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Electric dipole spin resonance in systems with a valley-dependent g factor
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In this theoretical study we qualitatively and quantitatively investigate the electric dipole spin resonance (EDSR)
in a single Si/SiGe quantum dot in the presence of a magnetic field gradient, e.g., produced by a ferromagnet. We
model a situation in which the control of electron spin states is achieved by applying an oscillatory electric field,
inducing real-space oscillations of the electron inside the quantum dot. One of the goals of our study is to present
a microscopic theory of valley-dependent g factors in Si/SiGe quantum dots and investigate how valley relaxation
combined with a valley-dependent g factor leads to a novel electron spin dephasing mechanism. Furthermore,
we discuss the interplay of spin and valley relaxations in Si/SiGe quantum dots. Our findings suggest that the
electron spin dephases due to valley relaxation, and are in agreement with recent experimental studies [Nat.
Nanotechnol. 9, 666 (2014)].
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I. INTRODUCTION

Finding efficient ways to use electron spins in quantum
dots (QDs) as quantum bits (qubits) has been an active field
of research in condensed matter physics for many years
[1–6]. A necessary prerequisite for building qubits are long
coherence times, long enough to allow for a large number
of gate operations before the quantum-mechanical nature of
the qubit is irreversibly lost [7]. An electron spin confined in a
semiconductor quantum dot loses its quantum phase coherence
due to interactions with its noisy, solid state environment.
Unavoidable interactions of the electron spin with surrounding
charges and nuclear spins are common mechanisms that limit
the coherence time of the electron spin T ∗

2 to as little as
nanoseconds in some structures [2,8–10].

In natural silicon only ≈ 4.7% of the atomic nuclei
have a nonzero spin. Therefore, Si represents a logical
candidate for the implementation of spin qubits [4,11–13].
There are two implementation strategies for spin qubits in Si,
using the nuclear spin of a phosphorus donor in Si [14] and
using spin states of an electron confined inside a Si quantum
dot [15–18]. Bulk silicon has six minima of the conduction
band, known as valleys. In a Si/SiGe quantum well, four out
of six valley states are higher in energy due to strain at the
Si/SiGe interface [19]. The degeneracy of the remaining two
valley states can be lifted by the confining potential in the z

direction [20,21].
In this paper we study a situation in which a ferromagnet

is embedded on top of the quantum dot, as shown in Fig. 1.
The in-plane component of the ferromagnet stray magnetic
field leads to the existence of a valley-dependent g factor, as
predicted in the following theoretical study [22]. The goal of
our theoretical study is to establish a quantitative relationship
between valley-dependent g factors and the tilt of the Si/SiGe
interface. Consequently, the ferromagnet embedded on top
of the quantum dot also leads to a valley-dependent Rabi
frequency [23]. The valley-dependent g factor causes the
resonance condition to be different for the two valleys, and
alongside with valley-dependent Rabi frequencies, leads to
errors in controlling the electron spin state in one of the
valleys. Furthermore, when valley relaxation is present, a novel
decoherence mechanism exists which cannot be reversed by

a spin echo [24]. If the electron is driven on resonance in
one of the valleys, valley relaxation abruptly changes the
resonance condition causing the electron spin to decohere.
Another goal of this paper is to describe the reduction of
electron spin coherence, due to valley relaxation, by solving
a Lindblad master equation. The presence of spin relaxation,
alongside with valley relaxation, leads to a rich interplay of
spin and valley relaxation, which is also described by solving
a Lindblad master equation.

This paper is organized as follows. In Sec. II we quanti-
tatively describe the valley-dependent g factor induced by an
in-plane stray magnetic field. We continue by discussing the
existence of a valley-dependent Rabi frequency in Sec. III.
Subsequently, in Sec. IV we present the Hamiltonian and
the Lindblad equation for the open-system dynamics of the
electron spin and qualitatively and quantitatively describe
the drop of the electron spin coherence caused by valley
relaxation. In Sec. V we discuss the interplay of valley and
spin relaxations, before concluding in Sec. VI.

II. VALLEY-DEPENDENT g FACTOR
IN Si/SiGe QUANTUM DOTS

Bulk silicon has six effective minima of the conduction
band named valleys. In a Si/SiGe quantum dot four of the
valleys are lifted higher in energy by the presence of strain at
the Si/SiGe interface and the two low energy valleys remain
degenerate. The degeneracy of the remaining two valleys is
lifted by the confining potential in the z direction [20,21].

The Hamiltonian of a single electron spin confined in a
Si/SiGe quantum dot in a magnetic field in the z direction, and
a magnetic field gradient in the x direction, is given by

H = H0 + Hz + HFM. (1)

Here H0 is the Hamiltonian of the single electron confined in
a Si/SiGe quantum dot

H0 = p2
z

2m∗
z

+ p2
x + p2

y

2m∗
t

+ V (x) + V (y) + V (z). (2)

Here pi denotes the ith component of the momentum operator,
and m∗

z is the longitudinal electron mass (in a direction
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FIG. 1. The control of the electron spin. A ferromagnet (FM)
induces a magnetic field gradient in the x direction. When microwave
bursts are applied the electron experiences an effectively time-
dependent magnetic field in the direction of oscillation. ω0 is the
Larmor frequency of the microwaves.

perpendicular to the Si/SiGe quantum well). Furthermore, m∗
t

is the transverse electron mass (in the plane of Si/SiGe quantum
well) and V (x), V (y), V (z) are confining potentials in the x,
y, z directions, respectively. The confining potentials in the
x direction and y direction come from the electrostatic con-
finement and are modeled with a harmonic oscillator potential
V (x) = m∗

t ω
x
0x2/2, V (x) = m∗

t ω
y

0y2/2. The potential in the z

direction comes from the Si/SiGe quantum well and is modeled
as a finite square well potential. Hz is the Zeeman Hamiltonian

Hz = gμBB0Sz, (3)

where g is the electron g factor, μB is the Bohr magneton, B0

is the total magnetic field (in the z direction), and Sz is the z

component of the electron spin operator. Furthermore, HFM is
the Hamiltonian describing the stray field in the x direction
coming from the ferromagnet

HFM = gμBB(x)Sx, (4)

where Sx is the x component of the electron spin operator and
B(x) is the x component of the magnetic field coming from the
ferromagnet B(x) = B0

xx/aB. Here B0
x is the strength of the

slanting field, x is the position operator, and aB = √
�/m∗

t ω
x
0

is the effective Bohr radius in the x direction of the electron
spin confined in a quantum dot, where m∗

t is the transverse
effective electron mass and ωx

0 is the confining potential in the
x direction.

An in-plane magnetic field gradient B(x) modifies the
Zeeman energy [22]. In our case the in-plane magnetic field
gradient is caused by the ferromagnet embedded on top of the
quantum dot (Fig. 1). Neglecting the gradient in the z direction
is a good approximation when the total magnetic field (directed
along z) is much larger than the z component of the stray field.

Proceeding similar to [22], energy levels of H0 + Hz are
obtained as

E = En ± Ez/2. (5)

Here En is the confinement energy and Ez = gμBB0 is the
electron Zeeman energy. A plus sign in Eq. (5) stands for a
spin-up state |↑〉 and a minus sign for a spin-down state |↓〉.

The first order energy correction coming from HFM is zero
because of the even parity of the ground state wave function of
the linear harmonic oscillator (LHO) and odd parity of HFM.
The second order energy correction coming from the magnetic
field gradient term HFM = gμBB(x)Sx yields

E(2)
ms

= −1

4

∞∑
n=1

M2
n

�n − 2msEz
, (6)

where ms = ±1/2 is the spin projection quantum number. The
symbol �n stands for the energy difference between the orbital
ground state and the nth state. Furthermore, Mn is the matrix
element between the ground state and the nth orbital state of
the LHO

Mn = 〈�0 ↑ |HFM|�n ↓〉 = gμBB0
x

2aB
〈�0|x|�n〉, (7)

where �0 is the ground state LHO wave function and �n is
the LHO wave function of the nth excited state. Because

〈�0|x|�n〉 = 1√
2
aBδn,1 (8)

and because Sx couples only states with different spin
projections ms , for an electron in the ground orbital state the
sum in Eq. (6) is substituted by a single term with a matrix
element

M1 = gμBB0
x

2
√

2
. (9)

Therefore, the slanting magnetic field in the x direction
corrects the ground state energy of the electron

E(2)
ms

= −1

4

M2
1

� − 2msEz
, (10)

where � = �ωx
0 is the orbital splitting.

In the presence of valley-orbit mixing the orbital splitting
�v,v̄ is valley dependent [25,26]. This yields a valley-
dependent energy correction due to the slanting magnetic field
Eq. (10), and therefore an effective electron g factor which
depends on the valley eigenstate,

gj = g

Ez

(
Ez + E

(2)
↑,j − E

(2)
↓,j

) = g

[
1 − 1

2

M2
1

�2
j − E2

z

]
. (11)

Here gj is the effective g factor corresponding to two
valley eigenstates j = {v, v̄} and �j is the valley-dependent
orbital level spacing corresponding to the j th valley eigenstate.
It should be noted that due to low spin-orbit interaction in
electrostatically defined quantum dots in Si we expect our
effective g factor to be isotropic. The average difference of
effective g factors �g/ḡ is defined as

�g

ḡ
= 2

gv − gv̄

gv + gv̄

. (12)
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FIG. 2. The lowest four energy states as a function of the effective
miscut angle θ . �Ev is the ground state valley splitting, and �v and
�v̄ are orbital splittings in the v and v̄ valleys. The parameters of the
plot are �ωx

0 = 450 μeV, vvξ
2(z0) = 300 μeV, k0 = 2π · 0.82/a,

where a = 5.431 Å is the lattice constant of Si, and m∗
t = 0.19me. It

should be noted that due to valley-orbit mixing the orbital quantum
numbers n = 0,1 and valley quantum numbers v = ±1 are not good
quantum numbers anymore.

Inserting Eq. (11) into Eq. (12) we obtain

�g

ḡ
= 2M2

1

(
�2

v̄ − �2
v

)
(
�2

v − E2
z

)(
�2

v̄ − E2
z

) − M2
1

(
�2

v + �2
v̄ − 2E2

z

)
/4

.

(13)

Here �j is the energy difference between the orbital ground
state and the first excited orbital state in the j th valley.
Furthermore, Ez is the Zeeman energy, and M1 is the matrix
element between the orbital ground state and the first excited
orbital state coming from the slanting field Eq. (9).

Valley-orbit mixing �v − �v̄ 
= 0 occurs due to miscuts of
the Si/SiGe quantum well [13,27]. The valley coupling can be
described by a δ function [28,29]

Vv(r) = vvδ(z − z0 + θx). (14)

Here z0 is the position of the SiGe interface, the miscut is
usually between 0◦ � θ � 2◦, so it is safe to approximate
tan(θ ) ≈ sin(θ ) ≈ θ . Furthermore, vv is the valley coupling

strength. We have further assumed for simplicity that the mis-
cut occurs in the x direction, and therefore the valley coupling
operator Eq. (14) does not depend on the y component.

As the wave function is closest to the top interface only
one delta function potential is present in the theory. Treating
valley coupling as a perturbation the general formula for matrix
elements of the valley coupling operator Eq. (14):

〈n′,v̄|Vv(r)|n,v〉

= ṽvξ
2(z0)e2ivk0z0

∫ ∞

−∞
e−2ivk0xθ�n′ (x)�∗

n (x) dx. (15)

Assuming that the wave functions �n are those of the LHO
the diagonal elements of the valley coupling operator Eq. (14)
have the following form:

〈n,v|Vv(r)|n,v〉 = vvξ
2(z0), (16)

where n is the orbital quantum number corresponding to the
wave function in the x direction, v is the valley quantum
number, ξ (z0) is the ground state electron wave function in
the z direction, and z0 is the position of the Si/SiGe interface.
Due to the fact that the confinement in the z direction comes
from a sharp Si/SiGe interface, the orbital level spacing in the
z direction is large, so we assume that the system is always
in the ground state in the z direction. The off-diagonal matrix
elements of the lowest two orbital states of the valley coupling
operator Eq. (14) have the following form:

〈0,v̄|Vv(r)|1,v〉 = −i
√

2ṽvξ
2(z0)k0θaBe2ik0z0e−k2

0θ2a2
B ,

〈0,v̄|Vv(r)|0,v〉 = ṽvξ
2(z0)e2ik0z0e−k2

0θ2a2
B ,

〈1,v̄|Vv(r)|1,v〉 = ṽvξ
2(z0)(1 − 2k2

0θ
2a2

B)e2ik0z0e−k2
0θ2a2

B .

(17)

Here k0 is the reciprocal lattice constant of Si, z0 is the
position of the Si/SiGe interface, θ is the effective tilt angle,
and aB is the effective Bohr radius in the x direction. A
common way of approximating a product of Bloch wave
functions is φ∗

j φk ≈ Cjk exp i2k0r, where Cjk are form factors
and exp ik0r are trivial Bloch wave functions. The form factors
in the case of Eq. (16) are contained in the free parameter vv .

FIG. 3. (a) The average difference of effective g factors as a function of the effective tilt angle θ and the confinement energy �ωx
0 .

(b) The average difference of effective g factors for the value of the single orbital spacing �ωx
0 = 450 μeV [see dashed line in (a)] [24]. The

parameters of the plots are the following: vvξ
2(z0) = 300 μeV, m∗

t = 0.19me, and k0 = 2π · 0.82/a, where a = 5.431 Å is the lattice constant
of Si, Bx

0 = 3.4 mT/nm, Bz = 0.75 T, the z component of the magnetic field of the ferromagnet BFM
z = −0.12 T, and the height of the Si

quantum well is z0 = 12 nm.
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FIG. 4. Ground state valley splitting �Ev as a function of the
effective tilt angle θ . The parameters of the plot are �ωx

0 = 450 μeV,
vvξ

2(z0) = 300 μeV, m∗
t = 0.19me, and k0 = 2π0.82/a, where a =

5.431 Å is the lattice constant of Si, Bx
0 = 3.5 mT/nm, and the size

of the Si quantum well is z0 = 12 nm.

In the case of Eqs. (15) and (17) the form factors can differ in
magnitude and sign compared to Eq. (16), yielding a different
free parameter ṽv . Both vv and ṽv are unknown free parameters
in our model, which we assume to be of similar magnitude,
and here we choose vv ≈ ṽv and adjust the value to obtain a
valley splitting of the correct order of magnitude. It should be
noted that eigenvalues of a matrix constituted from Eqs. (16)
and (17) do not depend on the relative sign of ṽv . A comparison
between different approximations of Bloch wave functions in
Si can be found in a recent theoretical manuscript [30].

Constraining the discussion on the lowest two orbital
states, and diagonalizing the matrix constituted of elements
from Eqs. (16) and (17), we obtain the mixed valley-orbit
eigenspectrum Fig. 2 (and therefore �v and �v̄).

Constraining the discussion again on the lowest two orbital
states, diagonalizing the matrix constituted of elements from
Eqs. (16) and (17), and inserting the result of the diagonaliza-
tion into Eq. (13), we obtain the average difference of effective
electron g factors as a function of the confining energy �ωx

0
and the effective tilt angle θ (Fig. 3). In Fig. 3(a) we see
that for θ ≈ 0.2◦ the average difference of valley-dependent
effective g factors goes to zero due to the fact that for this
particular value of the effective tilt angle �v ≈ �v̄ . Recent
experimental studies [24] yield an absolute average difference
of effective g factors of |�g/ḡ| = 1.5 × 10−4 and predict an
absolute average difference of effective g factors of |�g/ḡ| =
3 × 10−5, given the single orbital spacing �ωx

0 = 450 μeV.
In our calculations |�g/ḡ| = 3 × 10−5 corresponds to the
values θ ≈ 0.15◦ or θ ≈ 0.3◦ for �ωx

0 = 450 μeV. When we
plot the difference of the lowest two eigenvalues (Fig. 4),
we see that the valley splitting corresponding to θ ≈ 0.3◦ is
Ev ≈ 60 μeV, in agreement with the typical value for quantum
dots �Ev ∼ 0.1 meV [13]. It should be noted that a recent
study shows the existence of valley-dependent g factors in
Si/SiO2 which are attributed to spin-valley mixing, taking into
account the large band offset of Si/SiO2 [31].

III. VALLEY-DEPENDENT RABI FREQUENCY

When controlling the electron spin by oscillating it inside
an in-plane magnetic gradient the Rabi frequency is calculated

FIG. 5. Average difference of Rabi frequencies �
/
̄ as a
function of the effective tilt angle θ . The parameters of the plot
are �ωx

0 = 450 μeV, vvξ
2(z0) = 300 μeV, m∗

t = 0.19me, and k0 =
2 · π0.82/a, where a = 5.431 Å is the lattice constant of Si, Bx

0 =
3.5 mT/nm, Bz = 0.75 T, and the height of the Si quantum well is
z0 = 12 nm.

with the following formula [23]:


 = gμB

2�
eEgate

∣∣∣∣∂B(x)

∂x

∣∣∣∣a2
B

�
. (18)

Here Egate is the electric field of the gate, B(x) is the in-plane
magnetic field, aB = √

�/ω0m
∗
t is the effective Bohr radius of

the electron, and � is orbital level spacing. As seen in Sec. II,
the g factors corresponding to different valleys only differ by
≈ 10−3 relative to their values, so through this section it is safe
to assume that gv = gv̄ = g = 2. If the valley and orbit degree
of freedom mix (due to, e.g., Si/SiGe interface miscut) the
orbital level spacing �v,v̄ , and therefore the Rabi frequency,
become valley-dependent 
v,v̄ with an average difference of
Rabi frequencies

�



̄
= 2

�v̄ − �v

�v̄ + �v

. (19)

By diagonalizing a matrix whose terms are constituted from
Eqs. (16) and (15) and then inserting the result into Eq. (19)
we obtain the average difference of Rabi frequencies as a
function of the effective tilt angle θ , Fig. 5. A 50% absolute
average difference of valley Rabi frequencies is measured in
a recent experimental study [24]. In our case the maximum
�
/
̄ = 25%, which corresponds to a value of the effective
tilt angle θ ≈ 0.15◦ (see Fig. 5). The discrepancy between
our theory and the experiment may be due the fact that the
product of valley coupling strength and the square of the wave
function at the position of the Si/SiGe interface vvξ

2(z0), is a
free parameter. vv depends on the abundance of Ge x in the
Si/SixGe1−x quantum well and can be estimated from tight-
binding theories [29]. On the other hand, ξ 2(z0) depends on the
thickness of the Si layer and the exact type of the confinement
in the Si/SiGe quantum well.

IV. MODELING THE DECOHERENCE

We model a situation in which an electron spin is confined in
a Si/SiGe quantum dot with a ferromagnet embedded on top of
the quantum dot [22], inducing a stray magnetic field as shown
in Fig. 1. All-electrical two-axis control of single electron spin
states is achieved by oscillating the electron in real space with
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microwave bursts [22,32] (Fig. 1). As the electron oscillates in
real space it experiences a periodic, time-dependent, magnetic
field.

The free evolution of the electron spin is described by the
following Hamiltonian:

H0 =
∑

σ=↓,↑

∑
j=v,v̄

Eσj c
†
σj cσj . (20)

Microwave induced oscillations of the electron in real space,
combined with the stray field of the ferromagnet, alter the state

of the electron spin, while leaving the valley degree of freedom
unchanged

H ′(t) =
∑

j=v,v̄

�
j cos (ωt)(c†↓j c↑j + H.c.). (21)

Applying the rotating wave approximation to the Hamiltonian
H0 + H ′(t), we obtain the time-independent Hamiltonian in
the rotating frame,

H = 1

2

⎛
⎜⎝

Ez − �ω0 �
v 0 0
�
v −Ez + �ω0 0 0
0 0 Ez + δE − �ω0 �
v̄

0 0 �
v̄ −Ez − δE + �ω0

⎞
⎟⎠, (22)

in the {v ↑ ,v ↓ ,v̄ ↑ ,v̄ ↓} basis, where the {v, v̄} represent
valley eigenstates, and {↑,↓} stand for spin states. Eσj is
the energy of the j th valley eigenstate with spin σ , and
cσj and c

†
σj are electron creation and annihilation operators.

Furthermore, Ez is the Zeeman energy of the electron, ω0

is the Larmor frequency, 
v,v̄ is the valley-dependent Rabi
frequency, and δE = (gv − gv̄)μBBz is the difference of valley
Zeeman energies (Fig. 6).

The goal of our study is to model the influence of valley
relaxation on electron spin coherence. An electron is initialized
in the |↓〉 state with valley injection probabilities P 0

v = 0.7,
P 0

v̄ = 0.3. We model a spin echo experiment, first a π/2 pulse
is applied, followed by a free (undriven) evolution of a duration
t/2. Afterwards, a π pulse is applied followed by another free
evolution of a duration t/2 and another π/2 pulse.

The valley relaxation is assumed to occur only during the
free evolution stage (as the duration of the free evolution stage
t is much larger than the duration of π pulses), and is modeled
with a Lindblad equation

ρ̇ = − i

�
[H0,ρ] + 1

2
�(2L†ρL − LL†ρ − ρLL†) = Lρ.

(23)

FIG. 6. Visualizing a valley-dependent effective g factor. � is the
valley relaxation rate, δE = (gv − gv̄)μBBz is the difference of valley
Zeeman energies, Ez is the Zeeman energy of the confined electron,
and ω0 is the Larmor frequency.

Here L is the 16 × 16 Lindblad superoperator acting on the
density matrix represented in the vector form. The explicit
form of L is given in the Appendix. Furthermore, � is the
phenomenological valley relaxation rate, and L† = |v〉〈v̄| and
L = |v̄〉〈v| are Lindblad intervalley dissipation operators.

The measure of the electron spin coherence is the echo
envelope function. In order to be able to subtract the echo
envelope function, instead of using the Lindblad equation in
the mentioned form Eq. (23) we use the Lindblad equation in
superoperator form

ρ(t) = eLt ρ(0). (24)

Writing the Lindblad equation in the superoperator form
allows us to include a sequence of π/2–π–π/2 pulses, around
the x axis, with intervalley scattering occurring in the free
evolution stage in the following way:

ρ(t) = Rx(π/2)eLt/2Rx(π )eLt/2Rx(π/2)ρ(0). (25)

Here Rx(β) rotates the spin ρ(t) about an angle β around
the x axis on the Bloch sphere. The π and π/2 pulses are
achieved by applying microwave pulses with a duration π/
v

and π/2
v , described by time evolution operators Rx(π ) =
exp (−iHπ/�
v) and Rx(π/2) = exp (−iHπ/2�
v), with H

being given by Eq. (22).
Finally, we obtain the echo envelope function, the proba-

bility that the electron changes spin to the |↑〉 state after a total
time of a free evolution t , when being subjected to a sequence
of π/2–π–π/2 pulses

P↑ =
∑

j=v,v̄

Tr[Mj

↑ρ(t)]. (26)

Here the M
j

↑ are spin-up projection operators corresponding
to j th valley eigenstate.

When the electron g factor is valley dependent, the π and
π/2 pulses are assumed perfect (see Fig. 7 black line), a valley
relaxation event abruptly changes the resonance condition
for δE [see Eq. (22)]. After the initial perfect π/2 pulse, in
one half of the cases of intervalley relaxation from |v〉 to |v̄〉
the electron spin is in |↑〉 state. This is why the increase of the
probability P↑, originating from valley relaxation, saturates at
P 0

v /2 (see Fig. 7, gray dashed line).
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FIG. 7. Probability that the echo sequence yields the electron
|↑〉 state. Red triangles and black line are a result of a simulation
with injection probabilities P 0

v,↓ = 0.7, P 0
v̄,↓ = 0.3. Yellow disks are

a result of a simulation with injection probabilities P 0
v,↓ = 0.49,

P 0
v,↑ = 0.21, and P 0

v̄,↓ = 0.3. The parameters of the plot are the
external magnetic field Bz = 0.75 T, the z component of the magnetic
field of the ferromagnet BFM

z = −0.12 T, valley-dependent Rabi
frequencies corresponding to the miscut angle θ ≈ 0.3◦, 
v =
2π · 3.1 MHz, 
v̄ = 2π · 3.7 MHz, within the values suggested in
a recent experimental study [24].

The red triangles in Fig. 7 represent the result of our
simulation when the effective g factors are valley depen-
dent throughout the free evolution stage and the π and
π/2 pulses are imperfect in one of the valleys due to
valley-dependent effective g factors and Rabi frequencies.
After the imperfect initial π/2 pulse, the electron spin is
not perpendicular to the magnetic field yielding rotations
around the quantization axis with a frequency proportional
to the Zeeman energy gv̄μB(Bz + BFM

z )/h, where Bz is the
external magnetic field and BFM

z is the z component of
the magnetic field of the ferromagnet. For Bz = 0.75 T and
BFM

z = −0.12 T this oscillations take place on a ∼ 50 ps
time scale, with the amplitude of the oscillations being given
by the valley-dependent Rabi frequencies 
v and 
v̄ and
g factors gv and gv̄ . Therefore, the probability P↑ is very
sensitive to the duration of the free evolution stage. Due to
the fact that the results of a recent experimental study [24]
represent an average over 150–1000 experimental outcomes,
our results (red triangles and yellow disks, Fig. 7) represent
an average over 1000 outcomes, randomly sampled from a
5 ns interval. When we compare the increase in probability
due to valley relaxation (black line, Fig. 7) and the additional
effect of imperfect π and π/2 pulses, we see that imper-
fect rotations provide an additional mechanism that further
increases P↑.

A recent experimental study [24] shows a fast initial
increase by 0.25 of the probability P↑. Our model explains
an initial increase of P↑ by a few percent due to the averaging
of the amplitude of 1000 randomly selected data points of
the P↑ oscillations close to t = 0, occurring due to imperfect
π and π/2 pulses alongside with rotations around the z axis
in the free evolution stage. One possible explanation for the
remaining discrepancy between the experimental findings and
theory may be the initialization to the |↓〉 state with a ≈ 0.79
fidelity (yellow disks, Fig. 7).

V. INTERPLAY BETWEEN VALLEY AND SPIN
RELAXATION

In Si quantum dots orbital relaxation happens on a
10−12–10−7 s scale, spin relaxation on a 10−6–1 s scale, and
valley relaxation is somewhere between the two values [33]. In
order to include spin relaxation processes we add an additional
term to our Lindblad equation [Eq. (23)]. The Lindblad
equation now has the form

ρ̇ = − i

�
[H0,ρ] + 1

2
�(2L†ρL − LL†ρ − ρLL†)

+ 1

2
γ (2�†ρ� − ��†ρ − ρ��†) = L′ρ, (27)

where L′ is the 16 × 16 Lindblad superoperator acting on the
density matrix represented in vector form. The explicit form of
L′ is given in the Appendix. Other than the terms introduced in
Eq. (23), the newly introduced terms are the phenomenological
spin relaxation rates γ and two new Lindblad dissipation
operators related to spin relaxation �† = |↑〉〈↓| and � =
|↓〉〈↑|.

Because we are again interested in obtaining the echo
envelope function as a measure of the coherence drop, we
will start from a Lindblad equation in a superoperator form

ρ(t) = eL
′t ρ(0). (28)

By repeating the procedure from Sec. IV [Eqs. (25) and (26)],
we obtain the echo envelope function Fig. 8 (probability that
the electron spin is measured in the |↑〉 state after a time t ,
when being subjected to a sequence of perfect π/2–π–π/2
pulses). When the effective g factor is valley dependent, the
π pulses perfect, and electron spin relaxation is occurring, the
increase of the echo P↑ probability is caused by the interplay
of valley and spin relaxations (Fig. 8, green circles and blue
squares). The exponential function f (P 0

v ,�,γ,t) = 0.5(1 +
P 0

v e−(�+γ /2)t + P 0
v̄ e−γ t/2) describes the drop of coherence. In

the |v〉 state the drop of coherence is caused by both spin
and valley relaxation processes, while in the |v̄〉 valley the
drop of coherence is caused by spin relaxation processes. By

FIG. 8. Spin-up probability after the echo sequence, when inter-
valley scattering and spin relaxation are present. The parameters of
the plot are the valley injection probabilities P 0

v = 0.7 and P 0
v̄ = 0.3,

the intervalley scattering rate � = 25 kHz, the spin relaxation time
T1 (γ = 1/T1), the external magnetic field Bz = 0.75 T, and the
z component of the magnetic field of the ferromagnet BFM

z =
−0.12 T. The fitting function f (P 0

v ,�,γ,t) = 0.5(1 + P 0
v e−(�+γ /2)t +

P 0
v̄ e−γ t/2) was used.
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FIG. 9. Probability P↑ for the echo sequence yielding the electron
|↑〉 state. The blue circles represent experimental findings [24] and
the purple diamonds are our theoretical findings when the π and
π/2 pulses are imperfect and intervalley and spin relaxations are
present. The spin and valley injection probabilities are assumed
to be P 0

v,↓ = 0.49, P 0
v,↑ = 0.21, and P 0

v̄,↓ = 0.3. The parameters
of the plot are the external magnetic field Bz = 0.75 T, the z

component of the magnetic field of the ferromagnet BFM
z = −0.12 T,

valley relaxation rate � = 25 kHz, spin relaxation time T1 = 1 ms,
valley-dependent Rabi frequencies corresponding to the miscut angle
θ ≈ 0.3◦, 
v = 2π · 3.1 MHz, and 
v̄ = 2π · 3.7 MHz, all within
the values suggested in a recent experimental study [24].

comparing the results for T1 = ∞ (black dashed dotted line,
Fig. 8) and T1 = 1 ms (green dashed line, Fig. 8), we see
that the spin relaxation happening on T1 = 1 ms time scales
is increasing the P↑ probability by only ∼ 0.01 on ∼ 200 μs
time scales.

In Fig. 9 we assume imperfect π and π/2 pulses, with the
rotation operators Rx(π ) = exp (−iHπ/�
v) and Rx(π/2) =
exp (−iHπ/�2
v), where the H is given by Eq. (22), and 
v is
the valley-dependent Rabi frequency. During the free evolution
stages the electron spin precesses around the external magnetic
field. After the imperfect initial π/2 pulse, the electron spin
is not perpendicular to the magnetic field, yielding rotations
around the quantization axis with a frequency proportional
to the Zeeman energy gv̄μB(Bz + BFM

z )/h, where Bz is the
external magnetic field and BFM

z is the z component of the
magnetic field of the ferromagnet. For Bz = 0.75 T and BFM

z =
−0.12 T this oscillations happen on ∼ 50 ps time scale, with
the amplitude of the oscillations being given by the valley-
dependent Rabi frequencies 
v and 
v̄ and Rabi dependent

effective g factors gv and gv̄ . Therefore, the P↑ probability is
very sensitive to the duration of the free evolution stage. The
relaxation time T1 = 1 ms is within the value suggested in a
recent experimental study.

By comparing experimental data points (blue circles) with
the result of our modeling (purple diamonds) we conclude that
the saturation value of the P↑ probability P↑(t → ∞) ≈ 0.39
and the P↑ probability close to t = 0, P↑(t = 0) ≈ 0.25 are all
within the the values measured in a recent experimental study
[24] and that our model yields the correct functional form of
P↑ probability increase.

VI. CONCLUSION

To conclude, we have discussed the control of the electron
spin inside a Si/SiGe quantum dot with a ferromagnet
embedded on top. The stray magnetic field of the ferromagnet
combined with Si/SiGe interference imperfections conse-
quently leads to a valley-dependent effective g factor. When a
valley-dependent g factor, alongside with valley relaxation
is present, a novel decoherence mechanism exists, further
limiting the coherence of the electron spin. Furthermore,
the control of the electron spin state on the Bloch sphere is
influenced by a valley-dependent g factor and Rabi frequency.
Our model gives a good qualitative and quantitative description
of recent experimental studies. Further research on this topic
will move towards including the drop of coherence due to the
presence of nuclear spins.
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APPENDIX: LINDBLAD SUPEROPERATORS L′ AND L IN
MATRIX REPRESENTATION

In this Appendix we give an explicit form of the Lindblad
superoperator L′ [see Eq. (27)], a 16 × 16 superoperator
acting on the density matrix in a vector representation (a
16-dimensional column vector):

L′ =
(

A1 0
A3 A2

)
. (A1)

Here the 8 × 8 matrices A1, A2, A3 are given by

A1 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ + � 0 0 0 0 0 0 0
0 γ

2 + � + i
Ez

�
0 0 0 0 0 0

0 0 �
2 + γ − i δE

�
0 0 0 0 0

0 0 0 i(δE+2Ez)/�+γ+�

2 0 0 0 0
0 0 0 0 γ

2 + � − i
Ez

�
0 0 0

−γ 0 0 0 0 � 0 0
0 0 0 0 0 0 �+γ−i(δE+2Ez)/�

2 0
0 0 −γ 0 0 0 0 �+iδE/�

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A2)
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A2 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ + �
2 + i δE

�
0 0 0 0 0 0 0

0 γ+�

2 + i
Ez+δE

�
0 0 0 0 0 0

0 0 γ 0 0 0 0 0
0 0 0 i

δE+Ez

�
+ γ

2 0 0 0 0
0 0 0 0 γ+�

2 − i
δE/2+Ez

�
0 0 0

−γ 0 0 0 0 �−iδE/�

2 0 0
0 0 0 0 0 0 −i

δE+Ez

�
+ γ

2 0
0 0 −γ 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A3)

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
� 0 0 0 0 0 0 0
0 � 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 � 0 0 0
0 0 0 0 0 � 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

Here Ez is the Zeeman energy in the |v〉 valley eigenstate, Ez + δE is the Zeeman energy in the |v̄〉 valley eigenstate, � is the
phenomenological valley relaxation rate, and γ is the phenomenological spin relaxation rate. Note that L can be obtained from
L′ by setting γ = 0 [see Eq. (23)].
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