
suffers from being both inefficient and stochastic, causing
problems since many quantum communication protocols
require an on-demand source. An alternative source is
thus desired, and here we consider the biexciton cascade
recombination4,5. In a quantum dot (QD), the biexci-
ton, which is composed of two conduction band electrons
and two valence band holes, can under ideal conditions
recombine under the emission of two photons entangled
in polarization4,6. The biexciton recombines via one of
two possible intermediate exciton states, each consisting
of one conduction band electron and one valence band
hole.

In most quantum dots, the two optically active exciton
states are energetically separated by a quantity known as
the fine structure splitting (FSS) arising from higher or-
der electron-hole exchange interactions7–9. A finite FSS
can affect the coherence of the emitted two-photon state
in two ways. If the FSS is larger than the linewidth of the
emitted light, the photons become distinguishable via a
simple frequency measurement which reveals the “which-
way” information and destroys the entanglement6. How-
ever, even if the splitting is smaller than the linewidth but
still finite, the initially coherent exciton state acquires a
random phase before recombining, due to the stochastic
life time. Methods of reducing and eliminating the FSS
include applying magnetic10 and electric9,11–16 fields as
well as strain17–20.

In addition to the dephasing from a finite FSS, the in-
termediate exciton state is affected by the spins of the
105-106 nuclei present in a III-V group semiconductor

QD. The spins of the electron21–24 and hole25–27 consti-
tuting the exciton couple to nuclear spins via the hyper-
fine interaction and are subject to an effective nuclear
magnetic field, known as the Overhauser field. Because
of the large number of nuclear spins, the Overhauser field
can be considered to be stochastic and is another source
of decoherence, including an additional random phase of
the intermediate exciton state.
Experimentally, various techniques for creating entan-

gled light using semiconductor microstructures have been
demonstrated5,10,28–30. One successful approach relies on
the application of an external magnetic field perpendic-
ular to the growth direction of the QD10,31, which tunes
the energy levels of the optically active excitons by hy-
bridization to optically inactive states. Nevertheless, a
complete theoretical explanation of the partial loss of en-
tanglement is still missing. Understanding the dynamics
of the intermediate exciton states is essential to investi-
gate the entangleement of the emitted light. In fact, any
dephasing and loss of coherence of the exciton state will
be reflected in the final photon state.
In this paper, we investigate the interplay between the

dephasing due to a finite FSS together with a stochas-
tic recombination time and the decoherence caused by
the hyperfine interaction. One way of reducing the fluc-
tuations of the Overhauser field is by dynamic nuclear
spin polarization32,33, causing the nuclear spins to have a
preferred direction. The polarized nuclear ensemble pro-
duces a finite effective magnetic field, which may modify
the exciton energies and eigenstates. Since the elimina-
tion of the FSS has been demonstrated using an exter-
nal in-plane magnetic field, a tempting idea could be to
use the effective magnetic field produced by the polar-
ized nuclear ensemble, to reduce both the FSS and the
Overhauser field fluctuations. However, we show that
the effect from the two sources of decoherence cannot be
minimized independently of each other.
We consider the effect of finite nuclear spin polarization

http://arxiv.org/abs/1409.6521v1
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Figure 1. Energy diagram of the excitonic states in the quan-
tum dot. The topmost level is the biexciton state |↓⇑〉 |↑⇓〉
consisting of two excitons. The two intermediate levels are
the exciton states |↓⇑〉 and |↑⇓〉 energetically separated by
the FSS ~ω, which depends on the built-in FSS |δ1| and an
applied magnetic field. The lowest level is the semiconduc-
tor ground state |0〉

e
containing no excitons. The biexciton

recombines to one of the intermediate exciton states under
the emission of a photon with polarization depending on the
exciton state. The remaining exciton then recombines under
the emission of another photon of orthogonal polarization. In
the ideal situation, this creates a pair of photons entangled
only in polarization. The existence of a FSS can degrade the
entanglement, even if ~ω < Γ where Γ is the linewidth of the
emitted light because of the stochastic lifetime of the exciton
which causes dephasing and leads to a statistical mixture in-
stead of a pure state. Furthermore, because of the interaction
with stochastic magnetic field originating from the nuclear
spins in the quantum dot, the exciton energy levels are not
sharply defined, meaning that ω also fluctuates which causes
even more dephasing.

and find that the entanglement of the emitted light can
be improved by nuclear spin polarization. The efficiency
of the entanglement improvement depends on the direc-
tion along which the nuclear spins are polarized, which
is explained by the fact that the g-tensor is not isotropic.
We find that the maximum enhancement of the entangle-
ment is achieved when nuclear spins are polarized along
the direction for which the g-tensor has its largest compo-
nents, in our case in the growth direction of the quantum
dot.

A nuclear polarization in the growth direction gives
an additional contribution to the FSS and therefore in-
creases the dephasing. To cancel the effective nuclear
field in the growth direction and minimize the FSS at
the same time, we propose applying an external mag-
netic field along a specific direction having an in-plane
and a perpendicular component. Combining a finite nu-
clear spin polarization along the growth direction of the
QD with an external magnetic field, we find a significant
improvement of the two-photon state entanglement.

II. THEORETICAL MODEL

We consider a QD of a cubic semiconductor contain-
ing one exciton consisting of one electron and one heavy
hole. The spins of the electron and the hole couple to the
spins of the atomic nuclei in the QD. This effect is to a
good approximation described by the contact hyperfine
Hamiltonian

HHF =
N
∑

n=1

I(n) ·
(

A(n)
e Se +A

(n)
h Sh

)

, (1)

where the summation runs over all nuclear spins in the
dot, I(n) is the spin operator of the n-th nuclear spin,

Se(h) is the electron(hole) spin operator, and A
(n)
e(h) are

the hyperfine coupling tensors between the n-th nuclear
spin and corresponding electron(hole) spin component.
We define effective magnetic fields by moving the electron
and hole spin operators outside of the summation and
obtain

HHF = µBB
e
HF · geS

e + µBB
h
HF · ghS

h, (2)

where ge(h) is the g-tensor for the electron(hole). The

vector B
e(h)
HF is known as the electron(hole) Overhauser

field and acts like an effective magnetic field from the
perspective of the exciton. Because of the large num-
ber of nuclear spins24 (105 − 106) for a typical quantum
dot, the Overhauser field is often modelled as a stochastic
magnetic field and will be considered further in Section
III B. We consider the case of diagonal hyperfine coupling
tensors, which for an electron in a III-V semiconductor

QD can be written34 as A
(n)
x,y,z ∝ gx,y,ze |F (rn)|2, where

gx,y,ze are the electron g-factors and |F (rn)|2 is the elec-
tron density at the atomic site n. An important feature
is the dependence of the spatial direction x, y, z, which
indicates that fluctuations of the different spatial compo-
nents of the Overhauser field influence the energy of the
electron differently. Normally, the in-plane g-factors are
smaller than along the growth axis of the quantum dot.

A basis for the Hilbert space of the electron spin He

is given by {|↑〉 , |↓〉}, where ↑ (↓) corresponds to the
spin sz = 1/2 (sz = −1/2) state, and for the heavy
hole the Hilbert space Hh is spanned by {|⇑〉 , |⇓〉}, with
⇑ (⇓) corresponding to the hole spin states jz = 3/2
(jz = −3/2). The Hilbert space of the exciton is given
by the product space HX = He ⊗Hh and is spanned by
the basis vectors {|↓⇑〉 , |↑⇓〉 , |↑⇑〉 , |↓⇓〉}. The states |↑⇓〉
and |↓⇑〉 are known as bright since they can recombine
under the emission of a single photon whereas |↑⇑〉 and
|↓⇓〉 are known as dark. The idealized recombination



3

chain of the biexciton is given by

|0〉ph ⊗ |↓⇑〉 |↑⇓〉
↓

|σ+〉 ⊗ |↑⇓〉+ |σ−〉 ⊗ |↓⇑〉√
2

↓
|σ+〉 |σ−〉+ |σ−〉 |σ+〉√

2
⊗ |0〉e

where |σ±〉 are photon states of circularly polarized light,
and |0〉ph(e) is the photon (crystal) vacuum. In reality the

intermediate state undergoes time-evolution before the
exciton has recombined which may lead to degradation
of the entanglement of the emitted light. The final state
of the intermediate exciton state can be written using a
density matrix

ρX =

(

p γ
γ∗ 1− p

)

, (3)

where p and 1 − p are the populations of the states
|σ+〉⊗|↑⇓〉 and |σ−〉⊗|↓⇑〉, and γ is the off-diagonal ma-
trix element required to describe a quantum mechanical
superposition of the basis states. Here, only there bright
excitons are taken into consideration. The concurrence
of the emitted light is then given by35

C = 4
√

p(1 − p)|γ|, (4)

where we note that the off-diagonal elements are essential
for the entanglement.
Under the influence of a magnetic field B =

(Bx, By, Bz)
T the exciton system is described by the

Hamiltonian7

H =
1

2







δ0 − hz− δ1 he hh

δ∗1 δ0 + hz− h∗
h he

h∗
e hh −δ0 + hz+ δ2

h∗
h h∗

e δ∗2 −δ0 − hz+






,

(5)
in the heavy exciton basis {|↓⇑〉 , |↑⇓〉 , |↑⇑〉 , |↓⇓〉}, where
δ0 is the splitting between bright and dark excitons,
|δ1(2)| is the FSS for bright (dark) excitons, hz± =

µBBz(g
z
e ± gzh), he(h) = µB

(

Bxg
x
e(h) + iByg

y
e(h)

)

and

gαe(h) are effective g-factors for electrons(holes) along the

α-axis. For the case B = Bxx̂ and δ1, δ2 ∈ R, the eigen-
value problemH |X〉 = E |X〉 is analytically solvable and
the two eigenenergies corresponding to the two bright ex-
citons are given by

E1 =
δ1 + δ2 +

√

(2δ0 + δ1 − δ2)2 + 4(gxe + gxh)
2µ2

BB
2
x

4
(6a)

E2 =
−δ1 − δ2 +

√

(2δ0 − δ1 + δ2)2 + 4(gxe − gxh)
2µ2

BB
2
x

4
.

(6b)

Similar expressions were found by Bayer et. al.
36, where

it should be noted that our expressions differ slightly,
due to a sign error. Demanding the bright exciton states
to be degenerate, i.e. E1 = E2, gives an equation for a
critical field Bcr,

2(δ1 + δ2) +
√

(2δ0 + δ1 − δ2)2 + 4(gxe + gxg )
2µ2

BB
2
cr

=
√

(2δ0 − δ1 + δ2)2 + 4(gxe − gxg )
2µ2

BB
2
cr,

(7)

for which the FSS vanishes. The FSS can be written
E1 − E2, which may be expanded in Maclaurin series in
Bx to the second order, which gives the approximation

~ω(Bx) ≈ δ1 +
µ2
B

[

4gxe g
x
hδ0 −

(

gxe
2 + gxh

2
)

(δ1 − δ2)
]

4δ20 − (δ1 − δ2)2
B2

x.

(8)
A similar expression was also presented by Stevenson et

al.
31. Solving ω(Bcr) = 0 provides an expression for the

critical magnetic field, given by

Bcr = ±
√

δ1 [(δ1 − δ2)2 − 4δ20 ]

µ2
B

[

4gxeg
x
hδ0 −

(

gxe
2 + gxh

2
)

(δ1 − δ2)
] . (9)

For the general case involving arbitrary mangetic fields
and complex δ1, δ2, an analytical diagonalization of the
Hamiltonian in Eq. (5) is not known. However, the en-
ergy splitting between the bright and dark excitons δ0
is larger than all other relevant energies, including the
magnetic coupling elements. Therefore, we can apply
the Schrieffer-Wolff37,38 transformation, which provides
us with an effective Hamiltonian for the bright exciton
subspace:

H̃ = H̃0 + H̃2, (10)

where

H̃0 =
1

2

(

δ0 − hz− δ1
δ∗1 δ0 + hz−

)

, (11)

and

H̃2 =
1

4





|he|
2

δ0−be
+ |hh|

2

δ0+bh

δ0heh
∗

h

δ2
0
−b2e

+
δ0heh

∗

h

δ2
0
−b2

h

δ0h
∗

ehh

δ2
0
−b2e

+
δ0h

∗

ehh

δ2
0
−b2

h

|he|
2

δ0+be
+ |hh|

2

δ0−bh



 , (12)

with be(h) = µBBzg
z
e(h). The FSS ~ω can now be found

by solving the eigenvalue problem

H̃ |n〉 = En |n〉 (13)

for n = 1, 2 and taking the difference ~ω = |E1 − E2|.
Using the explicit form of H̃ given by Eqs. (11) and (12)
we find

~ω =
√

Ω2
1 +Ω2

2, (14)
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where

Ω1 = hz− − 1

2

|he|2be
δ20 − b2e

+
1

2

|hh|2bh
δ20 − γ2

h

, (15)

Ω2 =

∣

∣

∣

∣

δ1 +
1

4

δ0h
∗
ehh

δ20 − b2e
+

1

4

δ0h
∗
ehh

δ20 − b2h

∣

∣

∣

∣

. (16)

Demanding that ω(Bcr) = 0 again defines critical mag-
netic fields, not necessarily along x̂, for which the FSS is
eliminated. Inspecting Eq. (14), we realize that ω = 0
only if Ω1 = 0 and Ω2 = 0. Ω1 can be tuned to zero by
adjusting the total magnetic field along ẑ. Ω2 depends
on in in-plane components of the magnetic field, Bx and
By and the bright exciton coupling δ1, which may be
complex. The phase of δ1 is related to the geometry of
the quantum dot whereas the phase of h∗

ehh depends on
the anisotropy of the g-tensors. For a quantum dot with
an isotropic in-plane g-tensor, h∗

ehh is real and in this
situation, no magnetic field can completely eliminate the
FSS caused by a complex δ1. However, δ1 ∈ R combined
with a isotropic g-tensor, Eq. (16) reveals that h∗

ehn < 0
is a criterion for the existence of a magnetic field such
that Ω2 = 0. In turn, this requires that the in-plane g-
factors of the electron and hole have opposite signs and
this implies that not all quantum dots can be tuned to
support degenerate bright excitons, also noted in exper-
imental work31,36 where InAs dots surrounded by differ-
ent barrier materials were studied. The corresponding in-
plane g-factors were extracted, and here the values for the
case of Al0.33Ga0.67As

31 as the barrier material are given
in Table I. Experimental39,40 and theoretical41 studies
show that the g-factor of InAs and InGaAs QDs can be
tuned over large range of values and here we use gze = 2,
gzh = −5 to give a total exciton g-factor gze + gzh = −3,
measured in experiments39.
There are two main sources of loss of entanglement: (1)

the fine-structure splitting combined with the stochas-
tic exciton life time and (2) the stochastic Overhauser
field that affect the intermediate exciton state. Both
mechanisms lead to the acquisition of an unknown phase
which causes a reduction of the entanglement. To inves-
tigate further, we consider the effect of the two above-
mentioned mechanisms on the density operator of the
intermediate exciton state. We choose the diagonal basis
|1〉 , |2〉 which are eigenvectors of H̃ , and an initial density
operator in matrix form as

ρ(t = 0) =

(

ρ11 ρ12
ρ21 ρ22

)

, (17)

where ρ11 + ρ22 = 1 and ρ∗12 = ρ21. We can now deter-
mine the time-evolution for the density operator via the
Heisenberg equation of motion,

i~ρ̇ = [ρ, H̃ ], (18)

which has the solution

ρ(t > 0) =

(

ρ11 ρ12e
iωt

ρ21e
−iωt ρ22

)

, (19)

0
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Figure 2. Comparison between the concurrence of a stochastic
FSS with a definite recombination time C1(t) and the con-
currence in the presence of a known FSS with a stochastic
recombination time C2(τ ). (a) The concurrence of the en-
tangled light C1(t), when a stochastic Overhauser field with
σx = σy = σz = 5 mT causes an unknown relative phase
between the exciton states when the exciton undergoes time-
evolution of t = 1 ns. (b) The concurrence of the entangled
light C2(τ ) when the known FSS causes an unknown rela-
tive phase between the exciton states. The exciton undergoes
time-evolution for a stochastic recombination time, which on
average is given by τ = 1 ns. We see that there is a trade-off
when attempting to minimizing both sources of decoherence
since at Bx = Bcr ≈ 1 T, C2(τ ) has a maximum, while C1(t)
has a minimum. This indicates that both sources of decoher-
ence have to be taken into consideration simultaneously.

with the FSS ω given by Eqs. (14)–(16). If the FSS is
stochastic as one would expect from an Overhauser field
we may find its contribution by statistical averaging

〈ρ〉 =
∫ ∞

−∞

fΩ(ω)

(

ρ11 ρ12e
iωt

ρ21e
−iωt ρ22

)

dω, (20)

where fΩ(ω) is the probability density function of the
FSS. For the quantum dot hosting the exciton we assume
a stochastic Overhauser field with Gaussian distribution.
The FSS, however, does not have a Gaussian distribution
because of the nonlinear way the exciton eigenenergies
depend on an applied magnetic field, given by Eqs. (14)–
(16). Therefore, the statistical averaging is performed by
considering a Gaussian distribution for the Overhauser
field with the probability density function

fB(B) =
1

σxσyσz(2π)3/2
e−B2

x/2σ
2

x−B2

y/2σ
2

y−B2

z/2σ
2

z , (21)

where σx, σy, σz are the standard deviations of the Over-
hauser field along x̂, ŷ, ẑ. We numerically evaluate

〈ρ〉 =
∫ ∞

−∞

fB(B)

(

ρ11 ρ12e
iω(B)t

ρ21e
−iω(B)t ρ22

)

dω, (22)
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gx,ye gx,yh gze gzh δ0 δ1 τ

1.21 −0.13 2 −5 50 μeV 10 μeV 1 ns

Table I. Table of the parameters for an InAs quantum dot
surrounded by GaAs, used in the numerical calculations, re-
ported from experiments31. The condition that gxe g

y

h < 0 is
necessary to allow the elimination of the FSS. δ1 is in general
complex, but here chosen real.

using the parameter values given in Table I, from which
we can extract an entanglement measure, here the con-
currence C1(t) by using Eq. (4).
To investigate the effect of the stochastic exciton life

time we consider a Poissonian recombination process
which corresponds to an exponential life time t with prob-
ability density function ft(t) = e−t/τ/τ where τ is the
average life time. Calculating the statistical average of
the density matrix gives

〈ρ〉 =
∫ ∞

0

e−t/τ

τ

(

ρ11 ρ12e
iωt

ρ21e
−iωt ρ22

)

dt

=

(

ρ11
ρ12

1+iωτ
ρ21

1−iωτ ρ22

)

,

(23)

which also have decaying concurrence42 C2(τ) ∝
|1 + i ω τ |−1 for ω 6= 0. This suggests choosing ω ≪ 1/τ
to maximize the concurrence. The two different concur-
rences are shown in Fig. 2. We can see that there is a tar-
get conflict when applying a magnetic field along x̂. For
a critical magnetic field strength Bx = Bcr the fine struc-
ture splitting is eliminated and C2(τ) has a maximum,
but the concurrence C1(t) when considering a stochas-
tic magnetic field from the nuclear spins has a minimum.
The reason is that the FSS is most sensitive to changes in
the magnetic field at this point. To obtain a more com-
plete picture we need to take both sources of decoherence
into account simultaneously, which we achieve by aver-
aging the concurrence in Eq. (23) using the probability
distribution for the stochastic magnetic field fB(B) given
by Eq. (21), which is done numerically by evaluating

C(τ) =

∣

∣

∣

∣

∫ ∞

−∞

fB(B)

1 + iω(B)τ
dω

∣

∣

∣

∣

. (24)

III. RESULTS

To obtain quantitative results, we choose a set of pa-
rameter for the quantum dot given in Table I.

A. Dominant Source of Decoherence

In order to improve the concurrence we first establish
which source of decoherence causes more loss of concur-
rence, the FSS or the Overhauser field. From Fig. 2
this is not obvious, because at Bx = Bcr the FSS is min-
imized but the dephasing from the Overhauser field is

maximized. Taking both into account and allowing in
addition a magnetic field to be applied along ẑ as well we
find the concurrence as function of the applied magnetic
field depicted in Fig. 3.
We see that the two global maxima are located at

(Bx = ±Bcr, By = 0, Bz = 0) which indicates that the
FSS is a stronger source of decoherence than the Over-
hauser field. Still, the concurrence does not reach unity
but is rather close to the minimum observed in Fig. 2a.
From these observations we conclude that in order to
maximize the concurrence, we should keep Bx = ±Bcr to
eliminate the FSS and now focus on reducing the uncer-
tainty of the Overhauser field. One way of achieving this
is to polarize the nuclear spins, which has been exper-
imentally realized43–49, and is investigated in the next
section. In addition to the two global maxima, there
are four local maxima located close to |Bx| = 1.5 T,
|Bz| = 0.25 T. Although the concurrence is smaller at
these points than at the global maxima, they indicate
the significance of including the effects of both sources of
decoherence simultaneously.

B. Effect of Nuclear Spin Polarization

It is clear that, within our model, when the FSS is elim-
inated, the remaining reduction of the entanglement orig-
inates from the Overhauser field. To investigate how the
fluctuations of the Overhauser field vary as function of
the nuclear spin polarization we consider a simple model
for the Overhauser field along one spatial direction

B =

M
∑

n=1

Anβn, (25)
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Figure 3. Concurrence when the combined effect of dephas-
ing from a stochastic magnetic field due to the nuclear spins
and a stochastic exciton lifetime is considered. The maxima
occur when the FSS is eliminated and reach values limited
by the dephasing from the stochastic Overhauser field. This
indicates that the dominant source of decoherence is the FSS
combined with the stochastic lifetime of the exciton. An im-
provement of the maximum concurrence can be achieved by
reducing the Overhauser field fluctuations. There are also four
local maxima located roughly at |Bx| = 1.5 T, |Bz| = 0.25
T, demonstrating the importance of treating both sources of
decoherence simultaneously.
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Figure 4. Concurrence as function of nuclear polarization an-
gle ϕ and applied magnetic field Bext

x along x̂. We assume
a fixed degree of η = 90% polarization along (nx, 0, nz) =
(sinϕ, 0, cosϕ). The total magnetic field is given by B =
(Bext

x + ηBmax sinϕ, 0, 0), which implies an applied magnetic
field Bext

z = −ηBmax cosϕ along ẑ. For every angle of po-
larization, there are two values of the external magnetic field
maximizing the concurrence, which are located at Bx = ±Bcr,
which minimizes the FSS.

where M is the number of nuclear spins, βn are binary
stochastic variables taking the values±1 with probability

pβ(±1) =
e±S

eS + e−S
, (26)

where

S =
µBgNB0

kBTN
, (27)

gN is the nuclear g-factor, B0 is an external magnetic field
and TN is the nuclear spin temperature. The polarization
η is given by

η = 〈β〉 = eS − e−S

eS + e−S
= tanhS, (28)

and the variance is consequently

σ2 =
〈

β2
〉

− 〈β〉2 = sech2 S = 1− η2. (29)

In Appendix A it is shown that

B ∼ N(Mη,C(1 − η2)), when M → ∞, (30)

where N(µ, σ2) is a Gaussian distribution with mean µ
and standard deviation σ, M is the number of nuclear
spins, and C depends on M and An. Typically, C will
have to be determined experimentally or by numerical
simulations and we do not attempt to calculate it here,
but the general form Eq. (30) does not depend on the
specific QD. Since the fluctuations of the Overhauser field
decrease with increasing polarization we now assume that

the nuclear spins are polarized to degree η along n =
(nx, ny, nz)

T , where n2
x + n2

y + n2
z = 1. The assumption

that the nuclear spin can be polarized along an arbitrary
direction relies on experimental demonstrations50. This
gives an effective magnetic field BHF = Bmaxηn, with
variances

(σ2
x, σ

2
y , σ

2
z) =

(

Cx[1− η2n2
x], Cy[1− η2n2

y], Cz [1− η2n2
z)]

)

.
(31)

Together with the applied magnetic field Bext =
(Bext

x , Bext
y , Bext

z )T the total effective magnetic field de-

pends on 7 variables: Bext
x , Bext

y , Bext
z , nx, ny, nz, and η.

In order to narrow the search for optimal parameters,
we make the following observations: first, x̂ and ŷ are
equivalent and we set ny = By = 0. Second, Fig. 3
shows that the concurrence C(τ) has its maximum for
Bz = 0 and we thus set Bext

z = −Bmaxηnz. Finally we
let tanϕ = nx/nz and the total effective magnetic field
is given by

B = (ηBmax sinϕ+Bext
x )x̂, (32)

and depends on the three free parameters η, ϕ, and Bext
x .

For η = 0.9 the result is shown in Fig. 4 and we find that
for every ϕ there are two applied magnetic fields alongBx

locally maximizing the concurrence. As expected from
the discussion in the previous section, these occur when
Bx = ±Bcr. We may thus set Bx = Bcr and study con-
currence as a function of the polarization angle ϕ which
is shown in Fig. 5, where we observe that the concur-
rence is maximized by minimizing fluctuations along ẑ.
Finally we can investigate the concurrence as a function
of polarization, shown in the inset of Fig. 5. We find
that an increased nuclear spin polarization along ẑ leads
to an increased concurrence. We also see that a nuclear
spin polarization perpendicular to ẑ has almost no effect
on the concurrence. This can be explained by the fact
that the g-factors for the x- and y-directions are much
smaller than the one along z.

IV. SUMMARY

We have theoretically investigated the entanglement
between two photons emitted from a cascade recombina-
tion of a biexciton in a quantum dot. The entanglement
was examined using the concurrence as a quantitative
measure. We considered the two main sources of loss of
concurrence, the FSS combined with a stochastic inter-
mediate exciton lifetime and the stochastic Overhauser
field. We found that the FSS is the dominant source of
decoherence and must be minimized in order to maxi-
mize concurrence. Furthermore, we showed that reduc-
ing the uncertainty of the Overhauser field by nuclear
spin polarization together with an applied magnetic field
along a certain direction can improve the concurrence of
the emitted light. The increase in entanglement depends
strongly on the degree as well as the direction of nuclear
spin polarization relative to the growth axis of the QD.
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Figure 5. The concurrence under the condition
(Bx, By , Bz) = (Bcr, 0, 0) for different degrees η and
angles ϕ of the nuclear spin polarization. The nuclear spins
are polarized along (sinϕ, 0, cosϕ) and we can observe a
strong dependence on the angle. For a polarization along x̂
(ϕ = ±π/2) the increase of concurrence is almost absent in
comparison to a polarization along ẑ (ϕ = nπ, n ∈ Z). Inset:
Concurrence as function of the nuclear spin polarization
along x̂ (purple) and ẑ (cyan). A nuclear polarization along
ẑ leads to a significant improvement in concurrence whereas
this effect is all but absent in the case of polarization along
x̂. Although polarization along any direction n would lead to
a reduction of the fluctuations of the Overhauser field along
n, because the in-plane g-factors are smaller than along the
growth direction, in-plane fluctuations have less effect on the
FSS.

This effect is caused by the difference between in-plane
g-factors and the g-factor along the growth direction.
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Appendix A: The Probability Distribution of the

Overhauser field in a QD

In this section we show that the probability distribu-
tion of a weighted sum of N identical stochastic vari-
ables approaches a Gaussian distribution when N → ∞.
This is closely related to the well-known Central Limit
Theorem51 in probability theory. Here we make small
extension by considering a sum of identically distributed
variables with different coefficients. The aim is to find
the probability density function for the sum

Y =
N
∑

n=1

anXn, (A1)

where Xn are identically distributed stochastic variables
with expectation value E[X ] and variance σ2, and an are
finite coefficients which, in general, also depend on N .
For a QD we may choose the coefficients to match the
electron position probability density function:

an =
|Ψ(−l/2 + nl/N) |2

N
, (A2)

which implies that

lim
N→∞

N
∑

n=1

an = lim
N→∞

N
∑

n=1

|Ψ(−l/2 + nl/N) |2
N

=

∫ l/2

−l/2

|Ψ(x) |2 dx = 1,

(A3)

where l is the size of the quantum dot. We introduce new
variables with vanishing expectation value,

X̃n = Xn − E[Xn], (A4)

and form the new sum

Ỹ =

N
∑

n=1

anX̃n, (A5)

which is related to Y by

Y = Ỹ +Σ(N)E[X ], (A6)

where

Σ(N) =
N
∑

n=1

an. (A7)

The characteristic function of Ỹ is given by

ϕỸ (t) =

N
∏

n=1

ϕX̃ (ant) ≈
N
∏

n=1

(

1− a2nσ
2t2

2

)

, (A8)

where ϕX̃ is the characteristic function of any of the X̃n

which we expand Taylor series to the second order in the
second step. Now we consider

ϕỸ (t) ≈ exp

[

N
∑

n=1

ln

(

1− a2nσ
2t2

2

)

]

(A9)

and

N
∑

n=1

ln

(

1− a2nσ
2t2

2

)

= −
N
∑

n=1

∞
∑

k=1

a2kn σ2kt2k

2k
(A10)

≈− S1σ
2t2

2N
−

∞
∑

k=2

Skσ
2kt2k

2kN2k−1
, (A11)

where

Sk =

∫ l

0

|Ψ(x)|4k dx. (A12)

We make the restriction that |Ψ(x)|2 is bounded on [0, l]
which means that there is some constant C such that
|Ψ(x)|2 ≤ C. This also ensures the existence of all Sk

and for N approaching infinity we may keep only the
first term in Eq. (A11) and we find

ϕỸ (t) ≈ exp

(

−S1σ
2t2

2N

)

, (A13)

and from this we obtain the probability density function
of Ỹ as

fỸ (y) =

√
N

σ
√
2πS1

exp

(

− Ny2

2S1σ2

)

, (A14)

which is a Gaussian distribution with variance S1σ
2/N .

S1 depends on the the coefficients an but the general form
is always a Gaussian distribution regardless of what wave
function is considered.
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