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Electric control of the exciton fine structure in nonparabolic quantum dots
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We show that the nonparabolic confinement potential is responsible for the nonmonotonic behavior and sign
change of the exciton fine-structure splitting (FSS) in optically active self-assembled quantum dots. This insight
is important for the theoretical understanding and practical control by electric fields of the quantum state of
the emitted light from a biexciton cascade recombination process. We find that a hard-wall (box) confinement
potential leads to a FSS that is in better agreement with experimentally measured FSS than a harmonic potential.
We then show that a finite applied electric field can be used to remove the FSS entirely, thus allowing for
the creation of maximally entangled photons, being vital to the growing field of quantum communication and
quantum key distribution.
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I. INTRODUCTION

Entangled photons, a nonclassical state of light, are an indis-
pensable part of proposed and implemented protocols for opti-
cal quantum communication and quantum key distribution.1

Parametric down conversion (PDC) is a well-studied and
established way of creating entangled photons but suffers from
two major drawbacks: Since on the order of 1010 pump photons
are required per created photon pair, the process is rather
inefficient. Second, the creation time is highly stochastic.
Most protocols, however, require an on-demand source of
fixed photon number, leading to the search for alternatives
to PDC. One of the most promising candidates is the biexciton
cascade recombination from a single semiconductor quantum
dot (QD)2 considered in this paper.

The biexciton is the bound state of two electrons and two
holes in a semiconductor. Upon radiative recombination, one
electron and one hole are annihilated by the emission of a
single photon, leaving a single exciton. As a next step in the
cascade, the exciton recombines and emits a second photon.
Because of the Pauli exclusion principle the ground state of the
biexciton is a singlet, whereas there are two possible exciton
states, characterized by the underlying px or py orbitals of the
hole. Thus the emitted light can have either horizontal, |H〉,
or vertical, |V〉, polarization when emitted from the biexciton
and from the intermediate exciton. If the two exciton states are
energetically indistinguishable, the two recombination paths
are equivalent with respect to the frequency of the emitted
light, and the two photons are entangled in polarization, being
described by the state (|HH〉 + |VV〉)/√2. The process is
schematically shown in Fig. 1.

For real QDs, however, the intermediate exciton states are
typically not degenerate, but split by an energy δ known
as the exciton fine-structure splitting (FSS). Since the two
recombination paths now have energetically different inter-
mediate levels, a simple frequency measurement could reveal
the “which-way” information, and thus the entanglement is, at
least partially, lost.3 Understanding of the FSS is essential for
any model considering the entanglement of the light produced
by the biexciton cascade recombination and there are several
different sources contributing to the FSS, which have been
the topic of a number of experimental and theoretical studies
in recent years. These include intrinsic effects caused by the

underlying crystal orientation,4–7 piezoelectric effects,8 and
the QD geometry.9–11 There is a fundamental physical differ-
ence between the intrinsic splitting and geometry-dependent
splitting. As pointed out by Singh and Bester,7 for the intrinsic
case, the FSS decreases for smaller dots, as opposed to the
geometry-dependent effect, where a smaller dot gives rise to
a larger FSS. We claim that these two statements do not stand
in conflict with each other, since they describe two different
mechanisms. The intrinsic splitting is caused by the actual
shape of the underlying atomic orbitals whereas the geometry-
dependent one is mediated by the electron-hole overlap. This
means that the intrinsic FSS depends on the number of atomic
orbitals, which increases for larger dots, in contrast to the
geometry-dependent FSS which scales with the electron-hole
overlap that decreases with increasing dot size. In this paper,
we presume that the crystal orientation has already been chosen
to eliminate the intrinsic FSS and focus on the geometry-
dependent splitting caused by the long-range electron-hole
exchange interaction and determined by the in-plane shape of
the QD. We especially investigate the possibility of restoring
degeneracy by virtue of applying an in-plane electric field. The
dependence of the FSS on an in-plane electric field has been
experimentally studied and it was confirmed that the FSS can
be removed12,13 but a complete theoretical understanding is
still missing. Earlier work using a harmonic dot confinement
potential finds qualitatively different results.10 Here we use a
more realistic confinement potential and compare the obtained
FSS to the one from harmonic confinement and to experimental
results. Our theory explains the observed FSS in InGaAs QDs
including the sign change of the FSS when a lateral electric
field was applied.13 In addition to the application of lateral
electric fields, there are other methods of reducing the FSS
by strain,5 vertical electric fields,17–19 or a magnetic field,20 as
well as proposals to recover the entanglement in the presence
of a finite FSS, such as spectral filtering,14,15 time reordering,16

or embedding the QD in an optical cavity.21

II. THEORETICAL MODEL

We consider a quantum dot composed of one cubic
semiconductor surrounded by a material composed of another
cubic semiconductor. The electronic structure is characterized
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FIG. 1. (Color online) The biexciton recombination cascade.
For degenerate intermediate exciton levels (δ � �, where � is
the linewidth of the emitted light and δ the FSS) the two
decay paths are indistinguishable and the recombination can
be described by |XX〉 |0〉 → (|X〉 |H〉 + |Y〉 |V〉)/√2 → |0〉 (|HH〉 +
|VV〉)/√2 where we use the notation |electronic〉 |photonic〉 and
|XX〉 is the biexciton state, |X〉 (|Y〉) denotes the exciton state with
horizontal (vertical) polarization, |H〉 (|V〉) the photonic state with
horizontal (vertical) polarization, and |0〉 is the electronic ground
state or photon vacuum.

by bands of which we consider the conduction band states,
labeled ms = ±1/2, and the valence band states, labeled
mj = ±3/2 for heavy holes and mj = ±1/2 for light holes.
Because of the large distance in energy to these valence band
states we do not consider the split-off band. The surrounding
material is required to have a conduction(valence) band of
higher(lower) energy at the � point than the dot material. We
start from a general Hamiltonian, describing two particles in a
semiconductor,

H0 = H1(r1) + H1(r2) + V (r1 − r2), (1)

where H1(r) is the single-particle Hamiltonian,

H1(r) = p2

2m
+ Vlattice(r), (2)

with the underlying periodic lattice potential, Vlattice(r), and
V (r1 − r2) = e2/4πε0εr |r1 − r2|, the Coulomb potential with
the relative dielectric constant εr . In the k · p method a basis
for the electron wave functions is formed from the Bloch waves
as

ϕsk(r) = eik·rus(r), (3)

where s is a band index and us(r) = us,k=0(r) is the Bloch
function at the �-point of band s. For the study of two-particle
systems an antisymmetric wave function is needed and thus
we form the two-particle basis

ϕsk1tk2 (r1,r2) = ϕsk1 (r1)ϕtk2 (r2) − ϕsk1 (r2)ϕtk2 (r1)√
2

. (4)

Inserting this into Eq. (1), we find a k-dependent Hamiltonian
containing an interband k · p term. Treated as a perturbation up
to second order, these terms alone give rise to the effective mass
approximation. As shown by Pikus and Bir,22 including the
Coulomb exchange between particles leads to more correction
terms such as the band-diagonal first-order Hartree correction,

HC
s ′k′

1t
′k′

2,sk1tk2
= δss ′δtt ′Vk′

1−k1δk1+k2,k′
1+k′

2
, (5)

with Vk the Fourier transform of the Coulomb potential as well
as the third-order exchange term, Ha , with elements

〈s ′k′
1t

′k′
2|Ha|tk2sk1〉 =

∑
αβ

h̄2

m2

pα
s ′t p

β

t ′s

E2
g

(
kα

1 − k′
2
α)

× (
k

β

1 − k′
2
β)

Vk′
1−k2δk1+k2,k′

1+k′
2
, (6)

where Eg is the band gap energy, α and β run over the spatial
coordinates, and 〈r1,r2|tk2sk1〉 = ϕsk1 (r2)ϕtk2 (r1). With the
exchange interaction known for basis vectors, the two-electron
wave functions can be expressed as

	st (r1,r2) =
∑
k1,k2

csk1,tk2ϕsk1tk2 (r1,r2)

= 1√
2

∑
k1,k2

csk1,tk2e
i(k1·r1+k2·r2)us(r1)ut (r2)

− 1√
2

∑
k1,k2

csk1,tk2e
i(k1·r2+k2·r1)us(r2)ut (r1)

= ψst (r1,r2) − ψst (r2,r1)√
2

= 〈r1,r2|st〉. (7)

We choose

ψst (r1,r2) = ψs(r1)ψt (r2), (8)

where

ψs(r) =
∑

k

cske
k·rus(r) = Fs(r)us(r), (9)

and Fs(r) is the envelope function which is the solution without
corrections (5) and (6) to the equation

−h̄2∇2

2m∗
s

Fs(r) + Vs(r)Fs(r) = εsFs(r), (10)

where m∗
s is the effective mass of band s and Vs(r) is

a band-dependent potential varying on a mesoscopic scale
describing the confining structure such as a quantum dot. The
new correction terms (5) and (6) can now be expressed in terms
of envelope functions and are equal to

〈s ′t ′|HC |st〉= δss ′δtt ′

∫
|Fs(r1)|2 |Ft (r2)|2 V (r1 − r2) dr1 dr2

(11)

and

〈s ′t ′|Ha|st〉 = −
∑
αβ

h̄2

m2

pα
s ′tp

β

t ′s

E2
g

∫
∂2V (r1 − r2)

∂rα
1 ∂r

β

1

×F
†
s ′ (r1)Ft (r1)F †

s (r2)Ft ′(r2)dr1 dr2. (12)

A similar expression was presented by Kadantsev and
Hawrylak10 as well as by Tong and Wu.11 If we let t ′,t
represent valence band electrons we need to reverse the order
and apply the time-reversal operator when going over from
the electron-electron picture to the electron-hole picture. This
amounts to

H
a(e−h)
s ′t ′,st = −H

a(e−e)
s ′�t,s�t ′ , (13)

where � is the time-reversal operator.22
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A suitable potential, Vs(r), has to be chosen to properly
describe the system under consideration, in our case the quan-
tum dot. We discuss different choices in the next section. For a
given Vs(r), we numerically solve Eq. (10) to find the envelope
functions. This provides us with the single-particle states
|s = ms〉 and |t = mj 〉 for electrons and holes from which
exciton product states are formed as |ms,mj 〉 = |ms〉 ⊗ |mj 〉.
This method allows considerably higher spatial resolution than
if the original problem, having 6 spatial degrees of freedom,
were to be solved directly. Using these envelope functions,
the integrals Eqs. (11) and (12) are calculated numerically and
the following exciton eigenvalue problem is formulated in the
basis of |ms,mj 〉 as

(H 0 + HC + Ha)|X〉 = EX|X〉, (14)

with H 0 being the excitation and confinement energies

H 0
m′

sm
′
j ,msmj

= δmsm′
s
δmj m

′
j

(
Eg + εms

+ εmj

)
, (15)

in which εs, s ∈ {ms,mj } are the energies from Eq. (10).
This eigenvalue problem is solved numerically and two of the
eigenvectors, |Xx〉 and

∣∣Xy

〉
, are identified as the ones having

maximal projections on |σ+〉 + |σ−〉 and |σ+〉 − |σ−〉, respec-
tively, where |σ±〉 = | ∓ 1/2,±3/2〉 for heavy excitons and
|σ±〉 = | ± 1/2,±1/2〉 for light excitons. The fine-structure
splitting is now calculated as

δ = Ex − Ey, (16)

with exciton energies Ex,Ey taken from Eq. (14).

III. RESULTS

We now discuss two choices of confinement potentials,
Vs(r). The objective is to describe the confinement of electrons
and holes to a given nanostructure. In our case we are interested
in a quantum dot with dimensions lx × ly × lz. Typically we
let lx 
= ly which causes a FSS. Physically the confinement
comes from a change in the underlying composition such as
going from InGaAs to GaAs. It is necessary to take a band-
dependent potential into account since electrons and holes
are usually subject to different band offsets. Further, we also
include an electric field which is represented by −qsE · r in
the Hamiltonian, where qs is the charge of a particle in band s,
i.e., −e (+e) for conduction (valence) bands. Here, we restrict
ourselves to heavy, bright excitons, i.e., |∓1/2,±3/2〉.

A. Harmonic potential

A simple model for the QD is the harmonic confining
potential

Vs(r) =
(∑

α

m∗
s ω

2
sα

2
r2
α

)
− qsE · r. (17)

The solutions are harmonic oscillator wave functions with
characteristic lengths lsα = √

h̄/m∗
s ωsα defining the spread

of the wave function and lE
sα = qsEα/m∗

s ω
2
sα , the electric

displacement. The FSS in this case as a function of the electric
field is plotted in Fig. 2. We observe that the FSS is decreasing
with increasing field, but does not change sign. Experiments,
however, show another picture including a nonmonotonic
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FIG. 2. (Color online) The FSS δ calculated for a harmonically
confined InGaAs dot with characteristic lengths 30 × 20 × 7 nm3

and various directions of the electric field. Regardless of the direction
of the field, the FSS is monotonically decreasing and vanishes only
asymptotically.

behavior as well as a change of sign.13 This is because in a har-
monically confined dot, the electron and hole can be arbitrarily
separated only due to the electric field. This neglects actual
“hard wall” confinement of the dot, which is not affected by the
electric field, and this suggests that another model is necessary
to properly understand the experimentally observed FSS.

B. Hard-wall confinement

To incorporate the effects of a physical confinement we
consider a rectangular box of dimensions lx × ly × lz which
has a potential step at the boundary, i.e.,

Vs(r) = −�Es

(∏
α

χ[−lα/2,lα/2](rα)

)
− qsE · r, (18)

where �Es is the band offset and χA(r) is the characteristic
function of the set A. As can be seen in Fig. 3 the FSS
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FIG. 3. (Color online) The FSS δ calculated for
In0.2Ga0.8As/GaAs dot of dimensions 55 × 50 × 7 nm3 with a
hard-wall confinement in the presence of an electric field applied in
various directions. The FSS is sensitive to the direction in which the
field is applied: In the x̂ direction the FSS decreases and changes
sign at a critical field strength where δ = 0 (here, at Ex � 35 kV/m).
When the field is applied in the ŷ direction, the FSS increases
instead.
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FIG. 4. (Color online) Hole envelope functions with, F E
mj

(r),
and without, Fmj

(r), applied electric field Ex in x direction, for
(a) harmonic and (b) hard-wall confinement. For the case of harmonic
confinement, the wave functions are translated by lE

mj
and are no

longer inside the physical region of the dot when a field Ex is applied
but retain their shape. For the hard-wall potential, the main effect of
the electric field is to deform the wave functions; this is accompanied
by a relatively small shift that leaves the particles inside the dot. The
deformation affects the second derivative of F E

mj
(r) which determines

the FSS; see Eq. (12).

now exhibits more structure and depends more drastically
on the direction of the applied field. A comparison between
the envelope functions found for the two different cases
reveals that the harmonically confined particles are displaced
but not deformed by the electric field, whereas for the
case of a hard-wall confinement, the shape of the envelope
function is modified as well. Figure 4 shows the effect for
the hole envelope function. When an electric field is applied,
the harmonically confined particles move outside physical
boundaries of the dot, whereas the particles confined by a
step potential remain inside the box. By inspecting Eq. (12)
we also note that the exchange integral depends not only
on the electron-hole overlap but also on the curvature of
the envelope wave function. The curvature, in turn, depends
on E in the case of the hard-wall confinement, but not for
the harmonic confinement. The general features of the FSS
should not depend on details of the confining potential, which
was also confirmed by convoluting the hard-wall potential
by a Gaussian function of different softness, σ : V σ

s (r) =
−�Es

∏
α

∫
(σ

√
2π )−1χ[−lα/2,lα/2](tα)e−(rα−tα )2/2σ 2

dtα . For

the cases of σ = 1 nm, about 2 monolayers, a small shift of
the sign change was observed (35 kV/m to 40 kV/m) and for
σ = 4 nm, about 7 monlayers, the sign change occurs at about
82 kV/m, but the general behavior is the same; the E field
eliminates the FSS which means that the hard-wall confine-
ment model already captures the important features. Different
aspect ratios and sizes of the dot were also investigated. For
fixed aspect ratios a larger dot is more sensitive to the applied
E field while a smaller dot has a larger FSS. If the dot is
made more asymmetric (only lx increased) the sign change
occurs for higher electric fields. If lz is decreased, the FSS is
increased due to the larger overlap of the wave functions.

IV. CONCLUSIONS

We theoretically investigated the exciton FSS for quantum
dots of cubic semiconductor materials and its dependence
on dot geometry and applied electric field. We found that
the choice of confinement potential in the model is of
great importance and we noted that different confinement
potentials can lead to qualitatively different results. A model
with a harmonic confinement potential cannot capture the
experimentally observed features including a sign change of
the FSS under the application of an electric field. Using a
more realistic potential step (hard wall) barrier, we find a
more complex relation between FSS and field and predict the
possibility of a complete suppression of the FSS, as observed
in experiments.13 We trace the additional FSS structure back
to the fact that electron and hole wave functions are not
only displaced but also deformed by the hard-wall potential.
This deformation influences the FSS via the second derivative
of the envelope function. This is a general feature of QDs
with a well-defined spatial confinement and does not depend
on details. The suppression of the FSS by means of an
electric field allows the creation of entangled photons without
additional postprocessing which is of interest to the field of
quantum communication. Open questions include the effects
of an applied vertical field as well as the influence of light
holes.
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