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With the use of nuclear-spin-free materials such as silicon and germanium, spin-based quantum bits (qubits)
have evolved to become among the most coherent systems for quantum information processing. The new
frontier for spin qubits has therefore shifted to the ubiquitous charge noise and spin-orbit interaction, which are
limiting the coherence times and gate fidelities of solid-state qubits. In this paper we investigate superexchange,
as a means of indirect exchange interaction between two single electron spin qubits, each embedded in a
single semiconductor quantum dot (QD), mediated by an intermediate, empty QD. Our results suggest the
existence of “supersweet spots”, in which the qubit operations implemented by superexchange interaction are
simultaneously first-order-insensitive to charge noise and to errors due to spin-orbit interaction. The proposed
spin-qubit architecture is scalable and within the manufacturing capabilities of semiconductor industry.
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Introduction. Noise-insensitive control of qubits is an
important task in quantum information science [1–4]. In
addition to its use for two-qubit operations of single electron
spin qubits [5], the exchange interaction has been utilized to
control double [5–8] and triple electron spin qubits [9–12]
in semiconductor quantum dots (QDs). However, overcoming
the sensitivity of exchange interaction to charge noise [2,3]
and errors originating from spin-orbit interaction [13,14] has
proved to be a challenging task.

Three electron spin qubits can be operated close to a “sweet
spot”, where the sensitivity of exchange interaction to charge
noise vanishes in first order [10–12,15]. On the other hand,
two-electron S − T0 spin qubits embedded in double QDs,
only have a trivial first-order sweet spot, where the exchange
interaction is smallest (∼t2/U ). A possibility to reduce the
sensitivity of the S − T0 qubit to electric noise is to control
the magnitude of the exchange interaction by controlling the
tunnel coupling instead of controlling the detuning between
the two dots (symmetric operation) [16,17].

The spin-orbit interaction represents a powerful resource
to control spin qubits [18,19]. On the other hand, it can also
reduce the coherence time of the electron spin qubit, hamper
efforts to prolong the coherence time of the electron spin qubit
[20,21], and lead to errors in two-qubit operations [13,14].

Superexchange is the underlying mechanism responsible
for the creation of antiferomagnetic order in CuO and
MnO [22,23], is a possible mechanism for d-wave high Tc

superconductivity [24], and allows for switching between
ferromagnetic and anti-ferromagnetic order in cold atomic
gases [25]. Although the possibility to use mediated ex-
change (superexchange) was mentioned in the original Loss-
DiVincenzo proposal [1], superexchange has not received
significant attention from the spin qubit community (see,
however, Refs. [26–30]). One of the reasons for this lies in
the fact that compared to the direct exchange superexchange
requires an additional quantum dot.
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In this theoretical paper, we investigate superexchange, the
exchange interaction between two single electron spin qubits,
each embedded in a semiconductor QD on the left (L) and right
(R), mediated by an empty quantum dot in the center (C) [see
Fig. 1(a)]. We have discovered a parameter regime in which
the superexchange is nonzero and is simultaneously insensitive
to both charge noise and errors due to spin-orbit interaction
in first order (a nontrivial first-order “supersweet spot”). Our
further findings suggest that the sign and the magnitude of
superexchange can be controlled by varying the detunings
between the QDs.

Model. The superexchange is a fourth-order tunneling
process, in which the (1,0,1) charge state with antiparallel
spins, virtually tunnels via the (1,1,0) or (0,1,1) state to the
(2,0,0), (0,2,0) or (0,0,2) charge state, followed by a tunneling
back to the (1,1,0) or (0,1,1) state and finally again to the
(1,0,1) charge state, but with the spin state of the L and R QD
exchanged, as shown in Fig. 1(b).

We describe the system with a generalized Hubbard Hamil-
tonian H = H0 + H ′ for two electrons in a triple quantum dot,

H0 =
∑
iσ

(
εi + Ei

zσ
)
niσ + U

∑
i

ni↑ni↓ +
∑
〈ij〉

V ninj , (1)

H ′ =
∑
〈ij〉

⎡
⎣∑

σ

tij c
†
iσ cjσ +

∑
σ �=σ̄

t so
ij c

†
iσ cjσ̄

⎤
⎦. (2)

Here, Ez is the Zeeman energy due to an external magnetic
field, tij and t so

ij are the magnitudes of spin-conserving
and spin-orbit-induced spin-non-conserving tunnel hoppings,
respectively, between dots i and j . Furthermore, εi denotes the
energy bias of the ith dot, U is the Coulomb penalization of
the doubly occupied quantum dot, V is the Coulomb energy
of two neighboring dots occupied with single electrons and
ni = ni↑ + ni↓ = c

†
i↑ci↑ + c

†
i↓ci↓ the number operator, with

ciσ (c†iσ ) being the spin creation (annihilation) operator of the
i charge state with spin σ =↓, ↑. The 〈ij 〉 in the index of the
sum denotes that the sum runs over nearest neighbor QDs i

and j , and the index σ �= σ̄ denotes a restricted double sum
which runs over all possible states of different spin.
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FIG. 1. (a) The geometry of the system, where B denotes the
direction of the external magnetic field, tLC are spin-conserving
hoppings between the left (L) and center (C) dot (marked with
dotted blue lines), tCR are spin-conserving hoppings between the
C and the right (R) dot (marked with dashed red lines), and [110]
and [1̄10] are the crystallographic axes. (b) The scheme of all
possible superexchange paths in absence of spin-orbit interactions.
All superexchange paths involve four tunneling events, two between
the L and the C QDs tLC and two between the C and the R QDs tCR .
↑ stands for a spin-up state, ↓ for a spin-down state and fields in the
parentheses denote charge occupancies of the (L,C,R) QDs.

The Coulomb repulsion of doubly occupied quantum
dots is characterized by an energy of U ∼ 1 meV, and the
Coulomb repulsion of neighboring dots being occupied V ∼
0.1U − 0.01U . Therefore we neglect the Coulomb repulsion
of neighboring dots for simplicity. We also assume a linear
triple QD arrangement, allowing us to neglect direct hopping
between the R and the L dots, tLR = t so

LR = 0. Furthermore,
from now on, we will assume that tLC = tCR = t , t so

LC =
t so
CR = tso, a 2DEG in the (001) plane of a zinc-blende

semiconductor and Rashba α and Dresselhaus β spin-orbit
constants of same signs [31]. This means that the magnitude
of the spin-orbit hopping tso is maximal when the linear triple
quantum dot is structured along the [1̄10] crystallographic
axis and minimal when the triple quantum dot is structured
along [110] [see Fig. 1(a)]. The relation between the spin-
conserving t and spin-non-conserving tso hopping is given
by tso = 4t l/(3�so), where l is the interdot separation, and
�so = h̄/(m∗√(α + β)2 sin2 φ + (α − β)2 cos2 φ) is the spin-
orbit length, where φ is the angle between the [110] crys-
tallographic axis and the interdot connection axis. Detunings
in the Hamiltonian Eq. (1) can be expressed in terms of two
parameters, the detuning between the outer dots ε and the
detuning between the center dot and average detuning of the
outer dots δ, see Fig. 2.

Results. We transform the initial generalized Hubbard
Hamiltonian H = H0+H ′ [see Eqs. (1) and (2)] by means of
a fourth-order Schrieffer-Wolff (SW) transformation [32–34],
yielding an effective Hamiltonian in which the superex-
change subspace s = {(↑,0,↓), (↓,0,↑), (↑,0,↑),(↓,0,↓)}
is decoupled from the 11 dimensional subspace of high en-
ergy states h = {(↑,↓,0), (↓,↑,0), (↑,↑,0), (↓,↓,0), (0,↑,↓),
(0,↓,↑), (0,↑,↑), (0,↓,↓), (↑↓,0,0), (0,↑↓,0),(0,0,↑↓)} (see
Ref. [35] at for more details about the SW transformation). For
a linear quantum dot structured along [1̄10] and an external

FIG. 2. Level diagram, where E denotes the energy, x the
position, ε is the energy difference between the outer dots (L and
R), and δ the energy between the average energy of the outer dots (L
and R) and the center (C) QD.

magnetic field parallel to the (001) direction, the effective
Hamiltonian up to forth order in perturbation theory in tij and
t so
ij within the superexchange subspace s is

H̃ = JSESL · SR + D
(
Sx

L − Sx
R

) +
∑

i=L,R

Ei
zS

z
i . (3)

Here, SL and SR are spin operators belonging to the L and
R QDs and JSE is the magnitude of superexchange involving
spin-conserving tunnel hoppings

JSE = 4t4U
U (12δ2 + ε2) − δ(8δ2 + 6ε2)

(ε2 − 4δ2)2(U − 2δ)(U 2 − ε2)
. (4)

The second term in Eq. (3) is the lowest-order spin-orbit
contribution to the exchange coupling, with Sx

L and Sx
R being

the x components of the spin operator corresponding to the
L and R QD, respectively. The magnitude of the spin-orbit
contribution D is given by

D = 2Ezt tso
(
4E2

z − 4δ2 − ε2
)

16
(
E2

z − δ2
)2 − 8

(
E2

z + δ2
)
ε2 + ε4

. (5)

The third term in Eq. (3) is the Zeeman energy with Sz
i being the

z component of the spin operator corresponding to i = L,R

QD. In the process of deriving Eqs. (3)–(5), we have neglected
all terms with a power higher than t4, and only kept the lowest
order contribution involving spin-orbit interaction ∼t tso.

A nontrivial superexchange sweet spot is a point in which
the superexchange is in first order insensitive to fluctuations of
the detuning parameters δ and ε, and furthermore the superex-
change is not zero. Solving the coupled systems of equations
∂JSE/∂ε = 0, ∂JSE/∂δ = 0 and JSE �= 0 for ε and δ, in the case
of vanishing spin-orbit interaction, we obtain four solutions
for ε and δ ε1,2 = 0, δ1,2 = (5 ± √

13)/4, ε3,4 = ±0.745,

δ3,4 = 0.074 in units of U and sweet spots J1(δ1,ε1) = 0.08,
J2(δ2,ε2) = 64.65, J3(δ3,ε3) = J4(δ4,ε4) = 13.8 in units of
t4/U 3, where t is the tunneling and U is Coulomb repulsion
Fig. 3.
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FIG. 3. The superexchange in the absence of spin-orbit inter-
action JSE as a function of the detuning parameters δ and ε. The
points represent the superexchange sweet spots J1(δ1,ε1) = 0.08,
J2(δ2,ε2) = 64.65, and J3(δ3,ε3) = J4(δ4,ε4) = 13.62 in units of
t4/U 3, where t is the tunneling and U is Coulomb repulsion.
The black line marks JSE = 0, black dashed line JSE = −10 and
white dashed line JSE = 10. The white regions represent areas in
which the energy difference �E between the (2,0,0) (0,2,0) (0,0,2)
(1,1,0) (0,1,1) charge states and superexchange states (101) becomes
comparable to t , and therefore no superexchange takes place. Here,
we chose t = 17.8 μeV.

In contrast to a double QD loaded with two electrons, a
linear triple QD loaded with two electrons has four points in the
parameter space of ε and δ in which the exchange interaction
is simultaneously first-order insensitive in fluctuation of this
two parameters. We also note that that the sweet spots J2,
J3, and J4 lie close to the areas in which no superexchange
takes place due to leakage outside the superexchange subspace
(white regions in Fig. 3). The width of the white areas in Fig. 3
is proportional to tunneling t , and this imposes a limit beyond
which the magnitude of superexchange cannot be increased
by increasing the tunnel coupling, while simultaneously
performing superexchange at the double sweet spot. It should
be noted that we can turn superexchange interaction on and
off by controlling only the detuning parameters ε and δ, so

no control of the tunneling parameters t would be needed.
This means that our triple quantum dot qubit can be made
without additional tunneling gates which would control t . This
protects the tunneling hopping t from electric noise induced
in the tunneling gate. Furthermore, (super)exchange is robust
against variations in the hyperfine magnetic field due to the
fact that the speed of the superexchange gate around the sweet
spots J2, J3, J4 ∼ 0.2 ns is much larger then the nuclear spin
coherence time in InGaAs ∼ 10 ns.

We want to find values of the Zeeman energy Ez for
which D = 0 around the sweet spots. This would give rise
to superexchange simultaneously insensitive to charge noise
and spin-orbit effects in first order. By inserting δi and εi

(i = 1, 4) into Eq. (5), we found that such nonzero values
exist corresponding to δ3,4 and ε3,4 and therefore to sweet
spots J3,4, while no nonzero Ez for δ1,2 and ε1,2 exists. Two
such values of the Zeeman energy exist E3,4

z /U = ±0.38 for
each of the sweet spots J3 and J4. The Coulomb repulsion
U ∼ 1 eV in InGaAs quantum dots. The Zeeman energy
of ±0.38U corresponds to an external magnetic field of
BGaAs = ±U/0.44μB = ±14.9 T. However, due to a much
higher g factor, this field is BInAs = ±U/14.7μB = ±0.45 T
for InAs, and thus easier to achieve. As shown in Fig. 4(a), the
point J3 at Ez = ±0.38U is a supersweet spot in which the
superexchange is simultaneously insensitive to charge noise
and spin-orbit effects are vanishing. It should be noted that
spin-orbit interaction is much stronger in InAs compared to
GaAs.

Solving JSE = 0 [Eq. (4)], we calculate δ0 for which the
spin-conserving superexchange is zero for any value of ε and
ε0 for which the superexchange is zero for any value of δ (see
Fig. 3),

δ0 = 1

2

(
1 + 1 − ε2

q1/3
+ q1/3

)
; ε0 = ±2

√
(3 − 2δ)δ2

√
6δ − 1

, (6)

where q = 1 − ε2 +
√

(ε2(ε2 − 1)2) all given in units of
Coulomb repulsion U . It should be noted that the result is
symmetric with respect to the sign of ε. When ε = −1.34U ,
at large negative values of the bias δ, the main contribution
of the superexchange comes from path 6, which gives rise to
negative superexchange (see Table I) as the bias is increased

TABLE I. Six possible superexchange paths involving spin-conserving tunneling with corresponding expressions JSE = ∑
i J

i
SE. The

parameters for which the sign of JSE is valid are the Coulomb repulsion U = 1 meV, the detuning between the outer dots ε = −1.34U , the
detuning between the middle dot and the average of the outer dots −0.2U < δ < 0.3U .

i Superexchange path Superexchange expression Sign of J i
SE

1 (↑,0,↓)
tCR←−−→ (↑,↓,0)

tLC←−−→ (0,↑↓,0)
tLC←−−→ (↓,↑,0)

tCR←−−→ (↓,0,↑) t4/[(U − 2δ)(ε/2 + δ)2] J 1
SE > 0

2 (↑,0,↓)
tLC←−−→ (0,↑,↓)

tCR←−−→ (0,↑↓,0)
tCR←−−→ (0,↓,↑)

tLC←−−→ (↓,0,↑) t4/[(U − 2δ)(ε/2 − δ)2] J 2
SE > 0

3 (↑,0,↓)
tCR←−−→ (↑,↓,0)

tLC←−−→ (0,↑↓,0)
tCR←−−→ (0,↓,↑)

tLC←−−→ (↓,0,↑) −t4/[(U − 2δ)(ε/2 − δ)(ε/2 + δ)] J 3
SE < 0

4 (↑,0,↓)
tLC←−−→ (0,↑,↓)

tCR←−−→ (0,↑↓,0)
tLC←−−→ (↓,↑,0)

tCR←−−→ (↓,0,↑) −t4/[(U − 2δ)(ε/2 − δ)(ε/2 + δ)] J 4
SE < 0

5 (↑,0,↓)
tCR←−−→ (↑,↓,0)

tLC←−−→ (↑↓,0,0)
tLC←−−→ (↓,↑,0)

tCR←−−→ (↓,0,↑) t4/[(U − ε)(ε/2 + δ)2] J 5
SE > 0

6 (↑,0,↓)
tLC←−−→ (0,↑,↓)

tCR←−−→ (0,0,↑↓)
tCR←−−→ (0,↓,↑)

tLC←−−→ (↓,0,↑) t4/[(U + ε)(ε/2 − δ)2] J 6
SE < 0
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FIG. 4. (a) The strength of the spin-orbit contribution D around the “sweet spot” J3 as a function of the detuning parameter ε and δ for
Ez = 0.38U . The dashed black line marks a path along which D = 0. (b) Superexchange as a function of δ for ε = −1.34 U in the case of
vanishing spin orbit. (Inset) Magnitude of different exchange paths in the context of Table I in the case of vanishing spin orbit. The horizontal
black dashed line represents the point δ0 in which JSE = 0. (c) Coherent superexchange oscillations as a function of the detuning δ and time T in
the case of vanishing spin-orbit interaction. The probability to occupy the (↓,0,↑) state is not displayed because P↑0↓ = 1 − P↓0↑. Parameters
of the plots are tunneling t = 17.8 μeV, detuning ε = −1.34 U, the Coulomb repulsion U = 1 meV.

towards the positive values, the superexchange path 1 becomes
more dominant yielding a positive sign of superexchange [see
Figs. 4(b) and 4(b), inset].

Now we will investigate the dynamical evolution of spin
states caused by superexchange interaction in the absence
of spin-orbit interaction. We start by initializing a (↑,0,↓)
state. The time evolution of the system in the superexchange
subspace is modeled in the following way: ψSE(T ) = UψSE(0),
where ψSE(0) is the initial wave function corresponding
to the initialization of the (↑,0,↓) state, ψSE(T ) the wave
function at time T , and U = exp (−iH̃T /h̄) where H̃ is
given by Eq. (3). In Fig. 4(d), we observe that superexchange
oscillations are suppressed around the point δ = δ0. Areas
above and below the black line correspond to different signs of
superexchange.

Conclusion. We have investigated coherent superexchange
and found points in parameter space in which the superex-
change is both insensitive to charge noise and the spin-orbit
contribution is zero. Furthermore, we have shown that the sign
of the superexchange can be changed by varying the detuning
parameters. An experimental implementation of our findings
would allow for charge noise-insensitive, error-free two-qubit
operation of the spin 1/2 qubit and charge-noise-insensitive,
error-free control of the S − T0 qubit around the exchange
axis. The implications of our findings to the operation of the
exchange only qubit in a charge-noise-insensitive manner are
planned as a forthcoming investigation.
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[20] M. J. Rančić and G. Burkard, Phys. Rev. B 90, 245305
(2014).

[21] J. M. Nichol, S. P. Harvey, M. D. Shulman, A. Pal, V. Umansky,
E. I. Rashba, B. I. Halperin, and A. Yacoby, Nat. Commun. 6,
7682 (2015).

[22] H. Kramers, Physica 1, 182 (1934).
[23] P. W. Anderson, Phys. Rev. 79, 350 (1950).
[24] G. Kotliar and J. Liu, Phys. Rev. B 38, 5142(R) (1988).
[25] S. Trotzky, P. Cheinet, S. Fölling, M. Feld, U. Schnorrberger,

A. M. Rey, A. Polkovnikov, E. Demler, M. Lukin, and I. Bloch,
Science 319, 295 (2008).

[26] M. Trif, F. Troiani, D. Stepanenko, and D. Loss, Phys. Rev. Lett.
101, 217201 (2008).

[27] R. Sánchez, F. Gallego-Marcos, and G. Platero, Phys. Rev. B
89, 161402(R) (2014).

[28] T. Baart, T. Fujita, C. Reichl, W. Wegscheider, and L. Vander-
sypen, Nat. Nanotechnol. 12, 26 (2016).

[29] C.-Y. Hsieh, Y.-P. Shim, M. Korkusinski, and P. Hawrylak, Rep.
Prog. Phys. 75, 114501 (2012).

[30] Y. X. Cheng, Y. D. Wang, J. H. Wei, Z. G. Zhu, and Y. J. Yan,
Phys. Rev. B 95, 155417 (2017).

[31] S. Giglberger, L. E. Golub, V. V. Bel’kov, S. N. Danilov, D.
Schuh, C. Gerl, F. Rohlfing, J. Stahl, W. Wegscheider, D. Weiss
et al., Phys. Rev. B 75, 035327 (2007).

[32] R. Winkler, S. Papadakis, E. De Poortere, and M. Shayegan,
Spin-Orbit Coupling in Two-Dimensional Electron and Hole
Systems (Springer, Berlin, Heidelberg, 2003).

[33] S. Bravyi, D. P. DiVincenzo, and D. Loss, Ann. Phys. 326, 2793
(2011).

[34] J. Romhányi, G. Burkard, and A. Pályi, Phys. Rev. B 92, 054422
(2015).

[35] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevB.96.201304 for more details about the SW
transformation.

201304-5

https://doi.org/10.1103/PhysRevB.90.245305
https://doi.org/10.1103/PhysRevB.90.245305
https://doi.org/10.1103/PhysRevB.90.245305
https://doi.org/10.1103/PhysRevB.90.245305
https://doi.org/10.1038/ncomms8682
https://doi.org/10.1038/ncomms8682
https://doi.org/10.1038/ncomms8682
https://doi.org/10.1038/ncomms8682
https://doi.org/10.1016/S0031-8914(34)90023-9
https://doi.org/10.1016/S0031-8914(34)90023-9
https://doi.org/10.1016/S0031-8914(34)90023-9
https://doi.org/10.1016/S0031-8914(34)90023-9
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRev.79.350
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1103/PhysRevB.38.5142
https://doi.org/10.1126/science.1150841
https://doi.org/10.1126/science.1150841
https://doi.org/10.1126/science.1150841
https://doi.org/10.1126/science.1150841
https://doi.org/10.1103/PhysRevLett.101.217201
https://doi.org/10.1103/PhysRevLett.101.217201
https://doi.org/10.1103/PhysRevLett.101.217201
https://doi.org/10.1103/PhysRevLett.101.217201
https://doi.org/10.1103/PhysRevB.89.161402
https://doi.org/10.1103/PhysRevB.89.161402
https://doi.org/10.1103/PhysRevB.89.161402
https://doi.org/10.1103/PhysRevB.89.161402
https://doi.org/10.1038/nnano.2016.188
https://doi.org/10.1038/nnano.2016.188
https://doi.org/10.1038/nnano.2016.188
https://doi.org/10.1038/nnano.2016.188
https://doi.org/10.1088/0034-4885/75/11/114501
https://doi.org/10.1088/0034-4885/75/11/114501
https://doi.org/10.1088/0034-4885/75/11/114501
https://doi.org/10.1088/0034-4885/75/11/114501
https://doi.org/10.1103/PhysRevB.95.155417
https://doi.org/10.1103/PhysRevB.95.155417
https://doi.org/10.1103/PhysRevB.95.155417
https://doi.org/10.1103/PhysRevB.95.155417
https://doi.org/10.1103/PhysRevB.75.035327
https://doi.org/10.1103/PhysRevB.75.035327
https://doi.org/10.1103/PhysRevB.75.035327
https://doi.org/10.1103/PhysRevB.75.035327
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1016/j.aop.2011.06.004
https://doi.org/10.1103/PhysRevB.92.054422
https://doi.org/10.1103/PhysRevB.92.054422
https://doi.org/10.1103/PhysRevB.92.054422
https://doi.org/10.1103/PhysRevB.92.054422
http://link.aps.org/supplemental/10.1103/PhysRevB.96.201304



