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1.  Introduction

In recent years two-dimensional semiconductoring 
monolayers of transition-metal dichalcogenides 
(TMDs) have become the subject of immense study, 
due to their intriguing electronic and optical properties 
[1]. These atomically thin materials have a direct band 
gap in the optical frequency range [2] and a large spin–
orbit coupling [3, 4]. Their electronic band structure 
is described by two inequivalent valleys, labeled K and 
′K , and the interplay of this valley degree of freedom 

and the spin degree of freedom gives rise to rich optical 
selection rules [5–7] and coherent manipulation of the 
valley degree of freedom has been demonstrated [8].

The control of electronic spins states in quantum 
dot (QD) systems offers a powerful route towards 
quantum computation [9]. Tremendous progress has 
been made in the experimental control of electronic 
spins in GaAs QDs [10]. The high density of nuclear 
spins in GaAs quantum wells has proved to be a limit-
ing factor in their spin decoherence times. This finding 

has motivated the consideration of other materials as 
a platforms for QD spin qubits, such as Silicon, carbon 
nanotubes, and indeed TMDs.

The TMDs are comprised of a honeycomb lattice, 
with a chemical make up of MX2, in which M is a trans
ition-metal e.g. M  =  Mo,W and S a chalcogen atom e.g. 
X  =  S, Se. Electrostatic gating can be used to create a QD in 
a semiconducting TMD monolayer. These QDs can also 
make use of both the valley and spin degrees of freedom to 
encode information, and also to process this information 
[11]. Recently QDs in TMDs have been experimentally 
demonstrated both in lateral MoSe2–WSe2 heterojunc-
tions [12] and in multilayer MoS2, WSe2 and WS2 devices 
[13–16]. Additionally, there have been theoretical stud-
ies on the electronic structure of TMD QDs [17, 18] and 
their control by optical techniques [19]. Several exper
imental groups have also studied the optical properties of 
confined states formed by crystal vacancies, particularly 
the excitonic effects in these confining structures [20–24].

The TMDs exhibit a large spin splitting within 
their band structure near the direct band gap. This cre-
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We study the relaxation of a single electron spin in a circular quantum dot in a transition-metal 
dichalcogenide monolayer defined by electrostatic gating. Transition-metal dichalcogenides provide 
an interesting and promising arena for quantum dot nano-structures due to the combination of a 
band gap, spin-valley physics and strong spin–orbit coupling. First we will discuss which bound state 
solutions in different B-field regimes can be used as the basis for qubits states. We find that at low 
B-fields combined spin-valley Kramers qubits to be suitable, while at large magnetic fields pure spin 
or valley qubits can be envisioned. Then we present a discussion of the relaxation of a single electron 
spin mediated by electron–phonon interaction via various different relaxation channels. In the low 
B-field regime we consider the spin-valley Kramers qubits and include impurity mediated valley 
mixing which will arise in disordered quantum dots. Rashba spin–orbit admixture mechanisms 
allow for relaxation by in-plane phonons either via the deformation potential or by piezoelectric 
coupling, additionally direct spin-phonon mechanisms involving out-of-plane phonons give rise 
to relaxation. We find that the relaxation rates scale as ∝B6 for both in-plane phonons coupling via 
deformation potential and the piezoelectric effect, while relaxation due to the direct spin-phonon 
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tension. We will also discuss the relaxation mechanisms for pure spin or valley qubits formed in the 
large B-field regime.
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ates the situation in QDs, that the level spacing due to 
confinement is much smaller than the spin splitting 
�E EL so, in stark contrast to GaAs, Silicon and carbon  

nano-structures. This combined with the valley phys-
ics opens up new regimes and opportunities for spin 
and valley qubits. Indeed, this will form the main focus 
of this paper in which we will explore the electron spin 
relaxation time T1 in these TMD QD regimes. The 
key source of relaxation for electron spin in QDs are 
interactions with phonons, and phonon excitations 
in TMDs arise from both the deformation potential 
and the piezoelectric effect due to the crystals lack of 
inversion symmetry [25, 26]. While in-plane phon-
ons do not direct couple to an electron’s spin degree 
of freedom, they may couple indirectly via a spin–
orbit induced mixing of the eigenstates known as the 
admixture mechanism [27, 28]. In contrast, out-of-
plane phonons arising due to the TMDs two-dimen-
sional nature, couple directly to the electrons spin via 
the creation of ripples and curvature with the TMD 
sheet [29]. Together these electron–phonon coupling 
mechanisms provide a number of differing relaxa-
tion channels which are necessary to be understood 
to ascertain the suitability of TMDs as a platform for 
future spin-qubits.

The structure of this paper will be as follows: in sec-
tion 2 we will introduce a model of the electronic structure 
of a circular QD in a TMD. Following this in section 3 we 
discuss and present scattering rates for spin flip processes 
caused by phonons in the presence of disorder induced 
valley mixing, in section 3.1 those within a Kramers dou-
blet mediated by in-plane acoustic phonons caused by 
the admixture mechanism while in section 3.2 we discuss 
those caused by direct spin-phonon coupling with out-
of-plane phonons. Then in section 3.3 we will consider 
the regimes in which pure spin or pure valley qubits could 
be achieved and explore their electron spin relaxation 
rates. Finally in section 4 we present our conclusion.

2.  QD electronic model

To study the spin relaxation in a circular QD within 
a TMD, we assume an electrostatically defined QD 
in a sample large enough that we may neglect edge 
effects. The Hamiltonian for the electronic states in the 
conduction band under the influence of a magnetic 
field perpendicular to TMD plane is given by

λτ µ

µ τ

= + + +

+

τ τH
m

k k U s g B s

g B

rr
2

1

2

1

2
.

z z e B z z

v B z z

0

2

eff

ħ ( )†

� (1)

Here the first term gives the kinetic energy of the elec-
tronic states with an electronic momentum τk  and where 
meff  is the effective mass in the conduction band, with 

=m m 0.47eeff /  in MoS2 and =m m 0.27eeff /  in WS2, 
where we neglect the small spin and valley dependance 
of the effective mass [4, 17]. The electrostatic potential 
created by electrical gating is captured by U rr( ), we will 

assume a potential for a circularly symmetric hard bar-
rier where = Θ −U U r Rrr 0( ) ( ) with Θ r( ) the Heaviside 
step function, R being the radius of the QD and U0 the 
height of the confining potential barrier. The third term 
models the strong spin orbit coupling in TMDs leading to 
spin splitting in the conduction band, with a magnitude 
λ, which is 1.5 meV   in MoS2 while in WS2 it is −15.5 meV   
[4, 17, 30], and the indices =±s 1z  and τ =±1z  label the 
spin and valley index respectively. The final two terms 
describe both the spin and valley Zeeman terms, where 
µB is the Bohr magneton. The first of these is the well 
known spin Zeeman term where the effective electron 
g-factor is given by ge  =  2.21 in MoS2 and ge  =  2.84 in 
WS2. The final term describes a valley Zeeman term 
which arises as the degeneracy of the valley states is only 
protected by time reversal symmetry, therefore under the 
influence of magnetic field the valley degeneracy is bro-
ken [31–33]. In MoS2 the valley g-factor takes the value 
gv  =  3.57, while in WS2 gv  =  4.96 [17, 34].

In the zero magnetic field case we express the 
momentum as τ= +τk k kiz x y . We introduce a 
magnetic field into the momentum operators 
with the Kohn–Luttinger prescription, such that 

ħ→ ( / )= − ∂ +k k e Aii i i i, with { }∈i x y, . We choose 
the symmetric gauge for the vector potential, given by 
A  =  Bz(−y, x). Under the influence of a finite magn
etic field, the new mechanical momentum operators 
become non-commuting with the commutation rela-

tion τ=τ τk k l, 2z B
2[ ] /† , where lB is the magnetic length 

which is defined as =l BeB z
1
2ħ( / ) . In radial coordinates 

we may write the momentum operators as [38]

τ= − ∂ − ∂ +τ
τϕ

ϕ
−

⎛
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where ϕ is the angle measured with respect to the x  
axis and we have also introduced the dimensionless 
length scale =x r l 2B

2( / ) / .
Now we seek to solve the eigenvalue equation

ϕ ϕΨ = Ψτ τH x E x, , .s s0 ( ) ( )� (4)

The problem has a cylindrical symmetry and therefore 
the angular momentum operator Lz commutes with 
H0 and shares common eigenfunctions. Due to this 
we factorise the angular component of the solution 

ϕ χΨ =τ ϕ τx x, es
l

l s
i

,( ) ( ), with l the eigenvalue of Lz. The 

differential equation for χτ xl s, ( ) is solved by

( ) ( ) ( )

( ) ( )

χ = | | + Θ −

+ | | + Θ −

τ
| | −

< <

| |
−

> >

x x C M a l x x x

x C U a l x x x

e , 1,

e , 1,

l s

l x

n l

l x

n l

,
2 2

, 0

2 2
, 0

�

(5)

where M(a, b, x) and U(a, b, z) are the confluent 
hypergeometric functions of the first kind and second 
kind respectively, ≶C  are normalisation constants, 

=x R l 2B0
2( / ) /  and τ

≶al,  is given by the expression
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ω τ ω λ τ

µ µ τ

= | | + + +
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Here ωc  is the cyclotron frequency defined as 
ω = B mec z eff/  and the energies in each region are given 

by =< εEn l n l, ,  and = −> εE Un l n l, , 0. Here we consider 
only Bz  >  0 without loss of generally, as energy levels 
for negative B-fields are found with the relation 
− = −τ τ− −H B l H B l, , .s s, ,( ) ( )  Utilising the boundary 

conditions that demand the matching and continuity 
of the wavefunction at the QD edge at x  =  x0 we can 
acquire the energy levels of the quantum dot. This 
process yields the characteristic equation

( ) ( )

( ) ( )
| |+

+ | | + | | +

+ | | + + | | + =

<
< >

> < >

a

l
M a l x U a l x

a M a l x U a l x

1
1, 2, , 1,

, 1, 1, 2, 0.

n l
n l n l

n l n l n l

,
, 0 , 0

, , 0 , 0

� (7)

From this equation we can solve for energy eigenstates 
for a given spin and valley as a function of B-field, the 
numerical solution for the energy levels are shown in 
figure 1.

In the limit of small magnetic field, where �x 1, 
the confluent hypergeometric function reduce to Bessel 
functions [35, 36] with the relations

= Γ − −−
−M a b x b ax J ax, , 2b

b
1 2

1( ) ( )( ) ( )( )/� (8)

=
Γ + −

−
−U a b x

a b
ax K xa, ,

2

1
2 ,b

b
1 2

1( )
( )

( ) ( )( )/

� (9)

where Γ n( ) is the gamma function. Using these limits 
yields an equation for the energy levels of the QD at zero 
magnetic field, given by

( ) ( ) ( )

( ) ( )

ξ ξ α α

α α

−

− =

| |
>
| |+

<

| |+
>
| |

<

K J

K J

1 2 2

2 2 0,

l l

l l

1

1

�
(10)

w h e r e  ξ λ τ= −ε s Un l z z, 0( )/ ,  α =< m R 2eff
2 2ħ/

( )ε λτ− sn l z z,  and α λτ= − −> εm R s U2 z z n leff
2 2

, 0ħ/ ( ). 
In figure 2 we plot the energy levels as a function of dot 
radius at =B 0T.

One of the key reasons for interest in QD nanostruc-
ture in TMDCs is their use as a platform for solid state 
qubits. We can identify different electronic states which 
can serve as qubits, these electronic states will depend 

Figure 1.  The energy levels in an circular MoS2 quantum dot. Panel (a) shows the electronic spectrum of a QD with a radius 
=R 50 nm   and a barrier height of =U 100 meV0    as a function of perpendicular magnetic field. Black (Red) lines denote states 

with spin up (down) while thick (dashed) lines denote states in the K ( ′K ) valley. Here we show the states with orbital and angular 
momentum quantum numbers (n, l) where n  =  0, 1, 2 and l satisfying −n l n⩽ ⩽ . Panel (b) presents a zoom on the lowest energy 
Kramers pair states which can serve as a spin-valley qubit in a QD of radius =R 50 nm  . Panel (c) shows in a zoom around a level 
crossing between to opposite spin states which both reside within the ′K  valley at a large magnetic field in a QD of radius =R 20 nm  .

2D Mater. 4 (2017) 025114
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on the parameter regimes we choose, particularly dot 
size and magnetic field.

At zero magnetic field the all electronic states 
are doubly degenerate Kramers pairs, as seen in 
both figures 1 and 2, with the pair comprising of 
the two time reversed partners in each valley, e.g. 
| ↑ |− ↓′l K l K, , , , ,( ⟩ ⟩). At low magnetic fields where 

the degeneracy is broken by the spin and valley Zeeman 
fields these electronic states can be used as combined 
spin-valley qubits, an example of this is presented in 
figure 1(b). For example for a dot with =R 50 nm   the 
energy splitting between the pair of states is found to 

be ∆↓↑ −
′� 0.58 meV TKK

1  , and for instance at 1 Tesla 
this corresponds to 6.7 K  . These states are formed from 
different valleys and therefore have the advantage that 
relaxation mechanisms only arise by inter-valley scat-
tering and are robust against small momentum scat-
terers such as smooth disorder or acoustic phonons. 
In contrast, achieving full control of these qubits can 
be challenging, although there have been proposals for 
electron valley resonance in spin-valley qubits [37].

Due to the large spin–orbit coupling in TMDCs, 
the spin splitting λ2  is much larger than orbital split-
ting created due to confinement. Therefore, as a conse-
quence regions of the electronic spectra in which there 
is a level crossing which would be well suited to pure 
spin qubits or pure valley qubits are found in the large 
B-field regime of >B 5 Tz . An example of the pure spin 
qubit in a small radius QD is shown in figure 1(c).

3.  Spin relaxation

In this section we will study the role of spin relaxation 
arising due to impurities and interactions with phonons. 
First, we will focus on the situation of spin relaxation 

between the energy levels of a Kramers doublet with the 
degeneracy lifted by Zeeman fields. It is hoped this state 
could be robust as relaxation necessitates inter-valley 
scattering, in which impurity scattering would play a 
crucial role. We consider an impurity driven mixing of 
the Kramers doublet and in section 3.1 an admixture 
mechanism where the electron spin relaxes due to either 
a piezoelectric phonon or a deformation potential 
phonon and in section 3.2 we explore the role of a direct 
spin-phonon coupling. Additionally in section 3.3 we 
will consider the case of a pure spin or valley qubit at a 
level crossing at large B-field.

Electronic transport and optical studies of TMDs 
have shown that atomic vacancies and impurities play 
an important role on the dynamics and relaxation of 
their charge carriers [43, 44]. Indeed, studies of the 
structure of TMD monolayers have shown high den-
sities of atomic vacancies within the crystal lattice  
[45–47]. Sharp impurities allow for scattering processes 
which impart enough momentum transfer to scatter 
electrons between the differing valleys, K and ′K , of the 
Brillouin zone. Here we will consider the role of these 
inter-valley scattering processes and the limit they may 
put on T1 times of qubit states formed in a spin-valley 
space of a Kramers doublet.

Depending on the particular symmetry proper-
ties of an impurity or atomic vacancy the scattering 
originating from it may be either spin conserving and 
spin non-conserving. It has been shown that in bulk 
samples spin non-conserving impurity scattering rates 
are orders of magnitude smaller than spin conserving 
scattering rates [48, 49]. Therefore in this work we will 
focus on spin conserving inter-valley scattering. How-
ever combined with the presence of spin–orbit fields 
this disorder will lead to spin relaxation mechanisms. 

Figure 2.  The energy levels in an circular MoS2 quantum dot at zero magnetic field as a function of radius, with a barrier height of 

=U 100 meV0   . The red lines denote the states which form a Kramers pair with Ψ Ψ ′
↑ ↓,K K( ), while black lines denote the degenerate 

states with Ψ Ψ′↑ ↓,K K( ). We plot the lowest energy states, with orbital and angular momentum quantum numbers (n, l) where n  =  0, 1, 2 and 

l satisfying −n l n⩽ ⩽ . The figure shows an arrow indicating the magnitude of the level splitting λ2  created by the intrinsic spin–orbit 
interaction.

2D Mater. 4 (2017) 025114
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Here will always assume that we are at zero temperature, 
this will continue be a good approximation given that 

µ�k T g BB zB .
To model the short range disorder within the crystal 

lattice we introduce into the Hamiltonian a term which 
mixes the valleys [50, 51], given by τ= ′H V 2x KKdis / . This 
Hamiltonian captures the effect of mono-vacancies of 
transition metal atoms which are a strong source of 
inter-valley scattering [52]. We now consider a QD 
eigenstate of H0, given by ϕ τ ϕ| = Ψτr n s r, , , ,s⟨ ⟩ ( ) with 
n labelling an orbital state and τ and s the valley and spin 
respectively, and perturb it by the valley mixing term 
Hdis. We find this short range disorder weakly mixes the 
valley states as,

γ
γ

γ
γ

| =
+

| − |

| =
+

| +|

′

′ ′

K K K

K K K

1

1

1

1
,

s

s

s

s

2

0 0

2

0 0

˜ ⟩ ( ⟩ ⟩ )

˜ ⟩ ( ⟩ ⟩ )

( ) ( )

( ) ( )
� (11)

where γ = ∆ + ∆ +′ ′ε εV Vs KK s s KK
2 2/[ ] with ∆ =sε

ε ε− ′K s K s, ,  in which =↑ ↓s ,  and the superscript (0) 
refers to an unperturbed state. These energies can 
be calculated from the solutions to equation (6) and 
we note that the mixing of the valley states therefore 
depends indirectly on the spin via these energies ∆εs.

The matrix element for the relaxation of a spin 
between a Kramers doublet formed in a orbital level 
n by the electron–phonon Hamiltonian αHel ph–  causing 
the emission of a phonon of type α can now be written 
in the unperturbed valley eigenstates, this process yields

〈 ˜ ˜ 〉 〈 〉

〈 〉

ν

ν

↓ | | ↑ = ↓ | | ↑

− ↓ | | ↑

′

′ ′

α α

α

− ↓ −

↑ −

n K H n K n K H n K

n K H n K

, , , , , , , ,

, , , , ,

el ph el ph

el ph

�

(12)

where

ν
γ

γ γ
=

+ +↑ ↓1 1
.s

s

2 2( )( )� (13)

It is instructive to consider the limiting case of νs, in  
w h i c h  ∆′� εVKK s  w h i c h  h o l d s  f o r  a n y 
reasonable energy scale of inter-valley mixing. 
In this  case the prefactor reduces to ν =s   

/( )ε ε ε∆ ∆ ∆↓ ↑′V 2KK s . We note that νs depends weakly 
on B-field and for zero B-field it is given by the simple 
relation ν ν λ= = − = =↓ ↑ ′B B V0 0 4z z KK( ) ( ) / .

We find then that impurities and vacancies mix the 
valley eigenstates allowing for spin relaxation within a 
Kramers doublet, but the matrix element is suppressed 
by the factors νs. It now becomes imperative to evaluate 
spin flip matrix element in equation (12), which we will 
consider in detail in the following two sections.

3.1.  Admixture mechanism
The admixture mechanism refers to the effect caused 
by a Rashba type spin–orbit interaction which weakly 
mixes the eigenstates in equation (5), allowing for 
phonons to couple to the election spin indirectly causing 

a relaxation mechanism [27, 28]. We now consider the 
matrix element found in equation (12) and its QD 
eigenstates of H0, given by ϕ τ ϕ| = Ψτr n s r, , , ,s⟨ ⟩ ( ) with 
n labelling an orbital state and s the spin. This eigenstate 
is perturbed by the induced spin–orbit interaction. In 
lowest order in Hso the perturbed eigenstate is given by

∑| ↑ = | ↑ + | ↓
↓ | | ↑
−≠

n n k
k H n

,
k n n k

0 0
0

so
0

〉 〉 〉
〈 〉( ) ( )

( ) ( )

ε ε
� (14)

here once more the superscript (0) refers to an 
unperturbed state. Therefore the matrix element for 
a spin-flip transition within an orbital level n of given 
valley τ with the emission of a phonon of type α is given 
by

〈 〉
( ) ( )

( ) ( )

∑τ τ
τ λ µ

τ λ µ

↓ | | ↑ =
− + −

+
− − +

α
α ττ ττ

τ τ

ττ α ττ

τ τ
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≠

−
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−

⎡

⎣
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⎢

⎤

⎦
⎥
⎥

n H n
H H

E E g B

H H

E E g B
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2

2
.

k n

nk kn

n k z e B z

nk kn

n k z e B z

el ph
el ph so

,

so
,

el ph

�

(15)

Where here the notation ττ′ ′H ij
ss ,( )  is short hand 

for τ τ| | ′ ′s H j si0 0⟨ ⟩( ) ( ), and τEn  refers to the non-

spin dependant terms within the orbital energy 
eigenstates.

At low B-fields we assume the dominant relaxa-
tion will be between the electronic states which 
form Kramers doublets, i.e. at zero B-field they 
are time reversed partners. If the two eigenstates 
are related by time reversal, then we note that 

= −↓↑ ↓↑ ′ ′H Hkn
KK

nk
K K

so
,

so
,( ) ( )  and as a consequence the  

matrix element shown in equation (15) will be 
matched by the process in the opposite valley and 
the relaxation mechanism will vanish in the absence 
of a magnetic field, this effect is known as Van 
Vleck cancelation [53, 54], and leads to a higher 
order dependance on the B-field of the matrix ele-
ment. As we assume small B-fields we therefore 
expand the matrix element in the small field limit 
µ − �ε εg B 1e B z n k/( ) .

We examine the effect of a Bychkov–Rashba  
type spin–orbit interaction, which is given by the  
Hamiltonian

λ λ= +τ τ
− ∗ +H k s k s ,R Rso

†
�

(16)

where ±s  are spin raising and lower operators and λR 
is the Bychkov–Rashba coupling constant. This spin–
orbit interaction term arises when the mirror inversion 
symmetry in the z direction is broken, this can be caused 
by ripples and curvature of the two-dimensional sheet 
[29] or by the application of a perpendicular electric 
electric field. In the case of a perpendicular electric field 
Ez the Bychkov–Rashba coupling constant has been 

predicted to be λ| | = −˚ ˚E0.033 V A eV AR z
1 [   ]      in MoS2 

and  [   ]    λ| | = −˚ ˚E0.13 V A eV AR z
1

 in WS2 [17].
We calculate the matrix element for spin–orbit 

interaction between states of differing orbital states. 
This yields
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πλ
δ=ττ τ τ

ττ↓↑
+H

l
ki

2 2
,nk

R

B
n k nkso

,
,( ) ( )� (17)

where the orbital part of the matrix element τ
ττk nk( )  

depends on initial angular momentum quantum 
number and the full details of the momentum operator 
is discussed in greater depth in appendix. Evaluation of 
momentum overlap gives

( ) ( )

( )
( )

τ τ

τ
τ τ

= − Θ −

+Θ
Θ −

| | +

′ ′

′
′ ′

τ
ττ ττ

τ τ

−
<

+

′ ′

′
⎡

⎣
⎢

⎤

⎦
⎥

k k k M

k
a

k
M

1
,

nk n k

n k
n k

, 1

,
, 1
,�

(18)

where Θ x( ) is the Heaviside step function and 

∫ χ χ=τ τ τ τ∗
′
′

′
′

M xx x xdn n n s n s,
,

, ,( ) ( ).
The Hamiltonian αHel ph–  describes the electron pho-

non interaction with a phonon of type α and with wave 
vector qq. Here we consider both electron phonon cou-
pling arising due to the piezoelectric interaction and the 
deformation potential, and as we are interested in low 
energy regime we consider only the acoustic phonon 
modes. The deformation potential (DP) arises due to 
local variations of area of the TMD sheet and there-
fore couples only to longitudinal (L) phonon modes. 
Whereas, the piezoelectric effect (PE) creates a electron 
phonon interaction which couples to both longitudinal 
(L) and transverse (T) phonon modes.

In bulk 3D materials which support an electron–
phonon interaction with piezoelectric phonons the 
coupling is known to be independent of the phonon 
wavenumber qq, but in contrast, in 2D materials in the 
long wavelength limit the electron–phonon interaction 
is linear in qq [26]. This means that the phonon wave-
number dependance of the electron–phonon coupling 
is the same for both deformation and piezoelectric pho-
nons and they only differ by details of their coefficients. 
Therefore these three separate Hamiltonians for these 
distinct electron phonon interaction channels have the 
similar forms of

( ) ( )( ) ( ) ( )†φ ζ= | | +α α α
−

⋅ − ⋅
−H D a aqq e e ,L L

qq qq
qq rr

qq
qq rr

qqel ph
i i� (19)

where coefficient for the deformation potential 

is given by φ =D giqq
DP,L

1( ) , with =g 2.4 eV1    [25], 
whereas the coefficients for the piezoelectric 

interaction are φ φ= − εD e e cos 3xxqq qq
PE,L

0( ) [ / ]  and 
φ φ= εD e e sin 3xxqq qq

PE,T
0( ) [ / ]  in which the piezoelectric 

interaction is anisotropic in qq, and the angle of the 

phonon is measured by φ = q qtan y xqq / , and the 
piezoelectric constant is = × − −e 3.0 10 C mxx

11 1   
[26]. Here the oscillator length is given by 

ζ ρ ω=α αA2qq qq
1
2ħ[ / ]( ) ( ) , with ρ the mass density of the 

TMD sheet and A the area. The in-plane longitudinal 
and transverse dispersions are linear and are given by 

ω = v qqL L
qq
( ) ( )  and ω = v qqT T

qq
( ) ( ) . In MoS2 and the group 

velocities have been calculated with first principles 

techniques as λ µ ρ= + × −�v 2 6.7 10 m sL 1
2 3 1[( )/ ]( )  

and µ ρ= × −�v 4.2 10 m sT 1
2 3 1[ / ]( )  [25, 26]. We 

consider that for the case of our interest, where 
µ=αv g Bqq e B zħ  we find that the phonon wave length 

will be approximately λ� 200 nm   for =B 1Tz , which 
is much larger that typical size of QDs and justifies the 
use of the dipole approximation within our work.

The electron–phonon matrix element for the elec-
tron phonon interaction arising from a phonon of type 
α is found to be

ħ( ) ( )

( )

( )π φ
ρ

δ δ

= | |

× +

α α
α

φ φ

−

− +
−

H D l
A v

N

qqi2 2
2

e e ,

nk B

n k n k n k

qqel ph

3
2

, , 1
i

, 1
iqq qq

where ∫ χ χ=τ τ τ τ∗
′
′

′
′

N xx x xdn n n s n s,
, 3

2 , ,( ) ( ).
To compute the full relaxation time we use Fermi’s 

golden rule, given as

∑Γ = = Γ
α

α
T

1
,Total

1
� (20)

∫π
π

δ µ

Γ = | ↑ | | ↓ |

× −

α
α

α

−
A q

n H n

v q g B

2 d

2

,B z

2

2 el ph
2

ħ

ħ

( )
〈 〉

( ˜ )( )

�

(21)

using the definition = +g g ge v˜ . Using all the 
ingredients we have discussed until now, we are in 
position to calculate the relaxation rates. First we 
consider the electron spin relaxation arising from 
interactions with longitudinal deformation potential 
phonons and find the relaxation rate

ħ
( ) ˜

[( ) ( ) ]

( )

[ ( ) ( ) ]
( )

( )

∑

ν ν
π λ

ρ
µ

δ
λ

δ
λ

Γ = +

×
+

− −

−
+

− +

↑ ↓

≠
+

−

′ ′
′
′ ′

′ ′

′
′ ′ ′ ′

g

v
g g B

k N N k

E E

N k k N

E E

16

2

2
.

R

L e B z

k n
n k

K n k
K K

k n
K K

n k
K K

K k n
K K

n
K

k
K

n k
n k
K K

K k n
K K

K n k
K K

k n
K K

n
K

k
K

L,DP
2

4 2
1
2

6 5
2 4 6 6

, 1
,
,

,
,

,
,

,
,

2

, 1
,
,

,
,

,
,

,
,

2

2

�

(22)
In two-dimensional materials for long wavelengths 
the deformation potential and piezoelectric electron–
phonon coupling has the same qq dependance, and 
therefore the relaxation rates due to piezoelectric 
phonons will have the same dependance on B-field. As a 
consequence the relaxation rates by either longitudinal 
and transverse phonon modes are found to only differ 
by coupling parameters and group velocity from 
deformation potential phonon mediated relaxation. 
These relaxation rates are given by

Γ = Γ
ε

e e

g2
xx

L,PE

2 2

1
2

0
2 L,DP� (23)

Γ = Γ
ε

e e v

g v2
xx

L

TT,PE

2 2 6

1
2

0
2 6 L,DP

( )

( )� (24)

We find that the relaxation due to phonons aris-
ing from both deformation potential and piezoelectric 
effect varies with the sixth power of the perpendicular 
magnetic field. A plot of the relaxation rates due to the 
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admixture mechanism in equations (22)–(24) are pre-
sented in figure 3. We see that the need for inter-valley 
mixing by disorder leads to a suppression in the relaxa-
tion rate and increase in the T1 time. The dominant 
contribution to T1 arises from transverse piezoelectric 
phonons relaxation rate ΓT,PE as these phonons possess 
the most efficient combination of electron–phonon 
coupling and phonon density of states. The contrib-
uting elements to this magnetic field dependence of 
the admixture mechanism arise from three sources; B2 
from the presence of Van Vleck cancelation, a contrib
ution of B from the phonon density of states and B3 
from the electron–phonon interaction matrix ele-
ments [41].

Additionally in figure 3 we note a non-monotonic 
behaviour in the relaxation rate at a magnetic field of 
approximately 3.8T, this arises due to a destructive 
interference of matrix elements of scattering processes 
in different valleys. Therefore this behaviour is only 
possible for relaxation between states of different spin-
valley states and will be characteristic of a Kramers qubit 
which is weakly mixed by disorder. This destructive val-
ley interference is maximised at a magnetic field corre
sponding to a level crossing between intermediate states 
in opposite valleys. While we would expect to see this 
non-monotonic behaviour in all TMD Kramers qubits, 
the exact magnetic field in which they would occur in 
other TMD, such as WS2, would depend on material 
parameters.

We can contrast this behaviour with studies within 
other materials. Most notably GaAs QDs have a pre-
dicted B5 dependance in their spin relaxation rates and 
while it also exhibits a Van Vleck cancelation the bulk 
three-dimensional electron phonon coupling for piezo
electric phonons leads to the differing dependance on 
B-field [28]. Non-monotonic behaviour has also been 

predicted in the T1 of carbon nanotube quantum dots, 
but this is predicted due to interference between dis-
crete and continuum electronic states [39]. In addi-
tion, in closer relation to TMDs, the spin relaxation in 
graphene QDs for an admixture mechanism mediated 
by deformation potential phonons has a B4 predicted 
dependance, due to a lack Van Vleck cancelation when 
considering only one valley degree of freedom [40, 41]. 
Indeed, within a later section of this work we will con-
sider the parameter regime when analogous physics can 
also be created in TMD QDs.

3.2.  Direct spin-phonon coupling
We now turn our attention to the direct spin-phonon 
processes. The coupling between phonons and 
electronic spins arises due to flexural phonons, these 
out-of-plane phonons break the mirror symmetry of 
the lattice allowing for finite transition rates for spin 
flip processes. There are two mechanisms which we 
discuss in this section. The first is a deflection coupling 
and is a geometric effect arising due to local rotation of 
the lattice created out-of-plane deformations [40, 42], 
while the second is due to local curvature of the crystal 
lattice which mixes the electronic orbitals such that 
non-spin conserving processes are allowed [29]. These 
mechanisms are distinct as tilting the crystal lattice does 
not change the electronic structure of the TMD.

The deflection coupling is caused by long wave-
length acoustic flexural phonons which induces 
a local tilt in two-dimensional crystal lattice and 
the electronic spin is defined in the local reference 
frame with respect to the local normal vector ′zẑ  as 
= ⋅ ′s ss zzz ˆ . Therefore under local tilts of the crystal lat-

tice the spin–orbit splitting contained in H0 within 
the conduction band, which in the flat case is given by 

λτ=H sz zso,0 , becomes

Figure 3.  The relaxation rate Γ between Kramers pair states Ψ Ψ ′
↑ ↓,K K( ) as a function of perpendicular magnetic field. The plotted 

line is the total relaxation rate given by Γ = Γ + Γ + ΓTotal L,DP L,PE T,PE. The calculation is performed for a circular MoS2 quantum dot 

with a radius of =R 50 nm   with hard wall boundary conditions and with a inter-valley coupling of =′V 0.1 meVKK   . We consider the 
relaxation within the lowest energy Kramers pair and sum over all other possible intermediate states.

2D Mater. 4 (2017) 025114
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λτ λτ= − ∂ + ∂H s s h s hrr rr ,z z z x x y yso,0 ( ( ) ( ))� (25)

and now depends on the local tilt of lattice. In 
an effort the study the coupling with phonons 
we quantise the high deformation field as 

ζ= ∑ ⋅ + −h a arr qq rrexp iF F F
qq qq qq qq( ) [ ]( )( ) ( ) ( )† ,  w h e r e  a F

qq
( )

(a F
qq
( )†) is an operator which creates (annihilates) a 

flexural phonon with a wave vector qq.
The dispersion relation for flexural phonons is 

ω κ γ ρ= | | + | |qq qqF
qq

4 2
1
2[( )/ ]( ) , where here κ = 9.61 eV   

[55] and is the energy cost for bending the TMD lat-
tice and Γ is a sample specific surface tension induced 
when the TMD monolayer is contacted in a realistic 
device design which breaks the rotational symmetry of 
the membrane. The out-of-plane flexural dispersion 
is described by two regimes governed by the wave vec-

tor scale γ κ=∗q
1 2[ / ] / , above this scale the dispersion is 

quadratic with ω β= | |qqF
qq LT

2( )  with β κ ρ=LT
1
2[ / ]  and 

below it is linear with the dispersion ω β= | |qqF
qq HT
( )  with 

β γ ρ=HT
1
2[ / ] , so we see that sample dependant ten-

sion due to clamping stiffens the flexural modes and 
decreases their density of states at low wave vectors.

Therefore the Hamiltonian HDC describing spin-
flip transition mediated by the deflection coupling 
mechanism is given by

τ λζ= − + +⋅ −
− ⋅H s q s q a ai e e .z

F
x x y y

F F
qq qq

qq rr
qq

qq rr
DC

i i( )( )( ) ( ) ( )†

� (26)

Working with the dipole approximation we can now 
find the matrix element, this yields

λ
ζ ν ν= − | | +φ↓↑ −

↓ ↑
′ ′H M Mqqi

2
e ,nn

F
n n
KK

n n
K K

qqDC
i

, ,
qq( ) ( )( )

� (27)

where ∫ χ χ=τ τ τ τ∗
′
′

′
′

M xx x xdn n n s n s,
,

, ,( ) ( ). Finally we use 

Fermi’s golden rule to compute the relaxation rate, 
as shown in equation (21). We first consider the case 
of weak tension where the phonon dispersion in 
quadratic, which yields

ħ
λ
ρβ

ν νΓ = +−
↓ ↑

′ ′M M
8

n n
KK

n n
K K

DC
weak tens.

2

LT
2 , ,

2

� (28)

So we find that the relaxation rate only depends on the 
strength of the magnetic field by the orbital components 
of the matrix elements and on the valley mixing νs. In 

figure 4 we plot the relaxation rate ΓDC
weak tens.–  and we 

see that while it does only vary in magnetic field by 
the matrix elements and valley mixing terms this can 
change my many orders of magnitude over a largest 
B-field range. While in the case of high tension, where 
the dispersion is linear we find

λ
ρ

µ

β
ν νΓ = +↓ ↑

′ ′g B
M M

4
.B z

n n
KK

n n
K K

DC
high tens.

2 2 2 2

3
HT
4 , ,

2

ħ
˜–� (29)

The orbital electronic states in TMDCs are classified 
by their symmetry under mirror reflection ( −z z→ ), 
in the flat configuration the electronic states with dif-
ferent symmetries do not couple with each other. Local 
curvature of the TMDC lattice breaks this symmetry 
and allows for these previously forbidden spin non-
conserving transitions between orbital electronic states. 
In a previous work we have developed a detailed model 
for the low-energy theory describing these effects [29].

The Hamiltonian Hcurv for these processes is given 
by

τ ξ ξ= − + −H q q h s q h q h s2 ,z x y x x y yqq qq qqcurv 1 2
2 2( ( ) )� (30)

Figure 4.  The relaxation rates for the direct spin-phonon coupling between Kramers pair states Ψ Ψ ′
↑ ↓,K K( ) as a function of 

perpendicular magnetic field. The calculation is preformed for a circular MoS2 quantum dot with a radius of =R 50 nm   with hard 
wall boundary conditions and with a inter-valley coupling of =′V 0.1 meVKK   . For both relaxation rates within the high tension 
regime we took the wave vector scale q* to be of the size such the largest energy scale in the problem is ω ∗qqħ , and therefore we are 
always in regime where the entire phonon spectrum for the flexural modes are linear in qq.

2D Mater. 4 (2017) 025114



9

A J Pearce and G Burkard﻿

where for the case of MoS2 the energy scales have been 

found to be ξ = ˚115 meV A1      and ξ = ˚67 meV A2     . The 
matrix element within the dipole approximation is 
given by

( ) [ ]

( )

( )ζ ξ φ ξ φ

ν ν

= − | | +

× +

↓↑

↓ ↑
′ ′

H

M M

qq
1

2
sin 2 i cos 2

.

nn
F

n n
KK

n n
K K

qq qq qqcurv
2

1 2

, ,

�
(31)

We can once again calculate the relaxation rate for this 
direct spin-phonon coupling mechanism using Fermi’s 
golden rule and we find, in the low tension regime

µ

ρβ
ξ ξ ν νΓ = + +↓ ↑

′ ′g B
M M

32
.B z

n n
KK

n n
K K

curv
weak tens.

2
LT
3 1

2
2
2

, ,

2

ħ
˜

( )–

� (32)
Whereas in the regime of high tension, we obtain

µ

ρβ
ξ ξ ν νΓ = + +↓ ↑

′ ′g B
M M

16
.B z

n n
KK

n n
K K

curv
high tens.

4 4 4

5
HT
6 1

2
2
2

, ,

2

ħ
˜

( )–

� (33)
We observe a higher power law dependance on the 
perpendicular magnetic field in the high tension regime 
within both spin-phonon coupling mechanisms. Due 
to the electrostatic gating structures necessary for the 
experimental realisation of a QD, it is expected that 
TMDs sheets would be most likely to be observed 
within the high tension regime. It is worth noting that 
these relaxation rates could be suppressed further if 
the sample is fabricated with large contact forces with 
the substrate, possibly due to encapsulation. This will 
induce a gapped flexural phonon dispersion which 
will close relaxation channels via flexural phonons 

with energies ω <∆F
qq Gapħ ( ) , leading to reduced spin 

relaxation rates for B-fields below µ>∆B gz BGap/ ˜ .
In figure 4 we present the relaxation rates obtained 

in this section. We see that due to the large intrinsic spin 
orbit coupling in the TMDs the role of the direct spin-
phonon coupling mechanism is very important for 
understand all spin relaxation mechanisms. In the high 
tension regime we see that at low B-fields the relaxation 
rates are suppressed quite significantly, while at high 
B-fields will become the dominant relaxation mech
anism for spin relaxation due the increased power of Bz 
appearing in the rates seen in equations (29) and (33).

3.3.  Pure spin or Valley relaxation
The energy spectrum of  TMD QD under a 
perpendicular magnetic field will exhibit several level 
crossings as the magnetic field is increased. These level 
crossings can be used as pure valley or spin qubit. In this 
section we will consider the relaxation rates between 
these pure spin and valley states meditated by the 
admixture mechanism.

For the lowest orbital levels of the QD high B-field 
of magnitude >B 5T are required for level crossings 
between states with the same angular quantum num-
ber l, as shown in figure 1(c). By considering orbital 
states with large values of l one can find level crossings 

at lower magnitudes of magnetic field, but this intro-
duces additional orbital relaxation effects which can 
occur on very fast time scales. As a consequence we 
will focus our attention on level crossings in the lowest 
orbital level. For concreteness we consider eigenstates 
within the same valley but of opposite spins which have 
a level crossing at a finite B-field B0, and study the relax-
ation of the spin within the same valley and orbital level. 
The energy spectrum around the level crossing can be 
linearised around the B-field B0, this is a good approx
imation given that µ − − �g B B E E 1e B z n k0[ ]/( ) .

As this spin relaxation can occur between states of 
the same valley there is an effective time reversal sym-
metry breaking, as the time reversed partner state to any 
state within one valley will belong to another inequiva-
lent valley [40]. As a consequence their will be no Van 
Vleck cancelation in this regime, leading to a lower 
dependance of the spin relaxation matrix element on 
the perpendicular magnetic field.

Following the same procedure for calculating the 
relaxation rate for the admixture mechanism outlined 
in section 3.1 we find the relaxation rates for the case of 
pure spin relaxation. This process will yield,

ħ
[ ( )]

( ) ( )

( )

∑

π λ

ρ
µ

δ

λ

δ

λ

Γ = −

×
− −

+
− +≠

− +

g

v
g B B

N k

E E

k N

E E

16

2 2
.

KK R

L e B z

k n

n k n k
K K

K k n
K K

n
K

k
K

n k K n k
K K

k n
K K

n
K

k
K

L,DP

4 2
1
2

6 5 0
4

, 1 ,
,

,
,

, 1 ,
,

,
, 2

� (34)
The relaxation rates due to coupling with piezoelectric 
phonons can be found from the same expressions as 
given in equations (23) and (24), while spin relaxation 
rates for the ′K  are acquired via the interchange to 
valley indices in equation (34). The starkest difference 
to the result found in equation (22) is that the matrix 
element is no longer suppressed by a factor of ratio 
Zeeman energy and phonon energy due to Van Vleck 
cancelation. This result gives an analogous result as has 
been predicted for graphene, but with the difference 
that the energy scale of the spin–orbit splitting is larger 
than the orbital level splitting due to confinement.

4.  Conclusions

In this work we have investigated the electron spin 
relaxation mechanisms and their respective T1 times in 
TMDs QDs. In the low field regime where we consider 
the relaxation within a Kramers doublet added by 
disorder induced valley mixing, as this seems the 
most achievable experimental situation. We find the 
magnetic field dependance as ∝B6 due to the role of 
the valleys giving rise to Van Vleck cancelation and the 
nature of the two-dimensional phonon properties, 
also found is a non-monotonic behaviour arising to a 
destructive valley interference. We also find a relaxation 
due to direct spin-phonon coupling which does not 
depend of B-field to lowest order, but is also strongly 
dependent on tension within the sample.
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The electron spin relaxation times predicted in 
this work could be confirmed with the use of spin 
dependant single electron read out techniques, as dem-
onstrated in III–V semiconductors [56]. These tech-
niques should be easily transferable to the gate defined 
quantum dot device designs considered for the TMD 
semiconductors.

Another spin relaxation mechanism not discussed 
in detail in this work is the hyperfine interaction, which 
has been shown to be very important in III–V semi-
conductors such as GaAs [10]. This effect arises due the 
interactions between the electron spins and the bath 
of lattice nuclear spins. Of the elements which make 
up the TMDs the chalcogens have very low densities of 
isotopes with non-zero nuclear spins while the trans
ition metals possess a minority of atoms with non-zero 
nuclear spins [19]1. These low densities of nuclear spins 
make the TMDs an attractive platform for spin qubit 
devices. The energy scale for the hyperfine interaction 
in the TMDs has been predicted to be in the order of 
µ eV   [19], meaning it will be small compared to the 
Zeeman energy at any reasonable B-field. Therefore the 
hyperfine interaction will not be an efficient source of 
spin relaxation unless combined in a higher order pro-
cess and is not as important as the other spin relaxation 
mechanism discussed within this work.

We see that due the combined spin-valley structure 
and large intrinsic spin orbit coupling the TMDs pro-
vides new platform for spintronic applications. In the 
future it would be important to explore mechanisms of 
control of qubits in TMDs, particularly it would be of 
interest to study how the spin-phonon coupling can be 
manipulation for greater control of the electronic spin.
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Appendix.  The momentum operator

In this appendix we will present the explicit relations 
for the momentum operator acting upon the 
eigenfunctions of the QD presented in section 2. These 

eigenfunctions are given by ϕ χΨ =τ ϕ τx x, es
l

l s
i

,( ) ( ) 

where we take χ = | | +τ
τ

| |
− <x x M a l xe , 1,l s

l

l, 2 ,
x
2( ) ( ). Taking 

the definition of the momentum operator presented in 
section 2. and using confluent hypergeometric function 
identities [17, 35] we obtain, for the case that l 0⩾ ,

χ χ= −
+

ϕ ϕ+
<

+

⎡

⎣
⎢

⎤

⎦
⎥k x

l
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l
xe

i 2
e 1

1
,K
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B

l l K
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i 1
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whereas, for the case in which l  <  0,

χ χ= −ϕ ϕ− −
−k x

l
l xe

i 2
e ,K

l
l s
K

B

l
l s
Ki

,
i 1

1,( ) ( )( )� (A.3)
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i 2
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l l K
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,
i 1 ,

1,( ) ( )( )� (A.4)

We see that these act as raising and lowering operators 
on the angular momentum [38]. Expressions for the 

action of the operator τk† upon the eigenfunctions, can 
easily be obtained using the relation = − ′k kK K

†  as these 

operators are related by time reversal symmetry.
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