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Tight-binding approach to strain and curvature in monolayer transition-metal dichalcogenides
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We present a model of the electronic properties of monolayer transition-metal dichalcogenides based on
a tight-binding approach which includes the effects of strain and curvature of the crystal lattice. Mechanical
deformations of the lattice offer a powerful route for tuning the electronic structure of the transition-metal
dichalcogenides, as changes to bond lengths lead directly to corrections in the electronic Hamiltonian while
curvature of the crystal lattice mixes the orbital structure of the electronic Bloch bands. We first present an
effective low-energy Hamiltonian describing the electronic properties near the K point in the Brillouin zone,
then present the corrections to this Hamiltonian due to arbitrary mechanical deformations and curvature in a way
which treats both effects on an equal footing. This analysis finds that local area variations of the lattice allow
for tuning of the band gap and effective masses, while the application of uniaxial strain decreases the magnitude
of the direct band gap at the K point. Additionally, strain induced bond length modifications create a fictitious
gauge field with a coupling strength that is smaller than that seen in related materials like graphene. We also find
that curvature of the lattice leads to the appearance of both an effective in-plane magnetic field which couples to

spin degrees of freedom and a Rashba-like spin-orbit coupling due to broken mirror inversion symmetry.

DOI: 10.1103/PhysRevB.94.155416

I. INTRODUCTION

Monolayers of transition-metal dichalcogenides (TMDCs)
are two-dimensional semiconductors and have gained great
interest in recent years due to their remarkable electronic and
optical properties [1]. They possess a direct band gap with a
magnitude in the optical range [2] and optical selection rules
which allow for manipulation of the valley and spin degrees of
freedom [3,4], providing them with great potential for future
device applications.

These TMDCs are a class of materials with the chemical
composition MX, where M represents a transition-metal (e.g.,
M = Mo, W), while X corresponds to a chalcogen atom
(e.g., X =38, Se, Te). These atoms form a honeycomb crystal
lattice analogous to graphene but possessing a semiconducting
electronic structure with the band gap minima located at the K
and K’ points of the hexagonal Brillouin zone, where the gap
is due to a broken inversion symmetry. Indeed, these materials
have already been shown to produce two-dimensional field
effect transistors with on/off ratios orders of magnitude larger
than in graphene [5]. Additionally, the heavy transition-metal
atoms endow the material with strong spin-orbit coupling most
visibly seen in the large splitting observed in the valence band
ranging from 148 meV in MoS; to 462 meV in WSe, crystals
[6].

While there has been much interest in the optical and
electronic properties of the TMDCs it has also been shown
that MoS, crystal membranes have mechanical properties
comparable with graphene oxide and are able to withstand
mechanical strains up to 10% [7]. Mechanical resonator de-
vices have been demonstrated [8] and suspended devices have
been fabricated for study in optical and electronic transport
experiments [9,10]. These properties imply that TMDCs offer
a route to studying novel nanoelectromechanical systems of
semiconducting membranes and the role of mechanical de-
formations on their electronic structure, optical, and transport
properties.
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In this work we theoretically investigate the role of elastic
deformations on the electronic properties of the TMDCs,
by incorporating the effect of strain into a tight-binding
model. In general, deformations of the crystal lattice lead to
modifications of the bond lengths which create corrections to
the electronic Hamiltonian [11,12]. In addition curvature of the
crystal lattice creates corrections to the hybridization of
the localized orbitals which in general lead to new couplings
between Bloch bands [13-16]. We take an approach which
allows for a description of any arbitrary lattice deformations by
treating modifications of bond lengths and curvature on equal
footing and including the effects of spin-orbit interactions.
Then we present a low-energy effective theory which describes
lattice distortions, spin-orbit coupling, and lattice-spin cou-
pling. We also fit our tight-binding model to first principle
calculations of MoS; and use the obtained band parameters to
predict the energy scales of these strain/curvature-electronic
coupling mechanisms.

Due to the large spin-orbit interaction and unusual spin-
valley coupling within TMDCs, these materials hold particular
interest for spintronics applications. Out-of-plane flexural
motion of the lattice creates ripples and corrugations of the
crystalline membrane which have been observed in MoS; crys-
tals [17] and these provide electronic scattering mechanisms
which are unique to two-dimensional materials [18]. In light
of this, lattice-spin coupling is of particular interest in spin
transport as a mechanism for spin relaxation [16] or possible
spin manipulation mechanisms. To date several authors have
studied spin transport and spin relaxation rates in TMDCs by
symmetry based techniques [19-21], but a precise knowledge
of the coupling parameters was not clear and is a topic of this
work.

The role of deformations in modifying the electronic
structure has been investigated so far via density functional
theory techniques [22-27], which predict that strain can lead
to a modification to the band gap magnitude and band effective
masses. These effects have also been proposed to explain
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optical measurements on wrinkled MoS, [28]. Most dramati-
cally it has been predicted and shown by photoluminescence
experiments that strain can induce a transition between a
direct and indirect band gap in monolayer MoS, [29-31] and
multilayer WSe, [32]. Additionally, as a consequence of the
broken inversion symmetry of the crystal lattice the TMDCs
have been shown to exhibit piezoelectric properties [33,34].

This paper is organized as follows. In Sec. II we introduce
the details of the tight-binding model including spin-orbit
interactions but without any strain or curvature. Following this,
in Sec. III we expand the tight-binding model around the high
symmetry K and K’ points and obtain a low-energy effective
theory describing the conduction and valence bands. In Sec. IV
we introduce the corrections due to mechanical deformations
and curvature of the crystal lattice, then incorporate these
physical effects into the low-energy effective theory, and
discuss the role of these new terms in the low-energy theory.
Finally, in Sec. V we present our conclusions.

II. MODEL

Our calculations are based on a tight-binding approach
describing the multiple electronic orbitals on each lattice site
that makes up the TMDC within the Koster-Slater approach
[35,36]. The monolayer form of the TMDCs are comprised of
three layers, two (top and bottom) containing only chalcogen
atoms and one middle layer with only transition-metal atoms.
We identify these layers by the index [ =1 for the lower
chalcogen layer, / = 2 for the layer of transition-metal atoms,
and [ = 3 for the upper chalcogen layer; a sketch of this lattice
structure is shown in Fig. 1. These layers are each separated
by a distance ¢ = 1.51 A.

The three layers comprise a planar honeycomb lattice with
the top and bottom layers arranged in a triangular lattice
with the top layer lying directly above the bottom layer, while
the middle layer is also made of a triangular lattice rotated
by 7. Together these layers comprise a honeycomb lattice
constructed from two sublattices (labeled X and M), where
the X sublattice is made of chalcogen atoms (labeled X1
and X3 for sites on the bottom and top layer, respectively)
and the M sublattice is conversely made of transition-metal
atoms (labeled M2), as shown in Fig. 1. The vectors con-
necting the X and M lattice sites are e(li) =0, —a, o),
e” = (v3a/2,a/2, £ ¢), and €§” = (—+/3a/2,a/2, £ ¢),
where a = 1.84 A and the (£) denotes for +(—) the vector
connecting the M2 lattice site with upper layer X3 (lower layer
X1) lattice site. As a consequence, the interatomic distance
between each M atomic site and its nearest X atomic site is
&=+a?>+ 2 =237 A. A sketch of the honeycomb lattice
showing these vectors is shown in Fig. 1.

It is also worth considering the next nearest neighbor
vectors which connect the atomic sites of the same species
and on the same layer, these are given by the six vectors
§i=e” —ef” =a(v3/2,-3/2,0, & =e" e =
a(—+/3/2,3/2,0), 83 =€\ —ef? = a(—/3/2, —3/2,0),
8, =€ — e = a(v/3/2,3/2,0), 8s=e —ef? =
a(+/3,0,0), and 8 = e} — &5~ = a(—+/3,0,0).

The electronic structure of the TMDCs is governed by
the d-orbitals localized on the transition-metal atoms and the
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FIG. 1. Crystal structure of the monolayer TMDCs. Panel (a)
shows a top down view of the crystal lattice; the X sites on the top and
bottom layers are colored yellow while the M sites which comprise
the middle layer are shown in gray. Also shown on the lattice are the
nearest neighbor vectors e; and the lattice vectors a;. Panel (b) shows
a side view of the lattice within one unit cell; the lattice sites X1, X3,
and M2 are labeled where the X and M sites are colored yellow and
gray, respectively. The nearest neighbor vectors ei.i) between the M
and X lattice sites are shown, and additionally the lattice parameters
a, ¢, and ¢ are displayed. Panel (c) shows a sketch of the monolayer
TMDOC lattice over many unit cells.

p-orbitals of the chalcogen atoms. Studies of the electronic
structure of the TMDCs by DFT techniques have shown that
the conduction band minimum and the valence band maximum
have a strong d-orbital character, while all bands with strong
p-orbital character lie at higher energies [3,6,37-40]. To
construct a realistic tight-binding model we will include both
the d-orbital states and higher-energy p-orbitals states. Indeed,
we will see later within the text that the p-orbitals are crucial
for replicating the electron-hole asymmetry predicted by DFT
and used to explain magneto-optical experiments [41-43],
while also giving a complete and robust model of the effects of
strain. Therefore, to be fully consistent, on each M lattice site
we consider five localized d-orbitals, d.2, dy>_2, dyy, d., and
dy, (we will denote x* — y? as x? for notational convenience
throughout this work), while on all X lattice sites we include
the p., p, and the p, localized p-orbitals. This creates a
large basis of 11 orbitals per unit cell, but we will see that
we are often able to achieve a very good approximation with a
smaller basis at the high symmetry points of the Brillouin zone.

The tight-binding Hamiltonian in real space is given by
three terms

H = Hyom + Hhop + Hy,, (D

where H,,m describes the on-site energies of each localized
orbital, Hy,p describes the hopping between neighbor localized
orbitals, and Hy, describes the on-site spin-orbit interactions.
We express the Hamiltonian in second quantization where
the electron annihilation operator py ; - removes an electron
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in a p-orbital on lattice site « = X1,X3 in the u = x,y,z
localized orbital in the ith unit cell with spin s =1, |, while
d, ; s removes an electron in the v = zz,xy,x2,xz,yz localized
d-orbital in the ith unit cell with spin s =1, | where all
d-orbitals are localized on the M2 lattice sites.

At this point it is convenient to change the basis to consider
symmetric and antisymmetric combinations in the layer index
I = 1,3 of the localized chalcogen orbitals. This is done by in-
troducing the the new operators pi’i s (pu is T pM i s)/\/_
andp;j,is (p,utx puls)/\/_

We will also utilize one final change of basis to the rotating
orbital basis, allowing us to write the electron operators of the
localized states in a form that makes their angular momentum
more transparent. Therefore, we introduce di ;s = (dy2 ;s =
idxy,i,s)/\/E and dil,i,s = (dxz,i,s + idyz,i.s)/\/§ for the d-
orbitals, while for the p-orbitals pil,i,s = (pf’i’s + ipf,iys)/\/z
where the index £2(£1) refers to the angular momentum of
the rotating d(p)-orbital and for the p-orbitals states § = S, A
indicate the symmetric and antisymmetric combinations in the
layer index introduced above.

The transition-metal dichalcogenide crystal lattice is sym-
metric under a mirror inversion around the central layer
(z = —z). Due to this we categorize the eleven electronic
states as even or odd under this mirror inversion. Of the states
we consider the d2;;, da;s, and d_,;, d-orbitals and the
Pls.i,s’ pfli.s, and p?’l.’s p-orbitals are even, while the d-orbitals
dy1,is and d_; ; ¢ along with the p-orbitals pﬁi,s’ pﬁ‘l’m, and
pi ;s are odd under this transformation. As a consequence
of this symmetry the hopping processes between the even
and odd states will be zero, unless the mirror symmetry is
broken somehow, say, by a perpendicular electric field or by
mechanical bending of the crystal lattice. In the following we
describe each term in Eq. (1) and its derivation in detail.

A. Atomic Hamiltonian

The term Hyon describes the on-site energies of all the lo-
calized orbitals considered within this model. The Hamiltonian
is given by

Hatom = Z [ dZT H-d«.z,i,s

i,s

14t 2 41
+ § (Eddpl,i,sdpl,i.,x +€ddp2,i,sdp2,i,s)
p==%

St
t+e (leéles+lebpzlS)

(ST S
+Zep(pp1,i,sppl,is+pp1mpplzs):| (2)
=+

where 6 | refers to the on-site energy of the state of type
A=Dp, d with angular momentum |/|. The numerical values of
these on-site energies will be found by comparing our tight-
binding model with first principle calculations, as discussed in
Appendix A 2.
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B. Hopping Hamiltonian

The term Hy,p, describes the hopping of electron between
localized orbitals on different lattice sites. Within the hopping
Hamiltonian we consider three different distinct hopping
processes, given by

Hhop = de + Hyq + pr, (3)

where Hpq describes the hopping between the nearest neighbor
d-orbitals on the middle layer and p-orbitals on the top and
bottom layers which are connected by the vectors e® | Hy
describes the hopping between d-orbitals located on the middle
layer connected by the vectors d;, while H,,, describes both
the vertical hopping between the p-orbitals on the top and
bottom layers separated by the vector 2¢Z and the in-plane
hopping between p-orbitals on the same layer connected by the
vectors § ;.

The hopping matrix element of an electron from the
localized orbital V" in the jth unit cell to the v localized orbital
on the ith unit cell is denoted by tw, In principle due to the
large number of orbitals included in this model, we have a
large number of tight-binding parameters. Therefore, we will
employ the Koster-Slater two center approximation to express
the hopping terms 7,/ within the tight-binding model in terms
of a small number of parameters [35,36]. Within this scheme
we are able to express all the hopping energy scales in terms
of a linear combination of the parameters V pp, Vp”p, i ol V;,’d,
Ve, VI, and de, where the subscript refers to the type of
orbitals the hopping process is between and the superscripts
o, m, and § refer to the bond ligands.

First, we can turn our attention to the hopping between the
p and d localized orbitals within the unit cell. In general
the Hamiltonian considering all nearest neighbor hopping is
given by

Hy= Y il adwspujs—i—H.c., )

(ij),s, .0,

where 1}, o is the hopping matrix element between the ith
and jth unit cells and between localized orbitals of type v =
Zz,xy,xz,xz,yz and 4 = x,y,z, and (- - - ) implies summation
over all nearest neighbors. The ith unit cell which is the d-
orbital will be localized on a M2 lattice site, while jth unit cell
corresponding to a p-orbital on the « = X1, X3 lattice site on
layer 1 or 3, respectively.

We now perform the summation over u, v, and « and
use both changes of basis discussed earlier in the text. This
procedure yields

1
H = = 3 |20l 0t
ﬁ(i_' ),8
T t
+ Z \/—t;)llz dz tsppljs—i_\/_tzpl pllapZ]s
p:

ij gt A ij T s
+ \/_[z pdeZ z,spz,j,s) + Z (tpl,p’deQ,i,sppl,j,s
p.p'=%

+tplp1dj>1tspp jv):| +Hec, (5)
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where the new hopping matrix element can be expressed in
terms of the hopping matrix elements between the nonrotating
orbitals within the Koster-Slater two center approximation.

Next we consider the hopping between the d-orbitals within
the middle layer. This Hamiltonian is given by

Hua= Y tyhdl, dy;,. (6)
{ij)),v,v',s

where ((---)) refers to summation over the next nearest
neighbor vectors §; which connect lattice sites on the same
layer. We again perform the summation over the orbital index
v and use the aforementioned changes of basis to find

1 i
J l] i
E Z 2t22 22 22 i,s dz gst Z pl, pldpl i,s PLJ’-S

{ij)).s

Hy =

l] dT
p2p2 p2,i,8 PZJS

+
Z \/_t; ijdz is /’z’jvf

oyl dl s do s+t sdl, do s+ He |,

+1,i,s

(N

where the hopping matrix elements are expressed in the
rotating orbital basis.

Finally we discuss the hopping between the p-orbitals,
where we will consider both the in-plane hopping within the
bottom and top layers of the crystal lattice and the vertical
hopping between the top and bottom layer over the distance 2c.
In general, the Hamiltonian which describes these processes
is given by

Hpp = H + HO™, ®)
i X1t X3t
H;g: Z ;tju[pulspuﬂ_'_putspﬂ J?] ©
(ij))ss, i’
Hy = 3"l pitl i3+ He (10)
s,

Under the change of basis to the symmetric and antisymmetric
combinations of the rotating orbitals we find that the contribu-
tion to the in-plane hopping takes the form

(i Bi

in __
Hy, = Z zzpzmp7jv+_ Z tppppljvpp’ljv ’
{ij)).s.B p.p'=%+

1)

where B = S,A refers to the symmetric and antisymmetric
combinations of the localized orbitals on the top and bottom
layer, whereas the hopping Hamiltonian from the vertical
hopping takes the form

Hy' =2 | LV

i,s

Af A
ppllsppllS' ppl,i,sppl,i,x)

St oS AT A
+V;p(pz,i,spz,i,s _pz,i.spz,i,s) : (12)
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The vertical hopping therefore leads to a shift in the on-site
energies of the p orbitals states.

C. Spin-orbit interaction

An understanding of the role of the spin-orbit interaction is
crucial for a realistic description of the electronic structure of
the TMDCs. The Hamiltonian for the spin-orbit interaction in
the atomic approximation is given by

ho1ave),
dm2c? r dr

Hy = L-S, (13)
where V(r) is the spherically symmetric atomic potential, L.
is the angular momentum operator, and S = (sx,sy,s;) is a
vector of the spin Pauli matrices (with eigenvalues +1). We
useL-S=(Lys™+L_s*)/2+ L.s,whereL, =L, +iL,
and s* = s, & is,. We now introduce the coupling constants
for the atomic spin-orbit interactions arising from both the
chalcogen and transition-metal atoms, which we define to be

A _L/ () ()R (),
X_4mgcz Lt 1

B 1dV(r)
)‘-M zwfdrR;’l(r); d}" RZ,I(r)’ (14)

where R, ;(r) and R, ;(r) denote the radial atomic wave func-
tions of the chalcogen and transition-metal atoms, respectively.
The precise numerical values of Ax and A, are not fully
known in the literature, but we shall take values for MoS,
with Ly ~ 25 meV and Ay =~ 37 meV [6,44]. Using these
definitions we express the spin-orbit Hamiltonian in terms of
the same electron operators defined in the above text as

Hso = Igo,1 + Hso,Za (15)
where the two terms are given by

Hyo1 = E E )‘MIO p2 i,52,5,5'p2,is'

i,s,8' p==%
N
+ d,;tl,i,ssz,s,s’ pl,i,s’) + )\Xp(pp;[,i,.gsz,s,s’pgl,i,s/
A
+ ppI]L,i,ssz,Svs'p;‘].i,s’)]’ (16)

3
502— Z)\M(\/; széédJrlzs +\/;dz2”35d Li,s’

IYY

+d4|ths ssd+ll‘/+d 2,i,s8 XSd_llY)

AX (A At - A
+ ﬁ(pzts ssp+llv +pz,i,sss,s’p—l,i,.v’

+PHUAﬂmy+p1U“mUQ+Hn(n)

Here the spin operator matrix elements are given by s, ; ¢ =
(s;)s.s and s o = (sx £1isy);,¢. This process yields two terms,
aterm Hyo descrlbmg the band splitting in the d-bands with
finite angular momentum and in the p-bands with angular
momentum / = +1, and a term Hj, » describing the spin flip
processes which couple the orbital states with even and odd
symmetry. In the following sections when discussing the tight-
binding model without lattice deformations we will focus only
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on Hy, 1, as these are the dominant terms and well describe
the role of spin orbit needed to explain the experimentally
observed band splittings. A discussion of the role of the spin
flip terms appearing in H, » will be left until Sec. IV C which
analyzes these and other terms coupling the odd and even
sectors of the Hamiltonian.

III. TIGHT-BINDING MODEL NEAR THE K POINT

In this section we focus our attention to the band structure
around the K points in Brillouin zone, which correspond to the
locations of the band gap minima. There are two inequivalent
K points within the Brillouin zone, labeled K and K'. The K
points are located at kp = 1:(471/3«/§a,0), where we have
introduced the valley index t = £1 with t =1 (r = —1)
referring to the K(K’) point.

To study the tight-binding model in the vicinity of the
K points we transform the electron operators to the k-space
representation using

1
B ik-R; ,.B
Phis=—=_ " pl i, (18)
VN <
and
1 .
dois=—=) *Rd, (19)

where 8 = S,A, u = £1,z,and v = £1, £ 2,22 and R; is the
ith unit cell in real space. This process yields the electronic
Hamiltonian

H ="y Hjn. (20)
k

Here H denotes the Hamiltonian describing the electronic
Bloch bands in the space of

v = (ViE ). Q1)

where the basis is split into its even and odd subsectors, which
are individually given by

E s s A T
Wk = (dzz,k,svd‘l.'z,k,s7d7‘[2,k,S7p1—1’k“y7pffl’k’xvpz’k’x) ,

T
1/fko :(drl,k,s»dfrl,k,sypflqk’s1pé71'k,sapzk,s) . (22)

We note that this basis will be used near the K points and
at these high symmetry points the basis is most succinctly
defined with the valley index t in mind; therefore, we see that
the interchange of valleys also interchanges the order of some
of the orbital states within the basis. We now consider the full
Hamiltonian discussed so far, with the exception of H, » which
we will introduce in Sec. IV C. This Hamiltonian is block
diagonal in the subsectors with even and odd symmetries with
respect to mirror inversion around the central layer, allowing
the Hamiltonian to be expressed as

Hlfdd HkEpd 0 0
Ef E
b — H . HE,, 0 0 23)
0 0 Hlffdd Hk‘?pd ’
ot
0 0 Hy g H]?pp
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where the odd subblock lives within the space of the ¥ while
the even subblock lives within the space of 5, as given in
Eq. (22). Around the K point DFT calculations have shown that
the lowest conduction and highest valence bands all possess
an even symmetry; therefore, here we will present the even
subblock of the Hamiltonian and the odd subblock is presented
in full in Appendix A 3. The odd states will play an important
role upon considering the effects of curvature and spin flip
processes arising from the spin-orbit interaction which we
will address in due course in Secs. IVB and IV C.

We now find the electronic dispersion around the K
points by expanding within the small momentum ¢, where
|qla < 1 using k = kp + q with the two Dirac points kp =
(47 /3+/3a,0). Performing this expansion we find the Hamil-
tonian to be given by the subblocks

Voo  vQ  v{Q!
HEL =1 0000 viie) W29 | e
WQ WRQ v ®
ViP®)  —v,Q 0
E,T _
Hyyy =1 —-v,,Q Vi ®) o |. @5
0 0 Vpo(P)
in)Q  —itk)P v5Q!
HYY = itkP  —inl)Qf —ujf;Q . (26)
ztvfj)QT zrv(zs)Q —KI()?P

where Q = q + (a/4)q™? and P = 1 — (342/4)|q|*> with q =
7qx +iqy. Here we have expanded around the K points to
second order in q, as was found to be a requirement to obtain
a good fitting with the DFT model. The fitting procedure is
discussed in more detail in Appendix A 2.

Precisely at the two K points (where q = 0) each d-
orbital couples only with one of the p-orbitals; these pairings
described by our tight-binding agree with high precision with
other combined DFT and tight-binding models [40,45,46]
and symmetry based approaches [39]. The full expressions
for the energies K (’) (with i =1,2,25) and V; (with j =
P0,P1,D0,D2) and the group velocities v(k) (with k =

0,1,2,2a,2s), v(") (with n = 0,2), and v, are presented in
Appendix A 1. We then fit this tight-binding model to first
principle calculations for the electronic structure of MoS;
to determine the Koster-Slater parameters; we describe this
process in detail and present the values in Appendix A 2.

A. Low-energy effective theory

Now we aim to construct the effective theory of the lowest-
energy d-bands around the K point from the Hamiltonian
presented in Eq. (23). First we identify the high-energy
components of the model as the on-site energies of the
p-orbital state Vp;, and the energy Kﬁ} which splits off

the bands with p? and d_;, orbital characters to energies
with large magnitudes. This allows us to project the six
band even sector Hamiltonian onto the two d-bands in the
space of (d; | .d7, ;) via a Schrieffer-Wolf transformation
[47,48]. Therefore we consider only the even subsector of
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the Hamiltonian in Eq. (23) which we write in a block form
identifying the high- and low-energy sector, this allows us to
write the even sector in the form

Hoyw V
HET = < LT ) (27)
Vv Hyign

The high-energy sector of the Hamiltonian Hpyjgp, is given by
the 4 x 4 block in the space (d&ffzqs,pg”f’s,piir’s,p{(‘lj).
To contrast, V consists of the 2 x 4 block which couples
the low- and high-energy subblocks, with matrix elements
which are small with respect to the difference in energy
eigenvalues of the high and low-energy sectors of the Hamil-
tonian, satisfying |eLow — €mign| >> |V|. Then following the
Schrieffer-Wolf transformation procedure we decouple the
high- and low-energy subblocks up to second order in matrix
elements of V. This process yields

H(f;f =H0 + Htrig + chb + Hso» (28)
A, v 2 0
oy =( 2 a) . Alal ). 29)
vq' A, 0 alq]
0 q?
Htrig =K q2 0 ) (30)
Tw|q| cos(3pq) wq
Heu, =|q|2( e ., @D
wq Twy|q| cos(3¢q)
Hy, = 0 0 (32)
o 0 21’)\MSZ ’

where the parameters A., A,, v, o, B, ®, @, ®,, and k are
expressed in terms of the parameters of the six band tight-
binding model and ¢4 = arctan(g,/qy).

This is the final result for the low-energy effective theory;
first it gives the same terms as the Hamiltonian proposed by
Xiao et al. [3] while also including terms which are higher
order in g, like electron-hole asymmetry, trigonal warping,
and cubic terms which have been proposed by other authors
[6,39,45,49,50]. Here we systematically include all terms up to
second order in momentum, but for completeness also include
cubic corrections which at the large momenta g > 0.2/a
become important for the correct description of the electronic
bands. This low-energy effective theory based on tight-binding
approach agrees well with Hamiltonians derived from k - p
methods [6,39].

Comparing the expressions found for the six band model
and those found for the parameters of the two band low-energy
effective theory we determine the numerical values for the
case of MoS,. We find for the band edges A, = 1.78 eV and
A, = —0.19 eV, the group velocities of the Dirac-like term
v=244¢eV A, the effective masses 8 = 0.21 eV Az, o=
0.71 eV Az, the higher order in momentum trigonal corrections
Kk =032¢eV Az, and cubic corrections w = —0.56 eV ;\3,
w, = —0.67 eV A3, and w, = 1.68 eV ;\3. These values show
reasonable agreement with those found in the recent review by
Kormanyos et al. [6], and the small discrepancies between the
numerical values of our parameters and those reported from

fitting to k - p model arise due to our fitting to the six band
model in contrast to the two band model.
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There have been several theoretical predictions of a small
spin splitting in the conduction band of the order of ~3 meV
in MoS; and ~—30 meV in WS, [6,44,51]. The appearance of
this spin splitting in the d,2 band, with/ = 0, can be understood
due to its mixing with p’ ;1 chalcogen orbitals leading to
finite orbital angular momentum. Within our low-energy
effective theory we find subleading corrections with the form

t)ixszd(;z% q,22,s Which account for a spin splitting in the

conduction band. Evaluating Ay for the parameters of MoS,
we find ~10 meV, but crucially this calculation was restricted
to the space of the even orbital states and therefore ignores the
contribution from second order processes which will be of the
same order as this small energy scale Ax. In Sec. IV C we will
address the contributions due to second order processes to the
term Hg,.

IV. ANALYSIS OF STRAIN

In this section we will introduce the effect of lattice
deformations of the electronic structure of the TMDCs. The
effects of strain are included within the tight-binding model
by allowing for the modifications of the bond length between
atomic sites of the crystal lattice and the relative orientation of
the localized electronic orbitals.

Bending of the TMDC breaks the mirror symmetry under
inversion around the central layer and will therefore create
terms in the electronic Hamiltonian which couple the even
and odd sectors. To fully account for this coupling of odd
symmetry electronic states with even states we introduce
mechanical deformation into the electronic Hamiltonian in two
steps. In Sec. IV A we first investigate the role of mechanical
deformation which leads to modifications of the bond lengths
of the TMDC crystal lattice within the even sector of the
Hamiltonian presented above. Secondly, in Sec. IVB we
consider curvature of the two-dimensional TMDC and present
the corrections to the even electronic states due to coupling
to the odd sector of the Hamiltonian. Finally, in Sec. IV C we
will incorporate both of these corrections into the low-energy
effective theory already presented in the previous section.

A. Mechanical deformations

In this section we study the effects of mechanical deforma-
tions on the even sector of the TMDC electronic Hamiltonian.
We work within the framework of continuum elasticity theory
and describe any in-plane deformation by a two dimensional
vector field u(r), while out-of-plane deformations are de-
scribed by a scalar field A(r). A generic atom at position
r is thus shifted to r' = r + u(r) + ZA(r). In this work we
assume that the three layers which make up the TMDC lattice
move uniformly and neglect the effects due to shear interlayer
motion.

The lattice deformations lead to displacements of the
positions of the atomic sites which change the bond lengths
between atoms. This can be viewed as a modification of
the hopping matrix elements, where the matrix elements t:jﬂ,
between a localized orbital © in unit cell i and a localized
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orbital 1’ in the unit cell j is transformed as

ij
IMM, SZU

i
t /9
810 222

m!

ij i Lij
=t + (Stw, >t +

(33)

where 81;;"?, is the correction due to the change of the bond
length, [y is the undeformed bond length, and 513;1’ is the
modification of the bond length given by 51;{“' = ZZM — lp.
The derivative can be estimated as dz,] . /3lo = —T,,0(¢,] ./ lo)

where I',y =0 In t;ju, /0 Inly is the electron Griineisen pa-
rameter. To the best of our knowledge the electron Griineisen
parameters for the TMDC family of materials are currently
not known in the literature, but can be obtained from a careful
comparison of first principle calculations of the electronic
structure of strained TMDCs and the model presented in
this work or by estimation of the electron-phonon couplings
measured in experiments. Typically the electron Griineisen
parameter is of the order of one; therefore, in the following for
numerical evaluation we will take all I' ;- to be unity.

We now extend the model presented in Sec. III to include
lattice deformations utilizing the transformation described in
Eq. (33). In the even sector of the Hamiltonian we obtain the

correction
SHy" SHET
o)
8 pd pp
where the subblocks are given by
b, FY E

SHy" =| F" D, FPT, (35)
(7) (7)
F® F® D,

itF{?  —2itDs  F"
SHL =| 2itD;,  —itF{T —F" (36)
pd 7 1T 9 8 5
itFOt —itF"Y —2Dy
Dy —FP 0
E,
8H,,"=|-F3" Dy 0 [ 37
0 0 Dy
and
Dy = yi Tr[e], (38)
FO = ey — £0r 4 i1264y). (39)

Here we used the strain tensor for a two-dimensional mem-
brane given by [52]

&ij = S@u; + 3ju; + (3;h)(3;h)). (40)

The couplings y; are composed of the electron Griineisen
parameters, Koster-Slater parameters, and the crystal lattice
parameters and are given explicitly in Appendix B 1.

We find that the corrections to the electronic momenta
have the same form as those which appear in monolayer
graphene [12]. They are linear in the in-plane deformations
which cause variations of bond length and quadratic in out-of-
plane deformations which lead to variations in bond length.
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This quadratic coupling arises due to the symmetry of the
lattice with respect to the x-y plane. As a consequence the
corrections to intralayer (Fk(” with k = 3,4,12) and interlayer
(Fk(r) with £k =5,...,9) hopping terms possess the same
form regardless of the different orientations. From a more
microscopic understanding we find that due to our choice of
basis all linear out-of-plane terms which arise in the corrections
to the interlayer hopping terms cancel. This is in contrast to
corrections to interlayer hopping terms which arise in some
other two-dimensional materials such as bilayer graphene [53].
We also observe corrections to the energies which appear in
the unstrained Hamiltonian which are only sensitive to local
dilations in the size of the lattice Dy and are unaffected by
shear deformations. Due to the broken inversion symmetry of
the crystal structure the Dy terms take different coefficients
allowing for modulation of the magnitude of band gaps, in
contrast to inversion-symmetric two dimensional materials
such as graphene.

The terms Fk(f) behave as fictitious gauge fields acting
as corrections to the electronic momenta in the unper-
turbed six band Hamiltonian presented in Sec. II. These
fictitious gauge fields are time reversal invariant, where
time reversal symmetry exchanges the two valleys within
the Brillouin zone, with H™=" 4+ §H™=* = (Hfd’z_)* +
(8 H®=7)". There have been proposals to use fictitious gauge
fields to create pseudomagnetic fields in MoS, devices [54]
and the analogous phenomenon has been observed in strained
graphene nanobubbles [55]. As a consequence of the time
reversal invariant nature of the fictitious gauge fields the
pseudomagnetic fields will occur with opposite signs in each
valley, as we expect as elastic deformations cannot break time
reversal symmetry.

This description of strain we present here only treats
electronic states near the K points of the Brillouin zone. It has
been shown theoretically and experimentally that strain of the
crystal lattice shifts the position of the band edge of the I" point,
such that it becomes important for providing a description of
the electronic dispersion near the band edges at SL/L ~ 5%
[25-27], where L is the unstrained sample size and 6L the
modification of the sample size under strain. Therefore, our
low-energy theory is only valid to strains of order ¢;; < 0.05,
and at larger strains the model would require an extension to
describe the I" and Q points in addition to the K point.

B. Curvature

Due to curvature of the two-dimensional crystal lattice of
the TMDC, hopping between localized electronic states which
are forbidden by symmetry in the flat configuration become
allowed, and this creates a coupling of the odd and even
sectors of the electronic Hamiltonian presented in Sec. III. An
arbitrarily curved two-dimensional surface can be described by
its two principal curvatures k(r) and x,(r) which we define
locally. These local curvatures are expressed along principal
directions at angles 6;(r) and 6,(r) defined from the global x
axis, respectively. A sketch showing these definitions can be
seen in Fig. 2.

To allow us to describe the role of curvature on the same
footing as the mechanical deformations discussed in the last

155416-7



ALEXANDER J. PEARCE, EROS MARIANI, AND GUIDO BURKARD

(@) (b)

FIG. 2. Panel (a) shows a sketch of the curved surface of a TMDC;
shown in the diagram is the both the global Cartesian coordinate
system and the local Cartesian coordinate system on the curved
surface. Also shown are the vectors 8, (r) and &,(r) pointing along
the principal curvatures formed by curvature of the TMDC sheet.
Panel (b) shows a cross section of the curved TMDC sheet labeling
the angle ¢; ,, the nearest neighbor bond length ea.i), and the radius
of the cylinder R,.

section we consider the principal curvatures in the Monge
parametrization and we express the curvature in terms of
the scalar height field A (r) that we have already introduced.
The two principal curvatures are the eigenvalues of the shape
operator S = F| ' 7>, where F is the first fundamental form
and F, is the second fundamental form [56]. Additionally the
corresponding eigenvectors of S give the principal directions
and allow for the determination of 6,(r). We assume that we
can only consider smooth curvatures, such that 9;40;h < 1
with i,j € {x,y} and write the first and second fundamental
forms of a two dimensional surface as

L4+ @k 3.hdh
1=( A ) 2>, @1

d,hach 1+ (3yh)
PR o
P \oah 2 ) “2)

Here the first fundamental form F; represents the metric of
the surface and the second fundamental form F, corresponds
to the curvature tensor of the two-dimensional membrane.
This process yields the eigenvalues k,(r) = (32h + 82h +

(=D)"[(3%h — Byzh)2 + 4(8x8),h)2]%)/2 where n = 1,2.

To introduce these effects into the tight-binding model we
assume that the curvature along each principal direction can be
modeled as a cylinder, where the principal curvature is given
by «,(r) = R, '(r) with R,(r) being the local radius of the
cylinder. We assume only smooth curvatures and corrugations
such that a/R,(r) < 1 and that it will be sufficient to
consider terms to first order in a R, ' (r) < 1 to capture all the
essential physics. This means that the mutual curvature effects
between the two principal curvatures are negligible giving only
contributions at higher orders in a/R,(r) and we may model
the two principal curvatures independently. The two principal
directions are related by 6 (r) = 2'(r) x 6, (r) where 2'(r) is the
vector normal to the curved surface at position r; however, for
smooth curvatures and corrugations Z’(r) maybe replaced by
z(r). The two angles which define the two principal directions
are related by 6,(r) = 6,(r) &= /2 as they are orthogonal.
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Since we assume that along each principal direction the
curvature is modeled as a cylinder, we proceed in the spirit
of calculations studying curvature effects in carbon nanotubes
[13,14]. To account for curvature within the Koster-Slater ap-
proximation we must consider the shift in the bond directions,
under a cylindrical curvature along the principal direction
6,,(r). The corrections to the bond directions can be obtained
in terms of the angle ¢;, [a sketch showing a definition of
the angle can be seen in Fig. 2(b)]. The angle ¢; , can then be
expanded in the small parameter a/R, yielding

1 :
Gjn = R—n|e§,ﬁj cos 0,(r) + € sinf,(r)],  (43)
where efj;? is the @ € {x,y} component of the nearest neighbor

vector for the jth bond length. An analogous expression can
also be found for the next nearest neighbor hopping between
lattice sites on the layer.

As we are interested in the physics near the K and K’
points we consider only the terms arising due to the momenta
precisely at the K points, with q = 0. This approximation
of neglecting the small momentum deviations around the K
points disregards terms which act to renormalize the group
velocities, an effect that turns out to be small. Introducing
these corrections into the Koster-Slater approximation it is
straight forward to calculate the Hamiltonian which couples
the even and odd states under curvature,

SngrV _ <8Hdd,curv 8Hdp,curv> ’ (44)
8de,curv 8pr,curv
where the subblocks are given by
_i.[vleiIZQ _i.[vlefiTZO
8 Had curs =% —itVhe ™ iy |, @5)
l"L'V3 —i‘cVze”ZG
—itVae ™0 2V, —t Vs
8 Hap.curs :% 172V iTViel ™ Vgt ||
—itV7e'™ T Ve iT¥ 2Vg
(46)
—Vye'™ —2V2Vg
a . .
(Sde.curV =E \/Evge—lrw _ Vgez‘529 , (47)
—12Vio -7 V10€7i129
where R~' = R;' + R;'. The prefactors V; (with j =
1,...,10) are all energy scales made up from Koster-Slater
parameters and lattice parameters and are given in full detail
in Appendix B 2.

We note that the odd and even symmetry p-orbitals only
produce curvature induced matrix elements which couple the
even and odd sectors of the Hamiltonian at second order in
a/R.

C. Low-energy effective theory

With the inclusion of all effects that we have thus far covered
within this work, the tight-binding model for unstrained
TMDCs and the effects of spin-orbit coupling, mechanical
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deformations, and curvature, we obtain a model containing
a large quantity of information. In this section we aim to
produce a simplified low-energy effective theory describing
the conduction and valence bands near the K and K’ points as
we showed in Sec. III A, but which includes corrections due
to these additional effects.

The full Hamiltonian describing all the effects discussed so
far in the space of the eleven localized orbitals is given by

HE HEO

Hy = (HEOT HO >’ (48)
where the even sector includes mechanical deformations HE =
Hf” + 6HT [given in Eq. (23) and Eq. (34), respectively]
acting in the space given by the first line of Eq. (22), the odd
sector HO [given in Eq. (23)] acts in the odd space shown
in the second line of Eq. (22) while HE© couples the even
and odd sectors of the Hamiltonian and is given by HEO =
Hg o + 6H;,, [given in Eq. (17) and Eq. (44), respectively].

The procedure used to construct a low-energy effective
model contains two steps of successive Schrieffer-Wolff trans-
formations [47,48]. First we fold down the full Hamiltonian in
Eq. (48) onto the even subblock to account for the effect of the
even odd sector coupling mechanisms within the even sector
of the Hamiltonian. Then we use another Schrieffer-Wolff
transformation as outlined in Sec. Il A to produce the final
low-energy effective two-band Hamiltonian. We neglect the
contributions which are second order in § H] ., , as these terms
will only lead to corrections of order (V2h(r))?* which for
smooth ripples [where h(r) changes slowly on the scale of the
crystal lattice] will be small as compared to corrections arising
due to bond length changes.

We calculate the effective six band Hamiltonian which de-
scribes the even sector with a Schrieffer-Wolff transformation
as

HE T ~ HE T + 8 H'L’

q.nm nm

+ = ZHEOHEO'[ 10+ 0}, (49)

_ E _
n € €m €

where ef(m) and e,o refer to the eigenvalues of the even and odd
subblocks of the Hamiltonian, respectively. Here we restrict
the Hamiltonian in the odd sector qu to the K and K’ points
only, as corrections due to finite momenta near the K points
in the higher-energy odd sector lead only to small negligible
corrects in the final effective Hamiltonian.

We then proceed to find the effective Hamiltonian in the
space of (d, s’ dy, ) following the same procedure as
outlined in Sec IT A. This rather lengthy process finally yields

Hyf = Ho+ Hyg + Heo
+ 8H + 8Hyy + 6 Hour. (50)

Here the first two terms Hy and Hgi; are the same as in
the low-energy Hamiltonian unperturbed by the effects of
strain and curvature presented in Egs. (29) and (30), whereas
Hg, is modified by spin flip processes. Additionally we find
8H describing the coupling of mechanical deformations to
orbital degrees of freedom, § Hy, contains terms describing
the coupling of strain to spin degrees of freedom, and § Hqyy
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describes the role of the coupling of curvature effects and spin
degrees of freedom in the low-energy theory. The expression
presented in Eq. (50) is the central result of this paper and we
will now present each term in detail and discuss their role in
the low-energy physics of TMDCs.

Due to the inclusion of the spin flip terms which couple
the even and odd sectors of the Hamiltonian the spin-orbit
Hamiltonian H,, now contains new terms due to second
order virtual transitions between the even and odd sector;
additionally we will also present a relevant subleading term
proportional to Ay which creates a spin splitting in the
conduction band. The spin-orbit interaction Hamiltonian is
then given by

T(hx — A2)s; 0
Hy, = N , 51
¥ ( 0 ZIAMSZ) D

where A, contains the corrections due to the second order spin
flip transitions.

The conduction band has predominately d,: ; orbital char-
acter. Spin up electrons can transition to an odd band with
dr1,, orbital character mediated by A,;, whereas the spin
down electrons may transition to an odd band consisting of
a d_; 4 orbital state with the transition only being mediated
by X,s. Taking these processes into account and disregarding a
negligible shift in the band splitting we find that 1, >~ 2 meV
in MoS,.

To give a complete description of the spin splitting in
the conduction band we must consider the direct splitting
Xx arising from the p-orbitals contribution to the band and
the corrections due to second order processes, these effects
combined give a total spin splitting of ~8 meV in MoS,. We
must note that DFT calculations show that the conduction band
does contain a minority contribution from the pf 1., orbital
[6,44,51] and therefore for a more accurate predictién of the
conduction band spin splitting a more detailed model is needed
which correctly predicts the orbital weights of the bands. This
feature of the band structure was not the focus of our study
and has been studied in more detail by other authors [44].
Numerical studies of the conduction band spin splitting has
predicted opposite splitting in the tungsten based TMDCs,
which will be achieved when the relation Ay < A, is satisfied
[6,51].

There also exists a correction to the spin splitting in the
valence band. This occurs due to spin flip transitions between
the valence band with an orbital structure of predominantly the
dr>,, type orbital states and the odd symmetry band with an
orbital makeup of d_;; 4 states. The transitions are mediated
by Ay, but are second order corrections and as a consequence
the strength of this process is several orders of magnitude
smaller than the direct spin splitting, with the correction being
~0.2 meV; therefore, we neglect these corrections in our
treatment.

The terms describing the coupling of electronic and
mechanical degrees of freedom can be expressed in two parts,
and are most informatively expressed within Hj as

Hy+38H = Hy+ 8H| + §H,, (52)

where the first part contains the gauge fields which modifies
the low-energy Dirac-like terms in Hy. Here we present both
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as

A. vg +n F©
H0+8H1=< 4T m )

vq]L + 771F(T)T Av

Blg +mFDP?  k(gh + ngFO?
kg +nFOP  alg+mFOP )
(53)

with F™ =g, — &, + 2iTéy,. The coupling constant is
found to be n; = 150 meV; this weak coupling suggests that
the role of the gauge fields is much weaker than in other similar
systems such as graphene. In a very recent work this coupling
constant was also obtained but was found to be two orders
of magnitude smaller than the n; presented here [57], but
nonetheless this shows agreement that this coupling is weak.
The second line in Eq. (53) describes the gauge field
corrections to the terms second order in momentum and
will account for a tuning of the effective masses of the
conduction and valence bands under deformations of the
crystal lattice. The parameters are given by 1, = 3.42 eVA”

n3 = 0.48 eV A2, and n4s = 0.34 eV A2. As a consequence
strain offers a route to control the effective masses which play
an important role defining the system in many situations such
as electrical conductance, the cyclotron frequency of electron
within a magnetic field, and valley dependent g-factors which
have been observed [41-43].

The second section of Eq. (52) gives the direct band edge
shifts, given by

SHy — 5D 0 N 8;D? 0 (54)
o &b 0 8,D%)

The term § H, includes the coupling of local lattice dilations
to the diagonal electronic terms, where D = Tr[g;;] is the
local area variation. The terms in Eq. (54) describe a tuning
of the band edges under mechanical deformations, where the
two linear term parameters are given by §; = —0.53 eV and
8, = —0.62 eV, and the terms which couple quadratically to
the change in local area variation are §3 = 0.56 eV and 64 =
0.02 eV. As a consequence of the broken inversion symmetry
81 and &, are not required to be equal and therefore strain causes
adecrease in the size of the band gap. Under an applied uniaxial
strain of a form u(r) = r#§L/L, with §L/L describing the
relative extension of the lattice, we find a decrease of the
direct band gap at the K and K’ points ~5 meV %. This
value is approximately one order of magnitude smaller than
values extracted from photoluminescence experiments [30],
but it must be noted that the numerical values found in our
calculations assume electron Griineisen parameters of unity.
This direct band gap decrease has a strong dependence on
variations in d-d bond lengths in y; and y, and also a weaker
dependance on p-d bond lengths given in ys and y5 suggesting
electron Griineisen parameters larger than unity are necessary
to explain current experiments.

It is also interesting to note that there is an additional
subleading term describing the coupling of spin to mechanical
deformations of the lattice, which we give here for complete-
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ness. It is given by

s —s.p( (55)
SO_sZ 0 5)\‘2 )

where the local variations of area lead to an effective band
dependent Zeeman field, and the couplings are given by §A; =
0.1 meV and 61, = —0.02 meV. We see that dilations of the
crystal lattice do indeed give rise to a shift in the size of the
spin splitting in each band, but that the strength of the coupling
is negligible.

Now we turn our attention to the expression &Hcyry
describing the curvature. The first consequence of curvature
of the crystal lattice is that the induced curvature will locally
produce a tilt as compared to the global coordinate system. In
the local frame the electronic spin can be defined with respect
to the local normal vector Z'(r) as s, = S - Z/(r). Therefore,
now considering the global frame we find that this gives rise
to a deflection coupling [58,59]

S, —> 8, — 85x0ch — 5,0,h. (56)

This deflection coupling of the spin-orbit interaction is an
entirely geometrical effect and is due to a local tilt of the lattice
that mixes out-of-plane deformations and in-plane electronic
spins and will appear in Eq. (51).

The second consequence of curvature of the crystal lattice
is curvature changing the orbital compositions of the Bloch
bands. Theses effects give rise to new terms in the effective
low-energy theory, given by

SH _ TS Beff,c
T \BV2h(—is, + Tsy)

The diagonal terms describe the coupling of spin degrees of
freedom to the local curvature of the crystal lattice, where
the effect of the curvature is to create an effective in-plane
magnetic field which couples with the spin degree of freedom
of the electrons given by § = (s,,s,,5;) a vector of the spin
Pauli matrices. The effective magnetic fields which appear in
the Hamiltonian are given by

Bere = (5120:0,h, £(82h — 92h), 0),
Beiry = (£320.9,h, &(82h — 82h), 0). (58)

BV2h(isy + 15,)
£S- B ’ ) (57)

Here we see that the role of the scalar height field A (r) appears
in the effective magnetic fields as components of the curvature
tensor. This means that these expressions depend on second
derivatives of the height field A(r) and therefore are only
sensitive to curvatures of the crystal lattice, in contrast to the
coupling which appears in Eq. (56).

The parameters that govern the effective in-plane mag-
netic field in the conduction band Beg. are given by & =
115 meV A and & = 67 meV /ok, whereas within the valence
band effective in-plane magnetic field Beg, we find & =
19meV A and & = 12 meV A. We predict here that the
effective in-plane magnetic field which couples to electronic
spins in the conduction band is two orders of magnitude larger
than the analogous effect in the valence band.

The magnitude of the effective magnetic field is equal
and opposite in each of the valleys; therefore, time reversal
symmetry is broken locally within each valley and not globally
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over the entire Brillouin zone. This is expected as elastic
deformations of the lattice are time reversal invariant. As a
consequence of this we would expect spin transport scattering
due to ripples to depend strongly on whether there is strong
intravalley scattering present which breaks time reversal
symmetry or strong intervalley scattering processes which are
time reversal invariant.

The off diagonal terms within § H.,, represent interband
spin-lattice coupling mechanisms. The strength of the coupling
is given by 8 =105 meV A. This term shows the direct
coupling of electronic spins to the out-of-plane deformations
given by the mean curvature of the surface that describes the
crystal lattice. This coupling is analogous to a Rashba type
spin-orbit interaction, being of the form «r o, s, — oys,, where
here o; are the Pauli matrices acting in the band space.

There also exists off diagonal terms which couple an
effective in-plane magnetic field By with the spin degrees
of freedom. These terms only provide subleading corrections
to the Hamiltonian with coupling parameters of order ~5 meV
A, much smaller than other previously mentioned off diagonal
terms and therefore we neglect these terms within our
treatment.

An experimental study performed by Brivio et al. [17]
looked at the structure of the spontaneous ripples formed in
MoS,. With the use of high-resolution transmission electron
microscopy and atomic force microscopy they observe that
typical ripples have lengths of 6-10 nm and heights of 610 A,
and these observations have been supported by molecular
dynamics simulations [60]. Therefore, based on dimensional
analysis, we would expect the magnitude of components of
the curvature tensor for typical ripples to be of the order
~1073 AT . Comparing this to the Rashba spin-orbit coupling
which arises due to perpendicular electric fields, we see that
curvature effects can have a comparable effect for realistic
magnitudes of electric fields [51].

V. CONCLUSIONS

In this work we have presented a tight-binding study of
the TMDCs and have included the effects of both mechanical
deformations which cause bond length changes and curvature
which leads to a mixing of the orbital structure of the
Bloch bands. We find that mechanical deformations allow
for tuning of the direct band gap at the K and K’ points
and lead to fictitious gauge fields which couple to the orbital
degrees of freedom. In parallel curvature breaks the mirror
inversion symmetry of the crystal lattice and introduces spin-
lattice coupling mechanisms that manifest themselves as an
effective in-plane magnetic field which couples to spin and
a Rashba-like coupling with a magnitude proportional to the
mean curvature of the TMDC lattice. Due to the microscopic
nature of the model presented we have produced estimates of
the strengths of the coupling parameters of all the relevant
processes.

This study provides a basis for further study into a
microscopic understanding of the role of strain on TMDC
monolayers and of future devices which utilize the coupling of
mechanical and electronic degrees of freedom allowing for the
tailoring of electronic band and spin-orbit coupling strengths
to suit device needs.
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APPENDIX A: TIGHT-BINDING PARAMETERS

1. Parameters of the six band tight-binding model

In this section we present the form of the terms in the six
band tight-binding model presented in Sec. III, Egs. (24)—
(26). The energies and group velocities which appear in the
Hamiltonian are given in terms of the on-site energies and
Koster-Slater parameters discussed in the derivation of the
model in Sec. II. These expressions are written as

3
Vpo(P) = €) — 4_1(3de +VE)P, (A1)
V(i)(P) = Vpo(P) £ 2ApyTs,, (A2)
3
VEP(P) = Vpi(P) + Axts., (Ad)
3
! o
Vei(P) =€, + V) — E(V;P + V2 )P, (AS)
Vpo(P) =€) — Vo —3VIP, (A6)
K;’ld) = ( (\/— ) +a V;’d) (A7)
3a’c
@ . U
Kpd = 2 (ZVPd \/ngd), (A8)
(2s) . . o
Kt =3 \/_63( 3(V3VE, —2VE) +4ad’VE), (A9)
9v3a
©) Y
Q= Vi —ve), (A10)
dd 8\/_( dd dd)
9a
2 . .
v = 16(Vdd 4V +3Ve), (A11)
3ac
L, . : L
vl = 2\/_63( 22V3VE, = Vo) +26VE), (Al2)
ak®
Ui = 2pd’ (A13)
aK®
Ui =5 (Al4)
K(ZS)
(2s) _ ank g
Ud =T (A15)
3
(20) _ 4 -
Upd = 4283 (a (ZV;’Td - \/gvpd)) (A16)
9a , .
Upp = T(Vpp Vpp) (A17)
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TABLE 1. Numerical values of the parameters for MoS, which
appear in the six band Hamiltonian. The parameters are given for the
case at the band edges, in which q = 0. All energies are given in units
of eV and group velocities in units of eV A.

Vo 1.28 K\ 1.79 vl 1.01
Vo2 —0.37 K 3.59 v 1.64
Vpi —4.09 K% —0.89 v 3.30
Vo 0.42 v 1.77 vl —-0.81
Uy —3.75 v 2.28 ok 2.85

where P =1— (3a?/4)|q|*>. Comparing these expressions
with first principle calculations we present the numerical
values of the parameters of the six band model for the case of
q = 0 in Table I.

2. Fitting to first principle calculations

We find the on-site energies and Koster-Slater parameters of
the six band Hamiltonian by fitting to DFT calculations of the
electronic band structure of MoS,. This is done by minimizing
the function

f@=> (@ -

n.q

(), (A18)

where € 8(q) corresponds to the eigenvalues of the nth band of
the tight-binding Hamiltonian and €D¥T(q) is the energy of the
nth band found via DFT techniques. We minimize Eq. (A18)
using the Powell method fitting procedure [61]. First a fitting
is performed at the band edges which are used to fix the on-site
energies, then we fit a range of ~0.1(27/a) momenta around
the K pointin the I" to K to M direction to find the Koster-Slater
hopping parameters. To achieve a good fitting it is necessary
to extend the expansion of q around the K points to second
order. We fit to band structures calculated without the effect of
spin-orbit interactions included, and leave a more exhaustive
fitting including spin-orbit interactions to a later study.

The Koster-Slater parameters resulting from this procedure
can be found in Table II, where we present the numerical

TABLE II. Numerical values of the on-site energies and Koster-
Slater parameters which appear in the six band Hamiltonian for MoS,.
All energies are given in units of eV.

On-site energies € —3.96
€ ]1, —5.38
€ 2.12
€, —0.46
€3 —141
S-S hoppings Vo —1.32
v —-042
S-Mo hoppings Vo 0.67
Vo —2.83
Mo-Mo hoppings Ve, 0.45
Vi —0.62
|24 —0.24

PHYSICAL REVIEW B 94, 155416 (2016)

values for the energies and group velocities of our six band
model found during this fitting procedure.

3. 0Odd sector of the tight-binding Hamiltonian
around the K point

In this section of the appendix we present the full form of
the odd sector of the Hamiltonian near the K point presented
in Eq. (23) in the basis of the odd states shown in Eq. (22). We
expand to linear order in ¢, where q is the momentum close to
the K point given by k = Kp + q. This process yields

v _ygt
Hywy = ( o 9 (A19)
¢ —VYyq4 Vi
o
. Vit —Upq 0
Hy prp =\ ~Vrrd f VI(JI)O 0 (A20)
0 0 Vo
ﬁv(z)

b0gt KU
HY' = q<2> <la> il ) @2n
a@p «/_K Jqt —itv vd 4

where we have introduced the new on-site energies and group
velocities

VEY = Vpi £ Ayts., (A22)
Vpr =€) — %(de V). (A23)
V% = VO + AxTs., (A24)
VP =€ -V — %(V;,’p + V7)., (A25)
Vi =€+ Ve =3V, (A26)
KD = SV -5 +EVE) A
512 = 9; (Vdd V(Zl)’ (A28)

1 o

f”;):zf (@*(V3Vg, —2VE) +2aVY,), (A29)
K(IZ)

Vpi = 55— (A30)

Here we see that at precisely the band edge (q = 0) each
d-orbital couples to one p-orbital while the p{éfrl’s remains
uncoupled; this is in excellent agreement with other tight-
binding models [40].

The numerical values of the parameters of the odd sector
Hamiltonian are presented in Table III.

TABLE III. Numerical values of the parameters for MoS, which
appear in the five band Hamiltonian of the odd sector of the full
tight-binding Hamiltonian. All energies are given in units of eV and
group velocities in units of eV A.

Vi —-0.21 K0P —4.33 u%{,;) 4.45
143 —1.45 vl -3.01
Ve, —0.41 vl —-3.99
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TIGHT-BINDING APPROACH TO STRAIN AND ...

TABLE IV. Numerical values of the coupling parameters which
appear in the strain induced corrections to the six band Hamiltonian
for the case of MoS,. The electron Griineisen parameters are all taken
to be one. All energies are given in units of eV.

PHYSICAL REVIEW B 94, 155416 (2016)

TABLE V. Numerical values of the coupling parameters which
appear in the Hamiltonian describing curvature shown in Eq. (44)
for the material parameters of MoS,. All energies are given in
units of eV.

Vi 042 —0.16 0.13  yio 1.31
V2 —0.52 Vs —0.86 Y8 —0.54 Y1 —0.99

APPENDIX B: PARAMETERS USED IN THE
ANALYSIS OF STRAIN

1. Parameters for mechanical deformations

In this section we present the couplings y; which arise in the
strain induced corrections to the six band Hamiltonian shown
in Eq. (34) which are given by

3
V= §[3Fjdvjd + T, Vil (BI)
3
v = 16[rjdvdd + 4T3,V 4+ 305, Ve, (B2)
3
V3= _ﬁ[FZdVdd AT, Vi + 305, Vi), (B3)
3 /3 o o
V4= 16 [Fddvdd Fddvdd]’ (B4)
T, a2
s = [ [V3rT,vr, —19,ve] - T ”} (B5)
3a* . V22 .
Y6 = 4[05 [[2\/_1—‘ Pd pd]+7 ;d pdjlf
(B6)
3a5 T T \/§ (e o 252 T T
v = m[rpdvpd — 5 TaVea =7 ha pd:|7 (B7)
3a*c
y8=_8 [arz, v, — /309, ve,], (B8)
Yo = — nyx, (B9)
3 o o m m
Yio = 4 [Fpp Vpp + Fpp Vpp] (B10)
3
yin = 4F,7§,,V,§;, (B11)
3 (o2 o 7'[ T
Y2 = 3 [Fpp Vor = Tpp Vpp] (B12)

-3.35
—-0.37

Vi 117 V, 083 V; 136 Vi 543 Vs
Ve 227 V5 399 Vy —079 Vo —2.17 Vi

The numerical values of the parameters j; are shown in
Table IV. For the example case of MoS,, the values presented
are calculated under the assumption that the electron Griineisen

parameters ', T4 pa> and I'},, are taken to be unity.

2. Parameters for curvature
In this section we present the relevant parameters V; which
arise in the description of the curvature which couples the odd

and even sections of the unperturbed Hamiltonian. These terms
appear in the Hamiltonian shown in Eq. (44) and are given by

9 /3

Vi= g\/;[vjd — 2V + Vi), (B13)
27 i

Va = e [Via = Vil (B14)
9

V3= g[vdd 4V + 3V, (B15)

Va= 3[ 24V3vr, —7ve) + 2 (Ve — V3V,

(B16)

a " .

Vs = @t V3V = Vi) = 4 (VAVE - 2v7)],

(B17)
3

Ve = —4653 [®(6VT, —3v/3VS) —482VE],  (BIB)
9a’c . "

Vi= a2V = V3Vl (B19)
3a

Vi = o2 — (@ 2c2)[2 =3V (B20)
=2V — Zﬁc s (B21)

3¢
Vio=2Vs + V. (B22)

Once again we present the numerical values of the parameters
V; in Table V.
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