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Motivated by the recent experimental progress in exploring the use of a nitrogen-vacancy (NV)
center in diamond as a quantum computing platform, we propose schemes for fast and high-fidelity
entangling gates on this platform. Using both analytical and numerical calculations, we demonstrate
that synchronization effects between resonant and off-resonant transitions may be exploited such
that spin-flip errors due to strong driving may be eliminated by adjusting the gate time or the
driving field. This allows for fast, high fidelity entangling operations between the electron spin and
one or several nuclear spins. We investigate a two-qubit system where the NV center is comprised
of a 15N atom and a qubit-qutrit system for the case of a 14N atom. In both cases, we predict
a complete suppression of off-resonant driving errors for two-qubit gates when addressing the NV
electron spin conditioned on states of nuclear spins of the nitrogen atom of the defect. Additionally,
we predict fidelities > 0.99 for multi-qubit gates when including the surrounding 13C atoms in the
diamond lattice in the conditioned logic.

I. INTRODUCTION

Among the candidates for a solid-state hardware plat-
form for quantum technologies, single defects in solids
have attracted increasing attention [1–3]. Next to tin va-
cancy centers [4] or silicon vacancy centers in diamond
[5], and vacancy centers in silicon carbide [6–9], the neg-
atively charged nitrogen vacancy center (NV center) in
diamond has recently been actively investigated as a plat-
form for quantum sensing, quantum networks, and as a
near-term candidate for quantum computation [10–19].

The NV center consists of a nitrogen atom neighbour-
ing an empty site in a diamond lattice. Due to the
high isolation from its environment, the electron spin
of this system has promising properties for its use in
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FIG. 1. Sketch of a nitrogen-vacancy (NV) center in diamond,
consisting of an empty site in a diamond lattice next to a ni-
trogen atom replacing one carbon atom. In its negative charge
state, the NV ground state is a spin triplet, which couples by
hyperfine interaction to the intrinsic nitrogen nuclear spin as
well as to the nuclear spins of surrounding carbon 13C atoms
in the host diamond lattice.
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quantum information processing applications: It features
long coherence times [20, 21], even at elevated tempera-
tures up to room temperature, and is optically address-
able for initialization [22] and readout [23]. By hyper-
fine interaction, the electron spin couples to the intrin-
sic nuclear nitrogen spin forming a two-qubit (or qubit-
qutrit) platform. Additional qubits arise by controlling
the coupling to the long-lived nuclear spins of naturally
occurring carbon-13 atoms in the host diamond lattice,
providing a quantum register for storing and process-
ing quantum states, where full coupling and control of
nine nuclear spins has been demonstrated experimentally
[24–27]. Scaling may be realized by dipolar-mediated
electron-electron coupling between neighbouring NV cen-
ters [28], and long-range connectivity by cavity-mediated
electron-photon coupling [29–32] or by magnon-mediated
NV-NV entanglement creation [33]. Qubit control and
manipulation is performed with microwave and radio-
frequency (rf) laser pulses where high-fidelity single-qubit
as well as entangling electron-nuclear spin gates have
been demonstrated experimentally, between the electron
spin and the nitrogen nuclear spin as well as electron-
nuclear gates including the nuclear spin of carbon-13
atoms, based on dynamical decoupling sequences and
composite pulse schemes [20, 23–25, 27, 34–45]. Recent
proposals also include a holonomic two-qubit gate [46]
and the use of the SMART protocol [47]. The coherence
properties of these systems [48], together with its cen-
tral spin connectivity, can be exploited for small quan-
tum algorithms and quantum simulation [49], as well as
quantum error correcting codes [20, 40, 50–52] and fault-
tolerant operations [53], further demonstrating the po-
tential of the NV systems as quantum registers.

One scheme for an entangling gate consists of driving
the NV electron spin in a frequency selective manner,
conditioned on states of the spins of the surrounding nu-
clei. Besides the challenge of the central spin decoherence
due to the nuclear spin bath [54–58], a main challenge of
these gates lies in avoiding the addressing of unwanted
transitions in the dense energy spectrum of the hyperfine-
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coupled system: the hyperfine interaction is always on,
and the spectrum is unavoidably crowded. This strongly
limits the fidelity of a standard π-pulse both for single
and for multi-qubit gates. This may either be avoided
by operating in the weak driving regime [23, 35, 59] at
the cost of slower gate operations, or by relying on com-
plex pulse sequences designed digitally by optimal control
schemes [39–42, 60–62].

In this paper, we follow a different approach. We
address the challenge posed by unintended off-resonant
driving by proposing a solution which allows for Rabi
frequencies beyond the weak driving regime and thus for
fast gate operations, while at the same time eliminating
the error due to the off-resonant drive completely. We
show that this is possible by exploiting synchronization
effects between wanted and unwanted transitions, which
occur for certain choices of intensity and frequency of the
external AC and DC magnetic fields. With this, we build
on a technique which has emerged in the field of nuclear-
magnetic resonance spectroscopy [63–66], and has also
been shown theoretically [67, 68] and demonstrated ex-
perimentally [69] for semiconductor spin qubits. We em-
ploy the synchronization technique and tailor it to differ-
ent types of NV center registers, where we focus on the
entangling operation which rotates the central electron
spin conditioned on the state of one (CnNOTe) or more
(CCnNOTe) nuclear spins in the register.
The remaining sections of this paper are organized as

follows. In Sec. II, we present the model we use to de-
scribe the NV system. Afterwards, in Secs. III-V, we
explain the synchronization scheme and its implenmen-
tation for the NV center with one or several coupled nu-
clei. Here, we first demonstrate the applicability in case
of the NV center built with a 15N nitrogen atom. Next,
we investigate the case of a NV-14N system. We then
extend the analysis to the case of additional coupled 13C
nuclei. Finally, in Sec. VI, we summarize our findings
and offer perspectives for further research.

II. MODEL

We consider a single negatively charged NV center, a
point defect characterized by a nitrogen atom (either 15N
or, with much higher probability, 14N), replacing a car-
bon atom in a diamond lattice where one of the nearest-
neighboring sites is vacant (see Fig. 1). Its four orbitals
are filled with six electrons leading to an 3A2 electron
spin-1 triplet ground state. By the hyperfine interaction,
the electron spin couples to the intrinsic nuclear spin of
the nitrogen atom leading to a hyperfine splitting of the
energy levels. The nitrogen nuclear spin quantum num-
ber depends on the isotope and is I15N = 1/2 (I14N = 1)
in case of a 15N (14N) atom. The electron spin also cou-
ples to the nuclear spins of the surrounding carbon 13C
atoms which may be found with a natural concentration
of 1.1% in the diamond lattice and comprise a nuclear
spin I13C = 1/2. To lift the degeneracy of the electronic
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FIG. 2. Energy level scheme of an NV center comprising a
15N atom. Near the ground-state level anticrossing, the two
electronic spin states ms = 0, ms = −1 are relevant at low
energy, while the ms = 1 level (not shown) is far detuned.
Shown are the eigenenergies of He (left), He +H15N

i (center),
and He +H15N

i +H15N
n (right). The red arrow indicates the

transition under study.

spin levels ms = ±1 as well as the nuclear spin levels
m15N

n = ±1/2 (m14N
n = ±1) and m13C

n = ±1/2, a static
magnetic field B = (0, 0, Bz) is applied along the direc-
tion of the principal axis of the NV center.
The Hamiltonian describing the system is given by

H0 = He +
∑
j

Hj
n +

∑
j

Hj
i , (1)

with the electronic, nuclear, and interaction parts,

He = DS2
z + γeBzSz, (2)

Hj
n = Qj(Ijz )

2 + γj
nBzI

j
z , (3)

Hj
i = SAjIj , (4)

where we choose energy units such that ℏ ≡ 1, S =
(Sx, Sy, Sz) denotes the electronic spin operator with
S = 1, and where the index j in Equation (1) runs over
all coupled nuclear spins. Equation (2) describes the free
evolution of the electron spin, where D/(2π) = 2.88GHz
is the magnitude of the zero-field splitting separating the
electronic spin levels ms = 0 and ms = ±1. The reduced
electronic gyromagnetic ratio is given by γe = µBge with
µB/h = 14.00GHz/T and ge = 2.00. Equation (3) de-
scribes the free evolution of the nuclear spin with label
j ∈ {15N, 14N, 13C}. This labeling is unique because
we are considering up to two nuclear spins which are
always of different type. Here, Qj denotes the respec-
tive quadrupole splitting, Ij = (Ijx, I

j
y , I

j
z ) the nuclear

spin operator and the reduced nuclear gyromagnetic ra-
tio is given by γj

n = µNgjn with the nuclear magneton
µN/h = 7.63MHz/T and gjn the respective nuclear g fac-
tor [70]. Equation (4) captures the hyperfine interaction
between the electron and the jth nuclear spin described
by the hyperfine tensor Aj .

The NV system can be initialized [3, 22] and read
out [21, 23, 53, 71] optically via the electron spin and
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its coupling to the nuclear spins [27, 50, 53]. This re-
sults in the connectivity of a central-spin system where
the electron spin mediates all couplings. Experimental
quantum control has first been demonstrated on the NV
electron spin and on strongly coupled nuclear spins, in-
cluding the nuclear spin of the nitrogen atom as well
as the spin of surrounding carbon-13 nuclei where the
parallel hyperfine component A|| is much larger than
the inverse of the coherence time of the electron T ∗

2,e,
thus A|| ≫ 1/T ∗

2,e [23, 34–36, 38–41]. In this case,
hyperfine-split energy levels are resolvable in the optically
detected magnetic resonance (ODMR) spectrum, which
may be used for conditional operations both on elec-
tronic and nuclear qubits. In 2012, three groups indepen-
dently demonstrated conditional logic with qubits based
on weakly coupled carbon-13 atoms using dynamical-
decoupling (DD) sequences on the electron spin [24–
26, 43], a method which has later been combined with
rf-pulses on nuclear spins (DDrf sequence) [27].

III. ELECTRON-NUCLEAR TWO-QUBIT
ENTANGLING GATE

We begin our analysis by deriving a protocol for an
NV center including an 15N atom, thus j = 15N in
Eq. (1), Eq. (3) and Eq. (4). As a spin 1/2, 15N
does not exhibit a quadrupole splitting, Q15N = 0,
while the reduced nuclear gyromagnetic ratio is given
by γ15N

n /(2π) = −4.3MHz/T [70]. Due to symmetry
properties of the NV center, the nitrogen hyperfine ten-
sor A15N is diagonal both in the optical ground and
excited state, with parallel (perpendicular) components
A15N

|| /(2π) = 3.03MHz (A15N
⊥ /(2π) = 3.65MHz), thus

H15N
i = A15N

|| SzI
15N
z +A15N

⊥ (SxI
15N
x + SyI

15N
y ).

The perpendicular hyperfine interaction mixes the
electronic and nuclear spin states and is resonant at

Bres
z =

D±A15N
|| /2

γe∓γn
≈ 102mT in the ground state [70].

Typical operation regimes are far detuned from this res-
onance, i.e. with Bz ≈ 0.5T where its contribution re-
duces to a dispersive level shift which is small compared
to D and may thus be neglected. Eq. (4) can thus be
approximated as H15N

i ≈ A15N
|| SzI

15N
z . With these con-

siderations, we arrive at the Hamiltonian

H15N
0 = DS2

z + γeBzSz + γ15N
n BzI

15N
z

+ A15N
|| SzI

15N
z . (5)

The resulting energy level scheme is depicted in Fig. 2.
The two qubits encoded in the system given in Eq. (5)
are defined with the electron spin states |ms = 0⟩ ≡ |0⟩e
and |ms = −1⟩ ≡ |1⟩e and the nuclear spin states |mn =
+1/2⟩ ≡ |0⟩n and |mn = −1/2⟩ ≡ |1⟩n. We introduce a
driving field polarized along the x-axis with a constant
driving strength given by

HD = B̃1 cos (ω0t)Sx. (6)

In order to minimize leakage into the |ms = +1⟩ state
of the electron triplet, the strength of the driving field
B1 needs to be weak against the detuning difference
δ = ||Ems=1 − Ems=0| − |Ems=−1 − Ems=0|| [70] which
is given by

δ =

{
2γeBz, if γeBz < D,

2D, if γeBz ≥ D.
(7)

To achieve a nuclear-spin controlled operation on the
electron spin CnNOTe, we choose the driving frequency
resonant with the |1⟩n|0⟩e ↔ |1⟩n|1⟩e transition, thus

ω0 = D−Bzγe +
A15N

||
2 . We transform the total Hamilto-

nian H = H0 + HD into the interaction picture given
by the free-evolution (Larmor) frequencies with U1 =

eitγ
15N
n BzI

15N
z and H̃(U1) = U1HU†

1 − iU1∂tU
†
1 , and per-

form a rotating wave approximation in the frame of the
frequency of the driving field defined by the unitary
transformation U2 = eiω0tSz and H̃(U2). With this, the
Hamiltonian in the computational subspace with the ba-
sis |00⟩, |01⟩, |10⟩, |11⟩ where |ij⟩ = |i⟩n|j⟩e, can be writ-
ten in the following matrix form,

H̃ =


0 B1/2 0 0

B1/2 −A15N
|| 0 0

0 0 0 B1/2
0 0 B1/2 0

 , (8)

with B1 ≡ B̃1/
√
2. The dynamics described by Eq. (8)

comprises both the resonant Rabi oscillation of the elec-
tronic transition |0⟩e ↔ |1⟩e in the |1⟩n subspace of the
nuclear qubit and the off-resonant Rabi oscillation of the
detuned |0⟩n subspace with the Rabi frequency

Ω =
1

2

√
B2

1 +
(
A15N

||

)
(9)

around an axis in the x-z plane determined by the driving
strength B1 and the hyperfine coupling A15N

|| .

Both on and off-resonant Rabi oscillations during the
gate time tg are described by the unitary operator U =

e−iH̃tg . Choosing tg = π/B1 leads to a π-rotation of
the electron spin around the x-axis in the nuclear spin
|1⟩n-subspace. In order to compensate a relative phase
between the nuclear spin subspaces, we supplement the
driven operation to form the actual gate operation Uact =

Rn
z (π/2)e

−itH̃ where the rotation Rn
z (θ) = e−iθI15N

z of
the nuclear spin around the z-axis by an angle θ may be
executed virtually.
As may be seen from Eq. (8), the hyperfine interaction

between the electron and nuclear spin acts as a native nu-
clear spin controlled z-rotation on the electronic qubit.
This interaction is always on, resulting in rotation of the
nuclear spins dependent on the respective electron spin
projection, thus the system natively performs a CZ(θ)
gate with θ = −iA15N

|| t during the duration of the elec-

tron spin control. Consequently, the actual gate Uact
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differs from a CnNOTe where the error probability de-
pends on the phase ϕ = A15N

|| tg of the z rotation at the

gate time tg.
While this interaction may be exploited for nuclear

spin control [24–27], in the case of resonant electron spin
control, it further reduces the fidelity of the conditioned
electron spin rotation. Thus, we introduce a waiting time
tw into the gate scheme. The Hamiltonian of the free evo-
lution during the waiting time in the interaction picture
simply reads as

H̃0 =


0 0 0 0
0 −A15N

|| 0 0

0 0 0 0
0 0 0 0

 , (10)

with the corresponding unitary evolution for the waiting

time tw given by U0(t = tw) = e−iH̃0tw . The waiting
time tw is chosen such that in the absence of a driving
field, B1 = 0, the acquired phase is compensated, which
is achieved by

tw = 2π/A15N
|| − tg, (11)

resulting in the gate operation Uact,CNOT(tg + tw) =
U0(tw)Uact. We calculate the average gate fidelity [72]
of this operation according to

Fav =
d+

∣∣∣Tr(U†
CNOTUact,CNOT

)∣∣∣2
d(d+ 1)

, (12)

where d = 4 denotes the dimension of the Hilbert space
and the ideal evolution is the CNOT gate,

UCNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (13)

In Fig. 3, the average gate fidelity Fav is plotted as a
function of the Rabi frequency of the driving field B1.
In the regime where the detuning is large compared

to the strength of the driving field A15N
|| ≫ B1, the |0⟩n

subspace is barely affected and as a consequence, the
correction induced by U0(tw) compensates the error in-
duced by the hyperfine interaction. However, for faster
gate operations, the ratio B1/A

15N
|| increases, and hence

the probability to induce an unwanted electron spin-flip
in the |0⟩n nuclear spin subspace also grows and leads to
a reduction of the gate fidelity. With this, the rotation
axis in the Bloch sphere tilts towards the x-axis and thus,
the correction with U0 increasingly fails and depending
on the value of B1 even enhances the error rate. In the
regime of strong driving, A15N

|| ≪ B1, the fidelity reaches

its minimum Fav = 2
5 as the detuning is vanishing against

the driving strength and the rate of the unwanted elec-
tronic spin flips equals the rate of the driven transition.

One way to suppress unwanted spin-flips is thus to op-
erate in the weak-driving regime A15N

|| ≫ B1, resulting
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FIG. 3. Average gate fidelity Fav of a CnNOTe-gate in an NV
center as function of the Rabi frequency of the driving field
B1, as given by Eq. (12). Differently colored lines correspond
to different couplings between the electron spin of the NV
center and nuclear spins of different nitrogen isotopes and
carbon-13 atoms.
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FIG. 4. Average gate fidelity Fav in the presence of noise
due to spin impurities for different values of T ∗

2 . Clearly, the
fidelity of operations in the weak driving regime is reduced
significantly in both cases.

in long gate times. To capture this impact on the overall
fidelity of the gate, we include the relaxation process of
the central electron spin due to the nuclear spin bath in
our calculations (see Sec. A). In Fig. 4, we plot the result-
ing average gate fidelity Fav in dependence of the driving
strength B1 for different values of T ∗

2 . Clearly, opera-
tions in the weak driving regime lead to a significant loss
of fidelity in all cases.
To overcome this limitation in gate speed, current
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state-of-the art gate schemes for conditioned rotations
of the electron spin rely heavily on complicated, digitally
designed pulse sequences based on optimal control algo-
rithms [39–42].

In contrast to that approach, we propose a different
strategy which suppresses unwanted spin flips not by
avoiding off-resonant excitations but by choosing the free
parameters in the gate scheme such that synchronization
cancels out erroneous effects. By doing so, we make use
of similar schemes which have been proposed theoreti-
cally [67, 68] and demonstrated experimentally [69] to
achieve high-fidelity two-qubit gate operations between
spin qubits in semiconductor quantum dots. These ap-
proaches employ a synchronization of the Rabi frequen-
cies of both the resonant and the off-resonant transitions
such that the Bloch-vector of the off-resonant transition
will perform a 2π rotation around an axis in the x-z plane
during the gate time tg. This is the case whenever the
synchronization condition,

B1 =
2n+ 1

m
Ω, (14)

with integers n ≥ 0 and m > 0, is fulfilled.
In case of the system at hand, this condition is fulfilled

for certain ratio between the driving field B1 and the
hyperfine interaction A15N

|| which obey

Bsync
1 (n,m) = A15N

||

√
(2n+ 1)2

4m2 − (2n+ 1)2
. (15)

Due to the synchronization effect for values of the driving
strength where B1 = Bsync

1 , the free evolution of the
system is compensated, and the operation is equal to a
CnNOTe up to single qubit gates which correct relative
phases between both nuclear subspaces according to

Usync
act,CNOT = Rn

z (θ)Uact, (16)

where

θ =

{
π/2 +A||tg/4, ifm even,

π/2 +A||tg/4 + π, ifm odd.
(17)

In Fig. 5, we plot the average gate fidelity Fav of this
operation for odd values of m in Eq. (15). The values
of Bsync

1 where Eq. (15) is fulfilled are visible as points
where the fidelity reaches its maximal value, Fav = 1.
Choosing m = 1 and n = 0 for the fastest gate op-
eration yields the maximum value for driving strength
Bsync

1 (n = 0,m = 1) = A15N
|| /

√
3 ≈ 1.75MHz and

B̃1 ≈ 2.47MHz for which the synchronization conditions
are fulfilled, allowing for a gate time of tg ≈ 0.4µs. Other
values of Bsync

1 will lead to slightly longer gate times, as
Fig. 6 shows. For larger values of B1, no synchronization
between the resonant and off-resonant driving is possible
and the fidelity steadily decreases until it reaches its low-
est value of 2/5. For smaller values of B1, the fidelity oscil-
lates with an increasing period as the free evolution of the

2
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FIG. 5. Synchronization effect for the CNOT gate. The aver-
age gate fidelity Fav (UCNOT, Uact) of the CNOT gate is plot-
ted as a function of the Rabi frequency of the driving field
B1. The values Bsync

1 where the resonantly driven and the
off-resonant transition are synchronized are visible where the
fidelity reaches its maximum Fav = 1. In contrast to Fig. 3,
no CZ gate is performed to correct the free evolution of the
system. For stronger driving regimes, no synchronization be-
tween the resonant and off-resonant driving is possible and
the fidelity steadily decreases until it reaches its lowest value
of Fav = 2/5 (not shown in the plot). For weak driving, the
fidelity oscillates between its maximum and minimum values
while the period of this oscillation increases steadily as the
free evolution of the system becomes increasingly faster rela-
tive to the driving strength.

system becomes increasingly faster relative to the driving
strength. For other values of B1 where the two Rabi os-
cillations are not fully synchronized, Fav can be enhanced
by making use of the system’s native CZ(θ = A15N

|| tw)

operation. By doing so, the range of driving strengths
allowing for high-fidelity operations is increased signifi-
cantly. Fig. 7 shows the average gate fidelity for differ-
ent values of B1 and tw. Clearly, in some regions where
the Rabi-oscillations are not fully synchronized, an addi-
tional rotation around the z-axis corrects the main part
of the error induced by the off-resonant driving. Regions
marked in red in Fig. 7 are those where Fav ∈ [0.99, 1],
thus high-fidelity operations may be achieved. Clearly,
this significantly extends the range of possible choices
for the driving strength.

IV. SYNCHRONISATION PROTOCOL FOR A
QUBIT-QUTRIT GATE OPERATION

Most experiments demonstrating the use of an NV cen-
ter as a quantum register build on systems where the ni-
trogen atom is not of the implanted 15N isotope type but
consists of the 14N atom occurring with a much higher
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FIG. 7. Average gate fidelity Fav as a function of driving
strength B1[MHz] and the waiting time tw. Marked regions
are those where Fav > 0.99.

natural concentration, with the nuclear spin I14N = 1.
In this section, we show how the synchronization pro-
tocol may be extended to this type of system. Again,
Eqs. (1)–(4) define the model, with one coupled nu-
clear spin and thus j = 14N with I14N = 1. The hy-
perfine coupling and the gyromagnetic ratio are given
by γ14N

n /(2π) = 3.1MHz/T, A14N
|| /(2π) = −2.16MHz,

and A14N
⊥ /(2π) = −2.7MHz [73]. Additionally, the sys-

tem exhibits a quadrupole splitting with Q14N/(2π) =
−4.96MHz such that Eq. (3) reads as

H14N
n = γ14N

n BzI
14N
z +Q14N(I14Nz )2. (18)

Again, we define the electronic qubit states to be
|ms = 0⟩ ≡ |0⟩e and |ms = −1⟩ ≡ |1⟩e, assume that
the driving strength is constant, according to Eq. (6),
and that the ms = +1 level is far off-resonant. In this
case, the driving strength B1 is small compared to the
detuning δ (cf. Eq. (7)). The computational subspace
of the nuclear spin is defined by |mn = 0⟩ ≡ |0⟩N and
|mn = 1⟩ ≡ |1⟩N. In case of the nuclear spin triplet,
the detuning of the |mn = −1⟩ level is of the same or-
der of magnitude as the driven transition and thus has
to be included as a leakage space into the calculations.
The energy level scheme of the system is depicted in
Fig. 8. We transform the Hamiltonian into the inter-
action picture of the free energies of the system, and
then transform into the rotating frame of the drive. The
unitary transformation for these two steps is given by

U = eitωSz+it[Q14N(I14N
z )2+γnBzI

14N
z ]. In order to achieve a

CnNOTe, we address the transition |1⟩N|0⟩e ↔ |1⟩N|1⟩e
with the frequency ω = D −Bzγe −A14N

|| , which is indi-

cated by the red arrow in Fig. 8. With this, the Hamil-
tonian of the electronic computational subspace can be
written in the 6x6 matrix form,

H̃ =



0 B1/2 0 0 0 0
B1/2 0 0 0 0 0
0 0 0 B1/2 0 0
0 0 B1/2 −A14N

|| 0 0

0 0 0 0 0 B1/2
0 0 0 0 B1/2 −2A14N

||

 ,
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(19)

with the basis |11⟩, |10⟩, |1−1⟩, |01⟩, |00⟩, |0−1⟩, |−11⟩, |−
10⟩, | − 1− 1⟩ where |ij⟩ = |i⟩N|j⟩e and we have dropped
fast oscillating terms within a RWA. As before, the uni-
tary time evolution generated by this Hamiltonian is

given by U0 = e−iH̃t. Analogous to the case of the 4-
level system, the corresponding gate fidelity Fav with

Uact = U0(tw)e
−iH̃tg depends strongly on the ratio be-

tween A14N
|| and B1 (see orange line in Fig. 3).

D-γeBz

γnBz

γnBz

2γnBz

Q

ms = -1

ms = 0 Q

2A||

mn = 0

mn = +1

mn = -1

mn = 0

mn = +1

mn = -1

FIG. 8. Energy level scheme of a NV center with a 14N atom.
Only the electronic computational levelsms = 0, ms = −1 are
displayed, with the ms = 1-transition being far detuned. The
red and orange arrows indicate the transitions under study.

Contrary to the case of the NV-15N system where
the desired CnNOTe-operation has to be synchronized
with just one off-resonant transition, in case of the NV-
14N system, two unwanted transitions are addressed off-
resonantly by the drive (Eq. (19)). Achieving synchro-
nization such that both off-resonant transitions will have
a vanishing probability for unwanted spin-flips leads to
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FIG. 9. Fidelity of synchronized gates corresponding to values
Bsync

1 of the drive strength, as a function of the gate time
tg [µs]. Differently colored lines correspond to an NV center
coupling to nuclear spins of different isotopes.

diophantine equations and Boolean conditions for three
integers for which no analytical solution for Fav = 1 ex-
ists. However, some solutions Bsync

1 still lead to high-
fidelity operations with Fav(B

sync
1 ) > 0.99 and allow for

fast operation times (see Fig. 9). Analogous to the case
of the NV center comprising an 15N atom, the range of
the driving field strength leading to a fidelity above 0.99
may be extended by making use of the native CZ gate of
the system, cf. Fig. 10.

A gate operation that is locally equivalent (up to
single-qubit gates) to a CnNOTe is achieved by driving
the transition |mn = 0,ms = 0⟩ ↔ |mn = 0,ms = 1⟩
which is indicated by the orange arrow in Fig. 8. In this
case, due to the inherent symmetry of the system, the
same condition as in case of the NV-15N system holds,
cf. Eq. (9), with a vanishing gate error with respect to
the off-resonant drive. Here, the fastest gate is achieved
within 0.56µs (see orange points in Fig. 6). This is a
similar order of magnitude as gate times achieved with
optimal control sequences for this system, which are of
the duration ∼ 0.6− 1.5µs [41, 42].

V. ENTANGLING GATE CONDITIONED ON
STATES OF A MULTI-LEVEL SYSTEM

In this section, we extend the synchronization scheme
to include 13C atoms which couple to the NV cen-
ter via the hyperfine interaction. The free evolution
of an isolated 13C nuclear spin in an external mag-
netic field is described as H13C

n = Bzγ
13C
n I13Cz with

γ13C
n /(2π) = 10.705MHz [73]. 13C nuclei are spin dou-

blets, I13C = 1/2, thus the computational subspace of
the isolated system is defined as |mn = 1/2⟩ ≡ |0⟩C and
|mC = −1/2⟩ ≡ |1⟩C. The equations of motion of the
composite system read as

H = He+H14N
n +H13C

n +H14N
i +H13C

i +Hd, (20)

where the interaction part between nuclear and electronic
spins is described by H13C

i = SA13CI 13C. Based on the

secular approximation [35], A13C contains two non-zero
matrix elements A13C

zz and A13C
zx . Their values depend

on the position and relative axis of the respective 13C
isotope towards the main axis of the NV center. Here,
we assume a choice of the coupled 13C spins such that
A13C

zx ≪ A13C
zz which allows us to neglect the influence

of the perpendicular component of the hyperfine tensor,
thus to assume A13C

zx ≈ 0. Note that when the NV center
is coupled to several carbon-13 nuclear spins, individual
spins may be distinguished by their individual hyperfine
component A13C

zz .

Including these considerations, we transform the
Hamiltonian in the interaction picture of the free nu-
clear energies and in the rotating frame of the driv-
ing frequency with the unitary transformation U =

eitωSz+it(H14N
n +H13C

n ) and drop fast oscillating terms.
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FIG. 10. Average gate fidelity Fav of a CnNOTe gate on an
NV center comprising a 14N atom as a function of driving
strength B1 and the waiting time tw. Regions marked in red
are those where Fav > 0.99.

With this, Eq. (20) becomes

H̃ = H̃0 +B1/2, (21)

where

H̃0 =(DS2
z + γeBz − ω)Sz (22)

+A14N
|| SzI

14N
z +AC

zzSzI
13C
z . (23)

When neglecting the ms = 1-subspace, the coupled sys-
tem is reduced to twelve non-degenerate energy levels.

Due to the hyperfine coupling of the nuclear and elec-
tron spin, the electronic spin of the 14N-13C-NV system
may be addressed conditioned in principle on any product
state of the two nuclear spins, resulting in six different,
frequency-selective transitions.

Exemplary, we consider the |0⟩C|1⟩N|0⟩e ↔
|0⟩C|1⟩N|1⟩e transition with the frequency of the
driving field set to ω = D − γeBz + A14N

|| + A13C
zz /2.

This results in one resonant driven transition and
five off-resonantly addressed transitions resulting in
unwanted spin-flips.

Equivalently to the cases discussed above, choosing the
gate time accordingly results in a CCnNOTe operation
where the electronic spin is flipped conditioned on the
state of two nuclear spins. This is locally equivalent to a
Toffoli gate. As explained in Sec. III, the free evolution

is corrected by applying U0(tw) = e−iH̃0tw for the time
tw = 2π/(A14N

|| +A13C
zz /2)− tg.

Similarly to the previously discussed smaller systems,
the average gate fidelity of the operation strongly dete-
riorates with increasing driving strength (see purple line

in Fig. 3). As an example, we set A13C
zz = 0.43MHz, and

thus assume a strong coupling between the NV center
and the carbon isotope [73].

While no analytical solution for B1 exists which fully
synchronizes all six transitions given by Eq. (21), values
for B1 may be found where Fav ≥ 0.99 allowing a sig-
nificant reduction of the error while achieving fast gate
operations due to a significantly higher driving strength.
Fig. 9 depicts the gate fidelity for selected values of the
driving strength, again plugging A13C

zz = 0.43MHz into
our calculations. Note that the gate time demonstrated
with optimal control is tg ≈ 32µs [40] while for the sys-
tem at hand, we predict the lowest value as tg ≈ 10µs.

VI. CONCLUSION

In this work, we have proposed fast schemes for en-
tangling gates of high fidelity on a nitrogen-vacancy cen-
ter, where the electron spin is flipped conditioned on the
state of one or several nuclear spins, either only of the
intrinsic nitrogen atom or also including a nuclear spin of
the surrounding carbon-13 atoms in the diamond lattice.
These schemes eliminate the effects of power broaden-
ing in the ODMR spectrum - thus of unwanted spin flips
due to off-resonantly driving additional transition lines
- by exploiting synchronization effects between all rele-
vant transitions in the respective systems, allowing for
fast gate operations significantly shorter than 1µs. Also,
these schemes allow to drive the system in the strong
regime when taking slightly longer gate times into ac-
count. In addition to that, by making use of the native
CZ generated by the hyperfine interaction, the range of
driving strength leading to a vanishing error rate may
be extended significantly. We have predicted vanishing
error rates for a two-qubit CnNOTe gate on a qubit-
qubit system and a qubit-qutrit system as well as fideli-
ties above > 0.99 for a Toffoli CCnNOTe operation on a
multi-level system. Our results contribute to the goal
of high-fidelity control with error rates < 1% for the
perspective of fault-tolerant quantum computation with
defect-based systems. Further work could investigate ex-
tending the protocol to different types of single defects
in solids such as silicon vacancy centers in diamond, and
the adaption of these protocols in state-of-the art DDrf
schemes for NV centers, where nuclear spins are driven
conditioned on the electron spin state.

ACKNOWLEDGEMENTS

We thank Vadim Vorobyov and Dzhavid Dzhavadzade
for fruitful discussions. We acknowledge funding from
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Appendix A: Noise Model

To capture the impact of long gate times in the weak
driving regime on the overall fidelity of the gate, we in-
clude the relaxation process of the central electron spin
in our calculations [74]. The interaction of the NV cen-
ter with its environment may be described as a central
spin decoherence problem, where the central electron spin
couples to an anisotropic hyperfine field formed by the
surrounding 13C nuclear spins, while interaction between
the nuclear spins is small against this coupling and may
thus be neglected. This leads to strong quantum fluctu-
ations if the strength of the DC magnetic field is such
that the Zeeman energy γCBz of the 13C nuclear spins is
comparable to their hyperfine couplings A13C - thus not
too strong nor too weak. The fluctuations are captured
by the local Overhauser bath operator δB where we put
δBx = δBy ≡ 0 as the zero field splitting is in the GHz-
range and thus much larger than the hyperfine coupling
with the carbon-13 atoms. With this, Eq. (2) is altered
to [26, 75]

He(δBz) = SDS+ (Bzγe + δBz)Sz. (A1)

Assuming a large number of unpolarised nuclear bath
spins, the local Overhauser field is captured with a zero-

mean Gaussian distribution with a width is given by σ =√
⟨δB2

z ⟩ − ⟨δBz⟩2. As the timescale of the fluctuations
is large against the gate time, we calculate the average
gate fidelity of the noise process as

F̄av(σ) =

∫ ∞

−∞
Fav(δB)p(δB)dδB, (A2)

with

p(δB) = 1/
√
2πσ2 exp

{
−1/2(δB/σ)2

}
, (A3)

and Fav the gate fidelity (Eq. (12)) where the free evolu-
tion of the electron spin is described by Eq. (A1).
The electron spin decoherence time T ∗

2 depends on the
ambient temperature, the external magnetic field, and
the isotope density in the surrounding material. Re-
ported values are 2 − 7µs [27, 74] for material with a
natural 13C abundance of 1.1% and up to T ∗

2 ≈ 90µs for
isotopically purified material [76, 77]. Due to the slow
nuclear spin bath dynamics, the electronic T2 time may
be extended up to more than 1 s by the use of dynamical
decoupling sequences [21]. This technique is applied for
nuclear spin control. Recent work has successfully incor-
porated the time-dependent nature of the spin bath into
the electron control pulse design [42].

[1] D. D. Awschalom, R. Hanson, J. Wrachtrup, and B. B.
Zhou, Nature Photonics 12, 516 (2018).

[2] F. A. Zwanenburg, A. S. Dzurak, A. Morello, M. Y. Sim-
mons, L. C. L. Hollenberg, G. Klimeck, S. Rogge, S. N.
Coppersmith, and M. A. Eriksson, Rev. Mod. Phys. 85,
961 (2013).

[3] J. R. Weber, W. F. Koehl, J. B. Varley, A. Janotti, B. B.
Buckley, V. de Walle, and D. Awschalom, PNAS 107,
8513 (2010).

[4] M. Pasini, N. Codreanu, T. Turan, A. R. Moral, C. F.
Primavera, L. D. Santis, H. K. C. Beukers, J. M. Brevo-
ord, C. Waas, J. Borregaard, and R. Hanson, (2023),
arXiv:2311.12927 [quant-ph].

[5] C. T. Nguyen, D. D. Sukachev, M. K. Bhaskar,
B. Machielse, D. S. Levonian, E. N. Knall, P. Stroganov,
R. Riedinger, H. Park, M. Lončar, and M. D. Lukin,
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