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The direct bandgap found in hexagonal germanium and some of its alloys with silicon allows for an optically
active material within the group-IV semiconductor family with various potential technological applications.
However, there remain some unanswered questions regarding several aspects of the band structure, including the
strength of the electric dipole transitions at the center of the Brillouin zone. Using the k · p method near the �

point, including 10 bands, and taking spin-orbit coupling into account, we obtain a self-consistent model that
produces the correct band curvatures, with previously unknown inverse effective mass parameters, to describe
2H-Ge via fitting to ab initio data and to calculate effective masses for electrons and holes. To understand the
weak dipole coupling between the lowest conduction band and the top valance band, we start from a spinless
12-band model and show that when adding spin-orbit coupling, the lowest conduction band hybridizes with
a higher-lying conduction band, which cannot be explained by the spinful 10-band model. With the help of
Löwdin’s partitioning, we derive the effective low-energy Hamiltonian for the conduction bands for the possible
spin dynamics and nanostructure studies and in a similar manner, we give the best-fit parameters for the valance-
band-only model that can be used in the transport studies. Using the self-consistent 10-band model, we include
the effects of a magnetic field and predict the electron and hole g factor of the conduction and valance bands.
Finally, we give an ellipticity analysis of the found effective mass tensor, to ensure the uniqueness of the solutions
for its application to heterostructures.
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I. INTRODUCTION

Optical activity plays a crucial role in semiconductor ma-
terials due to the possible optoelectronic integration, which
is vital for optoelectronics and integrated photonics, optical
modulation, and light emission. [1–3]. However, silicon tech-
nology cannot be used for these purposes due to the indirect
bandgap of cubic Si (3C-Si) although much effort has been
made to turn 3C-Si into an efficient emitter [4,5]. In recent
years, the hexagonal 2H-Ge phase of germanium has peaked
in interest due to the its direct bandgap. Experiments by
Fadaly et al. [6], showed that hexagonal germanium has a
weak but nonzero optical activity. It has also been demon-
strated that the radiative lifetime can be increased by more
than three orders of magnitude when a certain percentage
of germanium atoms are replaced by silicion, which makes
it as optically active as GaAs. Similar results are also ob-
tained theoretically using ab initio calculations of the radiative
lifetime of hex-Ge near the � point (see Sec. II). Interest-
ingly, the radiative lifetime obtained from experiments and
ab initio calculations show a disagreement by almost an order
of magnitude that is yet to be explained.

While Ge and Si share similar chemical properties, their
behavior is different in the hexagonal crystal structure. Similar
to 3C-Si, hexagonal Si (2H-Si), which is described by the
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lonsdaleite crystal structure also has an indirect bandgap with
the lowest conduction band (CB) located at the M point in
its Brillouin zone, rather than the X point [6] as in the case
for 3C-Si. In contrast to Si, the transition from cubic (3C-Ge)
to lonsdaleite (2H-Ge) germanium is concomitant with the
high-symmetry L point along the [111] axis in the cubic phase
folding onto the � point in the hexagonal phase. The folding
of the high-symmetry point L to � is important as the lowest
CB in 3C-Ge is located at the L point, which maps to the �

point, making hex-Ge a direct bandgap semiconductor, with
a bandgap of 0.3 eV [6]. Belonging to the P63/mmc space
group, the point group for 2H-Ge at the � point of the Bril-
louin zone is D6h. This is quite similar to the wurtzite crystal
structure with the C6v point group at �, and we can write
D6h = C6v ⊗ Cs with Cs = 1l ⊗ σh and σh being the mirror
symmetry, such that correctly symmetrized C6v bases can be
used for the group D6h.

It is well known that k · p theory [7] is a very useful
tool for band structure studies. It is applicable not only to
bulk materials but can be adapted to describe nanoscale and
low-dimensional structures. In the past, k · p theory has been
successfully used for different materials such as cubic Si and
Ge [8–10], III-V compounds in the wurtzite phase [11–14],
monolayers of transition metal dichalcogenides [15,16], and
for calculating the Landé g factor [17,18], Landau lev-
els [19,20], and strain effects [21–23]. As the method is based
on group-theoretical selection rules [24], it is a very powerful
tool for calculations of optical transition matrix elements, in
which we can explain the low optical activity of the lowest CB
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for 2H-Ge and other possible transitions, as well as the effect
of the spin-orbit coupling. k · p theory is a semi-empirical
method and requires a number of material-specific parameters
either from experiments [8,11] or ab initio calculations [25].

In this paper, we derive a 10 × 10 k · p Hamiltonian to
describe the band structure of 2H-Ge, in accordance with
ab initio calculations. We show that Löwdin’s formalism must
be used to correctly describe the lowest CB in kx (� → K)
and highest valence band (VB) in kz (� → A) direction. We
also find the best-fit values for the optical transition elements
(Kane or momentum p matrix elements) and Bir-Pikus param-
eters, similarly to the study of Chuang and Chang (CC) [11].
Using these parameters, we obtain the effective masses for
five bands (2-CB and 3-VB) via parabolic fit. To understand
the weak optical activity of the lowest CB, we develop a
12 × 12 spinless model and show that the band is only op-
tically active when spin-orbit coupling (SOC) is considered.
We also develop low-energy effective models for electrons
and holes for the possible usage in the heterostructures and
transport properties. Using the momentum matrix elements
and energy splittings, we evaluate the g factor for the high-
est energy VBs and the second-lowest CB. Finally, to make
heterostructure studies of hex-Ge more reliable, we also an-
alyze the ellipticity of the effective mass tensor and perform
a new parameter fit to ensure that ellipticity conditions are
fulfilled [26–28].

This paper is organized as follows: In Sec. II, we begin
by presenting the ab inito methods used to parametrize the
k · p model. In Sec. III we present the multiband k · p model,
together with Löwdin’s formalism. In Sec. IV, we describe
the general fitting procedure to our 10 × 10 model, the fitted
optical transition elements, inverse mass parameters and the
effective masses for different directions, as well as the weak
optical activity of the lowest conduction band with a possible
explanation. We also derive the effective low-energy Hamil-
tonian for the second-lowest conduction band in Sec. V and
compare the findings wit the originally derived k · p model.
The ellipticity of the effective mass tensor, its importance,
and a second parameter fit with constrained ellipticity for
hex-Ge is discussed in Sec. VI. In Sec. VII, using the 10-band
Hamiltonian, we investigate the g factor of electrons and holes
when a magnetic field is applied to either parallel or perpen-
dicular to the main axis of rotation. The discussion of how the
selection rules can be used to determine nonzero elements for
the k · p model can be found in the Appendix A. Appendix B
has the definitions for the expressions used in the text. The
allowed optical transitions from the VBs to CB or CB+1 can
be found Appendix C with the addition of the selection rules
with and without SOC. Finally, Appendix D has the spinless
12 × 12 k · p Hamiltonian.

II. AB INITIO CALCULATIONS

First-principles calculations were carried out by using the
Vienna ab initio simulation package (VASP) [29–31] with a
plane-wave basis set employed within the framework of the
projector augmented-wave method [32,33]. Geometry relax-
ation were performed by using PBEsol exchange correlation
functionals with a cut-off energy of 500 eV, a 12 × 12 × 6
Monkhorst-Pack grid sampling of the Brillouin zone and a
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FIG. 1. Lonsdaleite or hexagonal diamond (2H) structure where
atoms (red balls) are arranged in a hexagonal stacking. The gray lines
represent the bonds between atoms. Structural parameters are shown
by arrows. Solid-black lines indicate the unit cell while the dashed
lines visualize the hexagonal structure.

force criteria of 1 meV/Å. The obtained structural parameters
(a = 3.994 Å, c = 6.589 Åand u = 0.3743, see Fig. 1) are
reasonably close to the reported values by Rödl et al. [34].
Band structure calculations were performed both with and
without the inclusion of the spin-orbit coupling using the
MBJLDA meta-GGA method [35]. This meta-GGA method is
reported to give reliable near-gap energies with a significantly
lower calculational cost compared to hybrid functionals (such
as HSE06) [34].

For the identification of the band symmetries the python
tool irRep was used, which can directly read the Kohn-Sham
orbitals of several density functional codes and identifies
the irreducible presentation of each bands [36]. If spin-orbit
coupling is included, the double crystallographic groups and
their representations are incorporated [37]. We then trans-
lated the result of this tool to the notation of [38] and found
a compelling agreement with the irreducibles published in
Ref. [34].

III. k · p FRAMEWORK

The k · p method has been shown to effectively de-
scribe the band structure of the semiconductors around
high-symmetry points in the Brillouin zone in various stud-
ies [11,39,40]. The basic approach is to write the Schrödinger
equation in terms of the cell periodic part un,k(r) of the Bloch
wavefunction eik·run,k, near the band edge as

Hun,k(r) = (H0 + Hfree + Hk·p + HSO)un,k(r) = Eun,k(r),

(1)
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TABLE I. Basis functions for the D6h point group adapted from
CC [11] where 〈r|�n

α〉 = un
α (r). Unlike in CC, there is no s − pz

mixing. |Sx〉 and |Sy〉 transform like axial vectors, |z〉 transforms like
a vector and |1l〉 transforms like the identity.

Basis functions D6h irrep.

CB + 1 |iz↑〉 �−
2

CB |�−
3 ↑〉 �−

3

V B − 1√
2
|Sx + iSy↑〉 �+

5

V B − 1 1√
2
|Sx − iSy↑〉 �+

5

V B − 2 |1l↑〉 �+
1

CB + 1 |iz↓〉 �−
2

CB |�−
3 ↓〉 �−

3

V B 1√
2
|Sx − iSy↓〉 �+

5

V B − 1 − 1√
2
|Sx + iSy↓〉 �+

5

V B − 2 |1l↓〉 �+
1

where

H0 = p2

2m0
+ V (r),

Hfree = h̄2k2

2m0
,

Hk·p = h̄

m0
k · p,

HSO = h̄

4m2
0c2

[∇V (r) × p] · σ,

(2)

where n is the band index, k is the crystal momentum, m0

is the free electron mass, V (r) is the periodic potential, and
σ = (σx, σy, σz ) are the Pauli spin matrices. The k-dependent
spin-orbit coupling terms are absent throughout this study as
they vanish due to the inversion symmetry. Equation (1) can
be solved using perturbation theory, expanding the un,k(r)
in terms of the known un,k=0(r), around k = 0. To obtain
the effective band structure using distant band contributions,
there are many methods such as folding-down [41] where one
writes a pseudo-Schrödinger equation and using norm con-
served spinors, obtains a real Schrödinger-type equation by
performing a series expansion or Löwdin’s formalism (also
known as quasi-degenerate perturbation theory or Schrieffer-
Wolff transformation) [42–44], the method we use in this
paper, where the basis functions at the � point can be divided
into the sets A and B. Set A consists of the bands we would
like to describe, whereas set B contains all other bands that
might give a relevant nonzero contribution to the bands in
set A. Using Löwdin’s method and neglecting SOC for now,
distant band contributions can be described as

Hn×n(k) j j′ =
∑
α,β

Dαβ

j j′ kαkβ,

Dαβ

j j′ = h̄2

2m0

∑
γ∈B

pα
jγ pβ

γ j′ + pβ
jγ pα

γ j′

m0(E0 − Eγ )
, (3)

where ( j, j′) and γ belong to the set A and B, respectively. We
should note that set B contributions can only arise as second

TABLE II. Parameters for the Hamiltonian Hhex−Ge
10×10 for 2H-

Ge, composed of HKane and H (2)
k·p parameters. The optical transition

matrix elements p⊥, p‖ are related to the parameters P1, P2 ap-
pearing in Eq. (4) by P1 = −i h̄

me
〈�2c− | p̂‖|�1v+〉 = −i h̄

me
p‖ and P2 =

−i h̄
me

〈�2c− | p̂⊥|Sy〉 = −i h̄
me

p⊥ and they are given in units of h̄/a0. In-

verse effective masses are given in units of h̄2

2m0
and energy splittings

are given in eV. Here, we define p̂⊥ = p̂x + i p̂y and p̂‖ = p̂z. For
comparison, we have included the notations �cf , �‖

so, and �⊥
so for

the energy splittings used in Ref. [34].

Parameter Hhex−Ge
10×10

Optical transition matrix elements
p⊥ 0.4829
p‖ 0.6431
Conduction band effective parameters
Ac2⊥ 4.1565
Ac1⊥ 9.5120
Ac2‖ 2.4091
Valance band effective parameters
A1 –4.3636
A2 –2.0833
A3 2.4545
A4 –2.7504
A5 2.7232
A6 –3.5421
Energy splittings
�1 = �cf 0.2688
�2 = �‖

so/3 0.0934
�3 = �⊥

so/3 0.0908

or higher-order k-dependent perturbation, which can be seen
from Eq. (3).

A. Five-band model

To describe the effective Hamiltonian of lonsdaleite ger-
manium, we focus on the following five bands: the first
conduction band (CB), second conduction band (CB+1), and
the first, second, and the third valance bands (VB), (VB-1),
and (VB-2), respectively. Including the twofold spin degen-
eracy then leads to a total of ten bands. In order to be able
to describe the band structure using k · p theory, the correct
symmetry group and the irreps corresponding to each band
have to be known near the point of interest [45,46], that is �

in our case. Previous studies [34,47] on 2H-Ge have already
determined the double-group representation of the bands at
the � point. However, to effectively use the k · p method, the
relevant single-group representations are needed. Note that,
in general different single-group representations can corre-
spond to the same double-group representation. Therefore,
we performed ab initio calculations and obtained the sin-
gle group basis set, including the two-dimensional spin-1/2
Hilbert space (LS basis), near the � point (k = 0), see Table I.

The notation suggests that un,k(r) of the energy band n
transforms as the irrep (orbital part) |�n

α〉 of the point group
D6h. Here we follow the Köster’s notation [38] where Sx is
an axial vector in the x direction, not to be confused with the
projections of the spin up and down (↑,↓). Using symmetry
considerations of the D6h point group and selection rules
(see Appendix A) with the basis vectors listed in Table I,
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we construct the 10 × 10 Kane-like Hamiltonian to describe the band structure of 2H-Ge near � point,

HKane = h̄2k2

2m0
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ecb+1 0 −i√
2

P2k+ −i√
2

P2k− P1kz 0 0 0 0 0

0 Ecb 0 0 0 0 0 0 0 0
i√
2

P2k− 0 Ev + �1 + �2 0 0 0 0 0 0 0

i√
2

P2k+ 0 0 Ev + �1 − �2 0 0 0 0 0
√

2i�3

P1kz 0 0 0 Ev 0 0 0
√

2i�3 0

0 0 0 0 0 Ecb+1 0 −i√
2

P2k− −i√
2

P2k+ P1kz

0 0 0 0 0 0 Ecb 0 0 0

0 0 0 0 0 i√
2

P2k+ 0 Ev + �1 + �2 0 0

0 0 0 0 −√
2i�3

i√
2

P2k− 0 0 Ev + �1 − �2 0

0 0 0 −√
2i�3 0 P1kz 0 0 0 Ev

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(4)

where Ecb+1 and Ecb are the band energies for for the two
lowest conduction bands at k = 0, Ev is the reference energy,
�1 is the crystal field splitting, �2 and �3 are the SOC
parameters, P1,2 are the momentum matrix elements and k± =
kx ± iky is the crystal momentum. Note that HKane equals H
from Eq. (1) restricted to the 10 abovementioned bands.

Due to the presence of inversion symmetry, the nonzero
elements of the k · p Hamiltonian for a lonsdaleite crystal
(such as hex-Ge) differ from those in the case of a wurtzite
crystal. For instance, the SOC term between the CB and
VB, originally neglected by Chuang and Chang [11] but later
added to the Hamiltonian by Refs. [48–50], is zero for hex-Ge
due to the inversion symmetry.

It is obvious from Eq. (4) that in the kz direction, the
top valance band does not have a k-dependent term and its
effective mass is the same as the free electron mass (m0);
hence, being a valence band, it has the wrong curvature if
the contributions from the other bands are omitted. Also, the
lowest conduction band couples neither via the k · p nor the
SOC term to any other band in set A, where bands in set
A are shown in Table I and all other bands are in set B.
Hence, the effective mass along the kz direction would be the
same as the in-plane effective mass but this is contradictory to
ab initio results of Ref. [34]. Overall, we find that the model

TABLE III. The electron and hole masses obtained from the
model in Eq. (5) and, for comparison, from DFT calculations (in
units of m0). It should be noted that effective mass in the x − y plane
is isotropic.

Bands (single Irreps) Direction Hhex−Ge
10×10 DFT (Ref. [34])

�+
9v (�+

5v ) � → A 0.51 0.53
� → M 0.08 0.07

�+
7v (�+

5v ) � → A 0.12 0.12
� → M 0.10 0.10

�+
7v (�+

1v ) � → A 0.05 0.05
� → M 0.31 0.32

�−
8c (�−

3c ) � → A 1.00 1.09
� → M 0.12 0.09

�−
7c (�−

2c ) � → A 0.04 0.04
� → M 0.05 0.05

cannot produce the curvature of the energy bands correctly
and in this sense it is not self-consistent. To fix this problem,
we use Löwdin partitioning as explained in Eq. (3) to find
the contributions from the bands in set B. Hence, using the
Kane-like Hamiltonian with the distant band contributions,
the Hamiltonian for which we will be using for the fitting
becomes

Hhex−Ge
10×10 = HKane + H (2)

k·p , (5)

where H (2)
k·p is the Hamiltonian of the distant band contribu-

tions and its definition can be found in Eq. (B5). We should
note that we disregard the renormalized spin-orbit interaction
from the bands in set B to set A.

B. Optical activity of the lowest CBs

From the discussion in Sec. III it follows that the CB does
not have nonvanishing dipole matrix elements with the VB
and, hence, for the 10 × 10 model, the CB appears to be
optically dark. However, as it can be seen from the Table VIII,
when spin-orbit coupling is turned on, the optical transition
becomes allowed if the polarization of the exciting light is
perpendicular to the out-of-plane rotation axis. Indeed, it was
found in the DFT calculations of Ref. [34], that a weak optical
transition does exist between the (top) VB and the (lowest)
CB. According to Ref. [34], this transition was two orders
of magnitude weaker than other optical transitions in the
system.

TABLE IV. Parameter sets of the Hamiltonian Hhex−Ge
6×6 for 2H-

Ge. The units and energy splittings are same as for Table II.

Parameter Hhex−Ge
6×6

Valance band effective parameters
A1 –17.1282
A2 14.8718
A3 –2.6087
A4 –6.6647
A5 –7.1014
A6 –11.1423

205202-4



MULTIBAND K · P THEORY FOR HEXAGONAL … PHYSICAL REVIEW B 109, 205202 (2024)

TABLE V. Elliptic parameters for the Hhex−Ge
10×10 for 2H-Ge. Optical

transition matrix elements and energy splittings are used with their
original values. The units follow Table II.

Parameter Hhex−Ge
10×10

Optical transition matrix elements
p⊥ 0.4829
p‖ 0.6431

Conduction band effective parameters

Ac2⊥ 3.1579
Ac1⊥ 9.5120
Ac2‖ 3.3348

Valance band effective parameters

A1 –5.4167
A2 –7.3684
A3 3.3328
A4 5.5263
A5 –0.2631
A6 –0.5415

Energy splittings

�1 = �cf 0.2688
�2 = �‖

so/3 0.0934
�3 = �⊥

so/3 0.0908

In order to understand the origin and weakness of this
optical transition, we investigate 12 × 12 spinless k · p model
that is presented in Appendix D, Table X. Looking at the table,
we see that 〈CB + 5|k+ p− + k− p+|V B〉 = γ3k−. Similarly,
the SOC matrix element between CB+5 and CB is nonzero
because CB+5 transforms as �−

6 , CB as �−
3 , and the SOC

term in the Hamiltonian as �+
5 . Using the selection rule, we

then find �−
6 ⊗ �+

5 ⊗ �−
3 ⊃ �+

1 . Hence, it is now plausible to
conclude that CB, when the SOC is turned on, consists of a
linear combination of the irreps �−

3 (CB) and �−
6 (CB+5),

which explains the very weak dipole transition from VB to
CB found in Ref. [34]. We should also point out that in the
double-group representation, we have �−

3 ⊗ �+
7 = �−

8 and
�−

6 ⊗ �+
7 = �−

8 ⊕ �−
7 where �+

7 is the double group repre-
sentation of the spinor. Hence, when SOC is considered, both
bands belong to the same double group, which makes the hy-
bridization argument more plausible. Similar arguments can
be used for the transitions to the CB+1 band. From Table IX,
one can check that C transitions (VB-2 → CB+1) in the x-y

TABLE VI. Calculated values for the effective g factors when a
magnetic field is applied in the x or z direction using the 10 × 10 k · p
model.

H hex−Ge
10×10

gx gz

CB + 1 –2.691 –3.909
CB 2.0 2.0
V B 2.0 –18.225
V B − 1 –13.959 9.874
V B − 2 13.268 8.442

polarization are only allowed when SOC is considered and
hence it is weak compared to A (VB → CB+1) and B (VB-1
→ CB+1) transitions where the same transition is allowed
even the SOC is turned off. These arguments are consistent
with the dipole matrix elements presented in Ref. [34].

IV. NUMERICAL FITTING PROCEDURE
OF THE k · p HAMILTONIAN

Although the k · p method is effective for the description of
the coupling of the bands, it still requires an input either from
ab initio calculations [25,51] or experiments [8,11,22] as the
applied group-theoretic derivation cannot provide numerical
values for material-specific nonzero parameters. To find the
best-fit parameters of the Eq. (4) with the addition of the other
band contributions described in Eq. (5), we first determine
the parameters that appear in k-independent terms from the
ab initio calculations at k = 0. Setting Evb = 0, we can read
off the conduction band energies (see Appendix B) and the
crystal field splitting �1 directly from the DFT band structure
calculations described in Sec. II, which were performed with-
out SOC. Diagonalizing Eq. (4) at k = 0, we obtain for the
band-edge energy differences as

Evb − Evb−1 = �1 + 3�2

2
−
√(

�1 − �2

2

)2

+ 2�2
3,

Evb − Evb−2 = �1 + 3�2

2
+
√(

�1 − �2

2

)2

+ 2�2
3, (6)

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
-1.5

-1

-0.5

0

0.5

1

1.5

E
 (

eV
)

k
x

k )Å/1(
z

(1/Å)

7c
- ( 2c

- )

8c
- ( 3c

- )

9v
+ ( 5v

+ )

7v
+ ( 5v

+ )

7v
+ ( 1v

+ )

k.p
DFT

FIG. 2. Band structure of hex-Ge around the � point. k · p
(solid-red lines) fit for the 10 band 2H-Ge, up to the 0.1 Å−1 to
ab initio (black symbols) for � → A (kz) and � → K (kx) directions.
The ordering of the heavy-hole(HH)-light-hole(LH) and crystal-field
split-off hole(CH) is due to crystal field splitting being larger than
SOC. The combination of inversion and time-reversal symmetry
implies that the band structure is doubly degenerate everywhere.
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TABLE VII. Selection rules for the direct optical transitions with and without SOC for the D6h point group. For the irreps, the parenthesis
is used to describe the single group representations of the double groups. For the optical transitions, parentheses (brackets) used when the SOC
is (is not) taken into account. Capital letters are used when the transition is allowed with SOC and without SOC. Also it should be noted that,
we do not specify how the irreps change under the inversion symmetry here. Hence, the table should only be used when irreps in the rows and
columns are in opposite parity.

�7(�1) �7(�2) �7(�5) �8(�3) �8(�4) �8(�6)

�7(�1) (x,y,z) (x,y),Z X,Y,(z) – – –

�7(�2) (x,y),Z (x,y,z) X,Y,(z) – – –

�7(�5) X,Y,(z) (X,Y),z Z,(x,y) – – [x,y]

�9(�5) X,Y X,Y [z],(x,y) (x,y) (x,y) X,Y

�9(�6) (x,y) (x,y) X,Y X,Y X,Y [z],(x,y)

where Evb, Evb−1, and Evb−2 are the band energies of the top
three valance bands at k = 0. Since we have already fixed
the value of �1 using the DFT calculations where SOC was
switched off, using Eq. (6) one can obtain the value of �2

and �3 by making use of DFT calculations where SOC was
taken into account. It is also noted by Ref. [34] that cubic
approximation (�2 = �3) does not work for 2H-Ge.

For the parameters that appear in the k-dependent terms,
we choose our fitting region as |k| � 0.1 Å−1 due to the lim-
itations of the k · p method. While fitting, we minimize the
objective function r =∑k,n[Ek·p,n(k) − En(k)]2 where n runs
from 1 to 10 and k runs along lines from � to high-symmetry
directions up to a cut-off point, and where Ek·p,n(k) and En(k)
are the fitted and ab initio values, respectively, which are both
plotted in Fig. 2.

For the calculation of the effective masses, we used a
parabolic fit in the vicinity of the � point; the compiled values
can be found in Table III. The �−

8c band shows a highly
anisotropic effective mass, which is expected as the dipole
matrix elements vanish in the z direction but not in the x and
y directions. The �−

7c band is nearly isotropic whereas all the
valance bands are anisotropic.

V. LOW-ENERGY EFFECTIVE MODELS

For certain problems, involving n of p-doped samples,
wires, or quantum dots, the 10 × 10 model introduced in
Eq. (5) is not very convenient to use. In this section we pro-
vide simpler effective models for the conduction and valence
bands separately. We compare the effective masses found by
Löwdin’s partitioning to see if this simpler models can yield
comparable results compared to the Hamiltonian we consider
in Eq. (5). Additionally, we also provide the best-fitting pa-
rameters for a valance-band-only model.

We start our discussion with the CB+1 band. One may use
the Löwdin’s partitioning we have introduced in the Eq. (3)

and this time the states that form set A are the |iz↑〉 and |iz↓〉
from the Table I and all other elements of the table form set
B. The effective Hamiltonian can be written as

HCB+1 = [α1k2
z + α2

(
k2

x + k2
y

)]
1l2×2, (7)

with the definitions of α1 and α2 is given by

α1 = Ac2‖ + P2
1

Ec − Ev

,

α2 = Ac2⊥ + 1

2

P2
2

Ec − Ev − �1 − �2

+ 1

2

P2
2

Ec − Ev − �1 + �2
. (8)

Here we ignored the third-order corrections that are second-
order in k and linear in the SOC. Although there are nonzero
terms between the spin-up and spin-down channels, they sum
up to zero using all the bands that form the set B. From
Eq. (7) and using Table II for the values that appear in the
Eq. (8), we can calculate the effective mass of the CB+1
band in the kz and kx directions. In the � → A direction, the
effective mass of the electron is m⊥

cb+1/m0 = 0.04 and in the

� → M and � → K directions it is m‖
cb+1/m0 = 0.05. These

values are in very good agreement with the values that are
found from 10-band fit. From Fig. 3, it can be seen that the
one-band model fits well to ab initio up to 0.05 Å−1 in each
direction. We can conclude that the minimal model derived in
Eq. (7) can indeed give correctly that the effective masses of
the CB+1 are slightly anisotropic.

Regarding the CB, it does not couple to any other bands in
Eq. (4) and from Eq. (5), there is no distant-band contributions
to the CB in the kz direction. Therefore, the effective mass
m⊥

cb of the CB is very close to the free electron mass in this
direction (see Table III). However, one can check that there
is a deep-lying valance band (namely �+

6 from Table X in
Appendix D), which couples to CB in the kx − ky plane. Due

TABLE VIII. Selection rules for the lowest conduction band. Transitions from the top three valance band to lowest conduction band is
forbidden when SOC is turned off, and dipole allowed when SOC is on. Parenthesis is used to describe the irrep when SOC is neglected.

Transitions (CB) A : (�8(�3) ← �9(�5), B : �8(�3) ← �7(�5), C : (�8(�3) ← �7(�1)

Neglecting spin-orbit – – –

With spin-orbit �5(x, y) + �6 �3 + �4 + �6 �3 + �4 + �6
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TABLE IX. Selection rules for the second conduction band. For the A and B transitions, optical activity is fully allowed in the x-y directions,
even without SOC is on but no optical activity in the z direction. For the C transition, z direction is optically active when SOC is off, and all
directions are active when SOC is on.

Transitions (CB+1) A : �7(�2) ← �9(�5), B : �7(�2) ← �7(�5), C : �7(�2) ← �7(�1)

Neglecting spin-orbit �5(x, y) �5(x, y) �2(z)

With spin-orbit �5(x, y) + �6 �1 + �2(z) + �5(x, y) �1 + �2(z) + �5(x, y)

to this coupling, the effective mass m‖
cb of the electron in

the � → M and � → K directions is different from the free-
electron mass, see Table III. This means that the dispersion
of the CB is highly anisotropic. The effective Hamiltonian for
the CB can be written is the same general form as Eq. (7), with
effective masses m⊥

cb and m‖
cb given in Table III.

Finally, we also give a 6 × 6 fit of the valance-band-only
model (Hhex−Ge

6×6 ). We add both conduction bands from Eq. (5)
as distant band contributions to the 6 × 6 valance band only
Hamiltonian. To obtain the best-fitting parameters, we use the
same approach from Sec. IV. We use the energy splittings
from Table II and only inverse mass parameters (A1, A2, ...)
are used in the fitting. As it can be seen from the Fig. 4, there
are certain deviations from the ab initio data, especially for
the �+

1v band in the kz direction, but the overall agreement is
still very good.

VI. ELLIPTICITY CONDITIONS

Often, k · p theory is also used to describe heterostructures,
such as quantum wells [22,26,52], quantum wires [53,54],
and quantum dots [55,56]. Since the translational invariance
is broken in the growth direction, the quantum number ki in
the ith direction is replaced by a derivative operator. Hence,
for nanostructures, the k · p Hamiltonian can be written as

Hk·p = −
∑
i, j

∂iH
(2)
i j (x, kt )∂ j

+
∑

i

(
H (1)

i (x, kt )∂i + ∂i(H
(1)
i (x, kt )

)
+ H0(x, kt ), (9)

where kt indicates the direction where there is no confine-
ment. In the early studies, e.g., Ref. [22], the Hamiltonian
is written in a way that terms like, e.g., kyA5kx and kxA5ky

have equal contribution such that A5kxky is replaced by the
symmetrized form 1

2 (kxA5ky + kyA5kx ) in the heterostructure
limit. However, it was later shown that such an ad hoc fix
is not guaranteed to give reliable results, and an alternative
operator ordering called Burt-Foreman ordering was proposed
instead [57,58]. This means that terms like A5kxky are re-
placed by kxA+

5 ky + kyA−
5 kx, where A5 = A+

5 + A−
5 must be

satisfied in the bulk limit. Despite its wide applications, it
was shown [59] that even Burt-Foreman ordered Hamiltonians
might give spurious solutions. To solve this problem, Veprek
et al. [26–28] proposed a method to find reliable k · p parame-
ters in order not to have spurious solutions for heterostructure
band energy calculations. It is important to emphasize that
the k · p parameters used for the parametrization of the bulk
Hamiltonian should be checked for the ellipticity conditions
(see, e.g., Ref. [14]) to make the application for heterostruc-
tures more reliable.

To find the ellipticity matrix hkl
i j = (H (2)

i j )kl , where k and
l run over the Bloch-band indices and i and j run over the
coordinate axes [14,26], we decouple our 10 × 10 Hamilto-
nian into 4 × 4 conduction band and 6 × 6 valance band parts.
Off-diagonal elements of the 10 × 10 Hamiltonian have no
importance in the calculations as they do not contain second
derivatives. We can also further simplify the system as spin
does not play a role in the ellipticity calculations. Overall, the
9 × 9 (three bands with three directions) ellipticity matrix for

TABLE X. 12 × 12 k.p matrix elements at the � point. H(1)
k.p represents the first-order k.p terms that has been found in Eq. (B2).

Hk.p CB+6 CB+5 CB+4 CB+3 CB+2 CB+1 CB VB VB-1 VB-2 VB-3 VB-4

CB+6 0 0 0 0 0 0 0 0 γ1k+ 0 γ2kz 0
CB+5 0 0 0 0 0 0 0 γ3k− 0 0 0 γ4kz

CB+4 0 0 0 0 0 0 0 γ5k+ γ6k− γ7kz 0 0

CB+3 0 0 0 0 0 0 0 0 γ8kz γ9k+ γ10k− 0

CB+2 0 0 0 0 0 0 0 γ11kz 0 γ12k− 0 γ13k+
CB+1 0 0 0 0 0 0 0

CB 0 0 0 0 0 γ14k+ γ15k−
VB 0 γ ∗

3 k+ γ ∗
5 k− 0 γ ∗

11kz H (1)
k.p 0 0

VB-1 γ ∗
1 k− 0 γ ∗

6 k+ γ ∗
8 kz 0

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦ 0 0

VB-2 0 0 γ ∗
7 kz γ ∗

9 k− γ ∗
12k+ 0 0

VB-3 γ ∗
2 kz 0 0 γ ∗

10k+ 0 0 γ ∗
14k− 0 0 0 0 0

VB-4 0 γ ∗
4 kz 0 0 γ ∗

13k− 0 γ ∗
15k+ 0 0 0 0 0
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FIG. 3. Second-lowest conduction band described by the two-band (spinful CB+1) low-energy effective Hamiltonian for the 2H-Ge. The
original fitting region k � 0.1 Å−1 has been preserved to show the deviations after 0.05 Å−1.

the valance band can be written as

hkl
i j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 + A4 −i(A+
5 − A−

5 ) 0 −A5 −i(A+
5 + A−

5 ) 0 0 0 −A+
6

i(A+
5 − A−

5 ) A2 + A4 0 −i(A+
5 + A−

5 ) A5 0 0 0 −iA+
6

0 0 A1 + A3 0 0 0 −A−
6 −iA−

6 0

−A5 i(A+
5 + A−

5 ) 0 A2 + A4 i(A+
5 − A−

5 ) 0 0 0 A+
6

i(A+
5 + A−

5 ) A5 0 −i(A+
5 − A−

5 ) A2 + A4 0 0 0 −iA+
6

0 0 0 0 0 A1 + A3 A−
6 −iA−

6 0

0 0 −A−
6 0 0 A−

6 A2 0 0

0 0 iA−
6 0 0 iA−

6 0 A2 0

−A+
6 iA+

6 0 A+
6 iA+

6 0 0 0 A1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(10)

where A5,6 = A+
5,6 + A−

5,6. In order for Eq. (10) to be el-
liptic, we demand its eigenvalues λn to be negative. This
condition is equivalent to demanding that

ρv =
∣∣∣∣∣
∑

m,λm>0 λm∑
n,λn<0 λn

∣∣∣∣∣ (11)

equals zero. Approximate ellipticity refers to the case where
ρv is small. Here m runs through positive and n through
negative eigenvalues. For the conduction band part, using a
similar analysis, we again construct a 6 × 6 ellipticity matrix
(two bands with three directions) and in this case we demand
that its eigenvalues must be strictly positive. As all the sec-
ond derivatives for this matrix are on the diagonal and since
their coefficients are positive from Table II, the eigenvalues
are strictly positive already and there is no need to calculate
Eq. (11) for the conduction band.

Calculating ρv for the valance band using the parameters
from Table II, we see that ρv = 0 cannot be reached no matter
how A5,6 = A+

5,6 + A−
5,6 is split. Hence, it might not be the best

choice of parameter set to be used in heterostructure studies
although it describes the bulk Hex-Ge perfectly. Therefore,
similar to what was done in Sec. IV, we performed a least-
square fit to find optimal values for the band energies near the
� point and simultaneously take the ellipticity considerations
into account such that ρv = 0 for a certain A+

5 and A+
6 split-

ting. The parameters we find are presented in Table V and
corresponding contour values for the Eq. (11) can be seen
in Fig. 5. Comparing the values of A5 and A6 in Tables II
and V, one can notice that they differ by roughly an order of
magnitude. We have checked that the dispersion of the bands
obtained by using these two parameter sets does not change
significantly in the k range that we consider. This means that
the A5 and A6 parameters, which correspond to off-diagonal
elements in H (2)

k·p , affect the ellipticity condition much more
than the dispersion of the bands.

Similarly, we also calculated Eq. (11) for the Hhex−Ge
6×6

model and found that for certain A+
5,6 values, ρ = 0 can be

reached, e.g., the asymmetric splitting where A−
5,6 = 0 and
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FIG. 4. Valence band structure of hex-Ge derived from the six-
band (spinful VBs) fit. The original fitting region k � 0.1 Å−1 has
been preserved to show the deviations, especially for the lower-lying
�+

1v valance band.

A+
5,6 = A5,6. Hence, we do not need an extra parameter set and

the parameters from Table IV can be used in the heterostruc-
ture studies.

VII. EFFECTIVE g FACTORS

In this section, we investigate Landé g factors when a
magnetic field is applied either in the c (parallel) or x − y
(perpendicular) crystal axis. If an external magnetic field is
applied in the z direction, then the crystal momenta kx and
ky do not commute, as we can define k = 1

h̄ (p + eA) with
the operators p and A(r) for the momentum and position-
dependent vector potential. Using the definitions from Eq. (3),
we can split the perturbative terms into a symmetric and an
antisymmetric part as

Dαβ

j j′ kαkβ = 1
2

(
Dαβ

j j′
)S{kα, kβ} + 1

2

(
Dαβ

j j′
)A

[kα, kβ ], (12)

with the definitions,

(
Dαβ

j j′
)S = 1

2

[
Dαβ

j j′ + Dαβ

j′ j

]
,

(13)(
Dαβ

j j′
)A = 1

2

[
Dαβ

j j′ − Dαβ

j′ j

]
.

It has been shown that, from the symmetric part one can
obtain the effective mass terms while the Landé g factor can
be extracted from the antisymmetric part [17,18]. Using the

FIG. 5. The ratio ρv of Eq. (11) for different choices of A+
5 and

A+
6 where A5,6 = A+

5,6 + A−
5,6. The data set from Table V is used in the

calculations. The shaded area corresponds to a convex parameter set
where Eq. (11) is zero and thus the ellipticity condition is fulfilled.

double group basis in the form [60]

�−
7c =

{|iz↑〉
|iz↓〉 ,

�−
8c =

{|�−
3 ↑〉

|�−
3 ↓〉 ,

�+
9v =

{|V B↑〉 (mj = 3/2)
|V B↓〉 (mj = −3/2)

,

�+
7v+ =

{
a|V B − 1↑〉 + b|V B − 2↓〉 (mj = 1/2)
b|V B − 2↑〉 + a|V B − 1↓〉 (mj = −1/2)

,

�+
7v− =

{
b|V B − 1↑〉 − a|V B − 2↓〉 (mj = 1/2)
−a|V B − 2↑〉 + b|V B − 1↓〉 (mj = −1/2)

,

(14)

where a =
√

1 − q2
7 and b = q7 are coupling constants due

to the spin mixing of �7 states with q7 = √
2�3/Evb−1, we

can write the g factor for a magnetic field applied in the z
direction as

g∗
z = g0 + g0

im0

∑
γ �=c

〈c↑|px|γ 〉〈γ |py|c↑〉
Ec − Eγ

− 〈c↑|py|γ 〉〈γ |px|c↑〉
Ec − Eγ

, (15)

where c stands for the conduction band, g0 = 2 is the bare
electron g factor, and γ belongs to the states from Eq. (14),
except the conduction band states. Here we should note that,
as there are no k · p terms between the lowest conduction
band and the three valance bands that we have considered in
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Table I, the g factor of the CB can be taken as g0 in the model
introduced in Sec. III. Regarding the other bands, e.g., for the
CB + 1 one finds

g∗
CB+1,z

g0
− 1 = p2

⊥
m0

( −1

Ecb+1 − Evb
+ 1 − q2

7

Ecb+1 − Evb−1

+ q2
7

Ecb+1 − Evb−2

)
. (16)

As can be readily seen from Eqs. (6) and (16), without SOC
terms (�2 and �3), gCB+1 would be equal to g0. Similar
arguments can be made to find the g factor of the holes.

The electron g factor when a magnetic field is applied in
the direction perpendicular to the c axis can also be calculated
in this way. The expression for gx reads

g∗
x = g0 + g0

im0

∑
γ �=c

〈c↑|py|γ 〉〈γ |pz|c↓〉
Ec − Eγ

− 〈c↑|pz|γ 〉〈γ |py|c↓〉
Ec − Eγ

. (17)

For the CB+1 band, using Eq. (17) and the bases specified in
Eq. (14), gx is given by

g∗
CB+1,x

g0
− 1 = p⊥ p‖

m0

(
1

Ecb+1 − Evb−2
− 1

Ecb+1 − Evb−1

)

×
√

2q2
7

(
1 − q2

7

)
. (18)

In Table VI, we give the g factors of the electron and
holes. The relative g factor difference between electron and
holes can be understood via Eq. (15). For the CB+1 band, the
nonzero contributions are coming from VB where the contri-
bution is positive and VB-1, VB-2 where the contribution is
negative. Conversely, for the valance bands, the only nonzero
contribution is possible via CB+1, which explains the relative
difference between electron and holes in this 10 × 10 model.
The reason for gx = g0 for the VB is that due to the spin
mixing scheme in Eq. (14) there is no momentum matrix
element in the z direction and the right-hand side of the
Eq. (17) vanishes. The anisotropy of the g factor gx = gy �= gz

is expected due to the hexagonal symmetry where the isotropy
between x − y and z axis is broken. Table VI also follows the
trend for wurtzite structures where the absolute value of the g
factor for holes is greater than for electrons [61].

VIII. CONCLUSIONS

In this paper, using ab initio analysis, we first calculated
the irreps of the two lowest conduction and three highest
valance bands for the Germanium in the lonsdaleite phase. We
developed 10 × 10 k · p model to fit to the DFT band struc-
ture near �. Using the model, we extracted the dipole matrix
elements and the inverse effective masses for the conduction
and valance bands that fit to the ab initio band structure up to
0.1 Å−1. We also calculated the effective masses of electrons
and holes in the vicinity of the � point and find bands with
both anisotropic and isotropic masses. As the 10 × 10 k · p
model is not sufficient to explain the optical transition prop-
erties of the lowest conduction band, we added more bands

to the original model and showed that due to the SOC, lowest
conduction band hybridizes with a higher lying band, which
gives a weak optical transition when circularly polarized light
is used. Using similar arguments, we also explained the transi-
tion amplitudes from the top three valance bands to the second
lowest conduction band. Using the Hamiltonian we have de-
rived, we calculated the effective g factor of the electrons and
holes for a magnetic field along the c and x − y axis of the
crystal. Finally, for the future heterostructure calculations, we
provided an ellipticity analysis of the fit parameters, which
is an important tool to obtain correct sub-band energies for
the quantum wells, wires, and dots. In conclusion, we created
a k · p model that captures important features of the 2H-Ge
and we showed that physical parameters like the g factor of
the electron and holes can be found using the Hamiltonian at
hand. In real samples, the symmetries of the lonsdaleite struc-
ture can be broken by various defects, which would affect,
among others, the optical selection rules that we obtained. We
leave the study of the effects of such symmetry breaking to a
future work.

ACKNOWLEDGMENTS

We acknowledge financial support from the ONCHIPS
project funded by the European Union’s Horizon Europe re-
search and innovation programme under Grant Agreement
No. 101080022. A.K. and J.K. acknowledge the support by
the Hungarian Scientific Research Fund (OTKA) Grant No.
K134437 from the source of the National Research, Devel-
opment and Innovation Fund. This research was supported
by the Ministry of Culture and Innovation and the National
Research, Development and Innovation Office within the
Quantum Information National Laboratory of Hungary (Grant
No. 2022-2.1.1-NL-2022-00004).

APPENDIX A: SELECTION RULES

In order to determine the nonzero matrix elements within
the k · p framework, we can first decide whether products
of the form �i ⊗ � j ⊗ �k contain the identity irrep (�1).
Only in this case, the corresponding matrix element will be
nonzero. Here � j corresponds to either p or ∇V (r) × p and
�i and �k to irreps of the bands. In short, under any symmetry
operation Ĝ,

〈
ψα

i

∣∣pβ
j

∣∣ψγ

k

〉 = 〈Ĝψα
i

∣∣Ĝpβ
j

∣∣Ĝψ
γ

k

〉
. (A1)

The relation Eq. (A1) can be used to determine whether
a matrix element equals zero for symmetry reasons. Un-
der a rotation operator, the equality becomes 〈ψα

i |pβ
j |ψγ

k 〉 =
eiπr〈ψα

i |pβ
j |ψγ

k 〉 where r can take values depending on the
rotation symmetry, e.g., r = 1/3 for a 60◦ rotation. Depending
on the value of the exp function, the momentum matrix ele-
ments are zero or nonzero. Besides the rotational symmetries,
the D6h point group also has mirror and inversion symmetries.
For example, under the inversion symmetry 〈�+

5 |k · p|�+
5 〉 =

−〈�+
5 |k · p|�+

5 〉 as the coordinates are not paired and hence
this matrix element vanishes.
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APPENDIX B: PERTURBATION HAMILTONIANS
AND DEFINITIONS

In this Appendix, we present the matrix form of the Hamil-
tonians of Eq. (1) and the corresponding parameters. H10x10 in
Eq. (4) can be written asH0 +H f ree +Hk·p +HSO, and here
we provide the definitions of the matrix elements.
H0 = diag[Ecb+1, Ecb, Ev + �1, Ev + �1, Ev] for each

spin channel, with 〈�Sx
5v+|H0|�Sx

5v+〉 = 〈�Sy

5v+|H0|�Sy

5v+〉 =

Ev + �1, 〈�2c−|H0|�2c−〉 = Ecb+1, and 〈�3c−|H0|�3c−〉 =
Ecb.

For the first-order k · p Hamiltonian we have, Hk·p =
1
2

h̄
me

(k+ p̂− + k− p̂+) + h̄
me

kz p̂‖ where k± = kx ± iky with

P1 = −i h̄
me

〈�2c−| p̂‖|�1v+〉 and P2 = −i h̄
me

〈�2c−| p̂⊥|Sy〉 =
i h̄

me
〈�2c−| p̂y|Sx〉.
For the SOC terms, we have

�2 = ih̄

4m2
0c2

〈
�

Sx
5v+

∣∣∣∣∂V

∂x
py − ∂V

∂y
px

∣∣∣∣�Sy

5v+

〉
,

�3 = ih̄

4m2
0c2

〈
�1v+

∣∣∣∣∂V

∂y
pz − ∂V

∂z
py

∣∣∣∣�Sx
5v+

〉
,

= ih̄

4m2
0c2

〈
�1v+

∣∣∣∣∂V

∂z
px − ∂V

∂x
pz

∣∣∣∣�Sy

5v

〉
.

(B1)

Hence, Eq. (4) can be written as the sum

Hfree +
[

H (1)
k·p 0
0 H (1)

k·p

]
+
[

�diag �off-diag

�∗
off-diag �diag

]
. (B2)

Matrix representation of the distant band contributions Hdist. in the Sx, Sy, and 1l basis can be written as,

Hdist. =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Ac2⊥
(
k2

x + k2
y

)+ Ac2‖k2
z 0 0 0 0

0 Ac1⊥
(
k2

x + k2
y

)+ Ac1‖k2
z 0 0 0

0 0 L1k2
x + M1k2

y + M2k2
z N1kxky N2kxkz

0 0 N1kxky M1k2
x + L1k2

y + M2k2
z N2kykz

0 0 N2kxkz N2kykz M3

(
k2

x + k2
y

)+ L2k2
z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(B3)

with the definitions

Ac1⊥ = h̄2

2m0

B∑
γ

2px
�3cγ

px
γ�3c

m0(E0 − Eγ )
, Ac1‖ = h̄2

2m0

B∑
γ

2pz
�3cγ

pz
γ�3c

m0(E0 − Eγ )
,

Ac2⊥ = h̄2

2m0

B∑
γ

2px
�2cγ

px
γ�2c

m0(E0 − Eγ )
, Ac2‖ = h̄2

2m0

B∑
γ

2pz
�2cγ

pz
γ�2c

m0(E0 − Eγ )
,

L1 = h̄2

2m0

B∑
γ

2px
Sxγ

px
γ Sx

mo(E0 − Eγ )
, L2 = h̄2

2m0

B∑
γ

2pz
1γ pz

γ 1

m0(E0 − Eγ )
,

M1 = h̄2

2m0

B∑
γ

2py
Sxγ

py
γ Sx

m0(E0 − Eγ )
, M2 = h̄2

2m0

B∑
γ

2pz
Sxγ

pz
γ Sx

m0(E0 − Eγ )
,

M3 = h̄2

2m0

B∑
γ

2px
1γ px

γ 1

m0(E0 − Eγ )
, N1 = h̄2

m2
0

B∑
γ

px
Sxγ

py
Syγ

+ py
Sxγ

px
Syγ

,

(B4)

where the relation between band parameters (L1, M1, ...) and inverse effective mass parameters (A1, A2, ...) are the same as in
Ref. [11], with E0 is the energy of the band of interest and Eγ is the band energy of the distant band. Note that, due to the
inversion symmetry, there are no coupling terms between CB and VB, unlike in the case of wurtzite materials. Because of the
hexagonal symmetry we can write N1 = L1 − M1 and N2 = 0 for our case. In the kz direction, since the lowest conduction band
does not couple to any other band, Ac1‖ = h̄2/(2m0). Using the bases we have introduced in Table I, and following the notation
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of Ref. [11] we can write the Eq. (B3) as

H (2)
k·p =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C2 0 0 0 0 0 0 0 0 0
0 C1 0 0 0 0 0 0 0 0
0 0 λ + α −K∗ −T ∗ 0 0 0 0 0
0 0 −K λ + α T 0 0 0 0 0
0 0 −T T ∗ λ 0 0 0 0 0
0 0 0 0 0 C2 0 0 0 0
0 0 0 0 0 0 C1 0 0 0
0 0 0 0 0 0 0 λ + α −K T
0 0 0 0 0 0 0 −K∗ λ + α −T ∗
0 0 0 0 0 0 0 T ∗ −T λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

with the definitions,

C2 = Ac2⊥
(
k2

x + k2
y

)+ Ac2‖k2
z ,C1 = Ac1⊥

(
k2

x + k2
y

)+ Ac1‖k2
z ,

λ = A1k2
z + A2

(
k2

x + k2
y

)
, α = A3k2

z + A4
(
k2

x + k2
y

)
,

K = A5k2
+, T = A6(kx + iky))kz.

(B6)

APPENDIX C: OPTICAL SELECTION RULES FOR 2H-GE

Here we present the optical transition rules for the hexago-
nal germanium. Table VII shows the general dipole transition
rules for the VB’s (first row) and CB’s (first column). Ta-
ble VIII shows the possible transitions between CB and VB,
VB-1 and VB-2 with both SOC on and off and similarly
Table IX shows the transitions to the CB+1. Similar analysis
has been done by Ref. [24] for the wurtzite structure. We
should point out that CB+1 of the lonsdaleite structure and

CB of the wurtzite structure behaves exactly same in terms
of allowed optical transitions, for with and without SOC. CB
(�−

8 ) of the lonsdaleite, however, does not exist in the wurtzite.
Thus, Table VIII is lonsdaleite-specific allowed optical
transitions.

APPENDIX D: TWELVE-BAND MODEL AT THE � POINT

In this Appendix, we provide the twelve-band (without
spin) k · p model that is mentioned in the Sec. IV. This is
and extended version of the 5 × 5 spinless model introduced
in Sec. III. The basis functions we use are the same as in
Table I, with the addition of CB+6 and CB+5 that trans-
form as �−

6 , CB+4 as �−
2 , CB+3 and CB+2 as �−

5 for the
conduction bands. Similarly, for the valance bands we have
VB-3 and VB-4, which transform as �+

6 of the D6h point
group.
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