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Efficient high-fidelity flying qubit shaping
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Matter qubit to traveling photonic qubit conversion is the cornerstone of numerous quantum technologies such
as distributed quantum computing, as well as several quantum internet and networking protocols. We formulate
a theory for stimulated Raman emission which is applicable to a wide range of physical systems, including
quantum dots, solid-state defects, and trapped ions, as well as various parameter regimes. We find the upper
bound for the photonic pulse emission efficiency of arbitrary matter qubit states for imperfect emitters and show
a path forward to optimizing the fidelity. Based on these results, we propose a paradigm shift from optimizing the
drive to directly optimizing the temporal mode of the flying qubit using a closed-form expression. Protocols for
the production of time-bin encoding and spin-photon entanglement are proposed. Furthermore, the mathematical
idea to use input-output theory for pulses to absorb the dominant emission process into the coherent dynamics,
followed by a non-Hermitian Schrödinger equation approach, has great potential for studying other physical
systems.
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I. INTRODUCTION

Efficient, tunable, and coherent quantum emitters are at
the heart of many quantum technologies. Prominent examples
include entanglement distribution [1,2], as well as more
general applications for quantum networks and commu-
nication [3–8], which can potentially enable a quantum
internet [9,10] with quantum-mechanically enhanced security
and privacy. Additionally, single-photon emission represents
a cornerstone for several photonic technologies [11–15]. Gen-
erally, there is great interest in coherent quantum media
conversion, as it allows the connection between different
quantum systems with diverse properties. This enables hybrid
quantum systems that combine the advantages of each sub-
system. Such hybrid quantum systems can combine matter
systems with beneficial properties for storage or compu-
tation, e.g., trapped ions [16], semiconductor qubits [17]
implemented via quantum dots and defects in solids, and
superconducting circuits [18], with easily transmittable pho-
tons [14]. In this regard, photons are the natural choice for
traveling qubits [19] and can be used to exchange quantum
states or create entanglement between distant matter systems.

Cavity-enhanced stimulated Raman emission is an estab-
lished technique for controlled and (nearly) deterministic
pulse emission, i.e., “push-button-like” shaped pulse gen-
eration. On-demand emission promises a leap towards the
independence of emission and absorption, which is of the
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utmost importance when exchanging states between diverse
systems. The ability of Purcell enhancement to achieve
a controllable emitter with high efficiency was already
shown over a wide range of materials, e.g., trapped ions
as well as atoms [20–22], “untrapped” atoms [23], quantum
dots [24,25], and defects in solids [26,27]. Previous theoreti-
cal work focused on perfect emitters [1,28–32].

In this paper we theoretically determine the fundamental
fidelity bound of coherent state transfer for arbitrary pulse
shapes from a stationary matter three-level system (3LS) via
a cavity to a traveling qubit pulse which facilitates a distinct
approach to maximize the state transfer fidelity. In particular,
we are interested in the transfer of a superposition of qubit
states α0 |1〉 + β0 |0〉 via the excited state |e〉 and cavity to the
traveling photon (qubit) α0 |1〉v + β0 |0〉v (see Fig. 1).

Previously derived photon retrieval bounds [22,29,30,33]
depending only on the cavity decay rate and cooperativity
of the emitter-cavity coupling can greatly overestimate the
bound we calculate, which includes additional system fea-
tures, most prominently different decoherence processes of
the emitter as well as the temporal shape of the flying qubit
v(t ) and initial superposition states, which are fundamentally
necessary to understand spin-photon entanglement. Because
the bound depends on the shape of the photon, it is suited for
finding optimized flying qubit shapes, providing a paradigm
shift from approaches that aim to find the optimal drive,
e.g., the shortcut to adiabaticity [34] approach as well as
theories eliminating the propagating pulse completely [1].
The remainder of this paper is organized as follows. First,
we show how stimulated Raman emission can be used to
generate spin-photon entanglement in Sec. II. In Sec. III we
introduce the model describing the emitter and the quantum
pulse. We present a closed-form solution of the dynam-
ics in Sec. IV and introduce the temporal mode matching
(Sec. IV A) to link the emitter dynamics to the temporal
mode. We use the solution to bound the state transfer fidelity
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FIG. 1. (a) Illustration of the physical system and (b) energy level
diagram of a stimulated Raman emitter. The illustration depicts a
quantum system (blue ball) coupled to an electromagnetic cavity
mode (pink) as well as an excitation (e.g., laser) field (green). One
of the mirrors couples out into a fiber, enabling the emission of a
photon pulse (pink glowing droplet). The level diagram in (b) in the
rotating frame depicts the excited state |e〉 (ES) split from the two
ground states |0〉 and |1〉 by the detuning � for the relevant states of
the cavity |0〉c and |1〉c with zero and one photon. The � system is set
up by a controllable time-dependent (excitation field) Rabi amplitude
�(t ) coupling |1〉 |0〉c to the ES, as well as cavity interaction between
the ES and |0〉 |1〉c with single-photon coupling strength g. The cavity
emits the photon wave packet with pulse shape v(t ) via the (right)
out-coupling κ , thus converting the matter qubit (shaded blue) to a
flying qubit. Imperfections of the three-level system and cavity can
lead to decoherence processes taken into account via the combined
rates γ̃ , 	1, 	2, and κ̃ .

in Sec. IV B and show how to optimize the pulse shape to
increase the fidelity in Sec. IV C. We conclude the paper in
Sec. V.

II. ENTANGLEMENT GENERATION VIA STIMULATED
RAMAN EMISSION

Prior to the detailed analysis we point out quantum tech-
nological applications of stimulated Raman emission beyond
single-photon sources, e.g., to create a photon entangled with
the matter qubit or to transfer the matter qubit to a time-bin
qubit if an additional long-lived matter state or (nuclear) spin n
is available. For concreteness, we focus on the silicon-vacancy
center in diamond, an established Raman emitter [26,27]
which features the silicon nuclear spin as a quantum mem-
ory. Recently, a CnNOT gate between the electronic qubit
and the nuclear spin was demonstrated using microwaves
(fidelity ∼99.9%) [35]. After initializing the nuclear spin
α0 |1〉n + β0 |0〉n state, we propose to use a nuclear CnNOT

followed by a Raman emission, resulting in the entangled state
α0 |1〉n |1〉v + β0 |0〉n |0〉v . The basic idea is to store the wave
function amplitude β0 (of the qubit state |0〉) in an ancillary
state during the emission from the qubit state |1〉 to the first
time bin |1〉1.

After the first emission, gates are applied between the qubit
and the ancillary state(s) so that after another emission the
qubit state is encoded in two time bins, i.e., a time-bin qubit
with the state α0 |1〉1 + β0 |1〉2. The indices mark the time
bins, which are independent pulses, e.g., pulses with nonover-
lapping envelopes. In Fig. 2 we show two examples of the
implementation of this idea, one for an ancillary qubit (as is
the case for the silicon nuclear spin in the SiV) and one for a
single ancillary state. For ancillary qubit implementation we
need the two-qubit gates CnNOT and SWAP, while for the single
extra state |a〉 we need the ability to apply a π/2 rotation
between |0〉 and |a〉; in both cases an X gate between |0〉
and |1〉 is also required. The EMIT gate corresponds to the
stimulated Raman emission process. In both cases, stopping
the protocol after the first emission or replacing the SWAP

by another CnNOT can be used to generate entanglement. For
the single ancillary state the time-bin entanglement can be
achieved by omitting the second π/2 pulse for the single
ancillary state.

The entangled state after the first emission is α0 |1〉n |1〉1 +
β0 |0〉n |0〉1 using the ancillary qubit with states |σ 〉n (σ =
0, 1) or α0 |0〉 |1〉1 + β0 |a〉 |0〉1 using only one ancillary state
|a〉, where |m〉1, with m = 0, 1, . . . , is the number state of
the first emitted pulse. For the time-bin entanglement we find
α0 |1〉n |1〉1 + β0 |0〉n |1〉2 and α0 |a〉 |1〉1 + β0 |0〉 |1〉2. Analo-
gously, initializing the system in one of the ancillary states
and then repeating a (partial) transfer of the occupation to |1〉
followed by an emission enables time-bin qudit generation.

Applications for the protocol generating entanglement
between a quantum memory and a flying qubit include
entanglement exchange between distant matter nodes (her-
alded [36] or combined with perfect absorption [30,37] to
“pitch and catch” [1]) and the generation of photonic cluster
states [38]. Note that the following analysis is compatible with
the outlined entanglement generation protocols because the
analytical solution makes assumptions about only the initial
preparation of the Raman emitter.

III. MODEL

In this scenario the quantum memory is better shielded
from decoherence than the emitter, making it vital to
understand and optimize the emission. The rotating frame
Hamiltonian (see Appendix A for additional details on the
rotating frame) of the cavity interacting with the 3LS is

HS/h̄ = � |e〉 〈e| + [�(t ) |e〉 〈1| + gc† |0〉 〈e| + H.c.], (1)

with �(t ) being the time-dependent Rabi frequency of the
drive; g being the single-photon coupling strength to the cav-
ity; � being the detuning between the cavity and the |0〉 ↔ |e〉
transition; |0〉 , |1〉, and |e〉 being the 3LS states; and c be-
ing the cavity photon annihilation operator. The energy level
structure is sketched in Fig. 1.

To include the emission from the cavity in a specific out-
put pulse in the Hermitian dynamics we employ the recently
developed input-output theory for quantum pulses [39,40]
using an open quantum systems approach. Therefore, we can
use dissipators Li to model various incoherent processes and
rely on the Born-Markov approximation. Since the relevant
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FIG. 2. Emission of a time-bin qubit using (a) an ancillary (e.g., nuclear spin) qubit or (b) an ancillary state. The main focus of this paper
is the particular implementation of the EMIT process via cavity-enhanced stimulated Raman emission. CnNOT and SWAP refer to the two qubit
gates between the matter qubit and the ancillary qubit, and X denotes the one-qubit X gate of the matter qubit (or a π/2 pulse between |0〉 and
|1〉). Additionally, if one implements the protocol only up to the first emission, matter-photon entanglement is achieved.

emission is into a pulse that travels away from the emitter,
this approximation is justified provided the cavity coupling κ

is approximately constant for the spectrum of the pulse and the
emitted pulse varies slowly compared to the spectral range of
the continuum field [40]. For a pulse with a carrier frequency
in the optical range and durations on the order of 0.1 ns or a
microwave pulse and durations down to 10 ns, we deem the
assumptions well justified.

We take the input to be in the vacuum state and employ
input-output theory for pulses [39,40] to model the emission
(caused by directional single-photon losses c with rate κ) to
the specific pulse as a virtual cavity with time-dependent cou-
pling to the system. In this way, the cavity would completely
absorb the specific pulse. This is achieved by a total Hamilto-
nian H = HS + h̄ i

2

√
κ[g∗

v (t )c†a − H.c.], where κ is the cavity
decay rate, a is the annihilation operator of the virtual cav-
ity, and gv (t ) = −v∗(t )/

√∫ t
0 dt ′ |v(t ′)|2 is the time-dependent

coupling strength, which is directly linked to the normal-
ized pulse form v(t ), i.e.,

∫ T
0 |v(τ )|2 dτ = 1, with T being

the pulse duration. Combined with the dissipator L0(t ) =
gv (t )∗a + √

κc, the total Hamiltonian leads to a cascaded
evolution, resulting in a transfer of the quantum amplitudes
from the emitter to the virtual cavity. Additionally, a pulse
shape that does not (perfectly) capture the dynamics of the
emission process leads to incoherent losses via L0(t ); in other
words, only the emission into modes other than the temporal
mode v(t ) are treated as losses.

To study the coherent state transfer of a matter state
into the propagating wave packet, we focus on the single-
excitation subspace using a non-Hermitian Hamiltonian
approach [41–44], described by the time-dependent
Schrödinger equation ih̄ ∂

∂t |�〉 = HNH |�〉, with HNH = H −
h̄ i

2

∑
i L†

i Li and using the ansatz wave function

|�(t )〉 = [α(t ) |1〉 + β(t ) |0〉 + iζ (t ) |e〉] |0〉c |0〉v
+ η(t ) |0〉 |1〉c |0〉v + λ(t ) |0〉 |0〉c |1〉v . (2)

IV. RESULTS

In the following we summarize the solution of the dynam-
ics of the state transfer from the normalized state |�(0)〉 =
(α0 |1〉 + β0 |0〉) |0〉c |0〉v to a state close to |�target〉 =
|0〉 |0〉c (α0 |1〉v + β0 |0〉v ). Our first objective is to find a
(closed-form) expression for the (approximate) fidelity of the
state transfer

F = |〈�(T )|�target〉|2 = |α∗
0λ(T ) + β∗

0 β(T )|2 (3)

as a function of the system parameters and the pulse shape.
One of the distinguishing features of our method is that it does
not require the repeated numerical solution of any differential
equations.

A. Temporal mode matching

First, we solve the amplitude that does not partake in
the emission and therefore is subject to only decoherence,
β(t ) = β0e−	2t/2. Then we determine the optimal relationship
between the wave function amplitudes [Eq. (2)] and the pulse
shape by solving L0(t ) |�(t )〉 = 0 for the time-dependent cou-
pling gv (t ) to the virtual cavity. Fulfillment of this condition
implies that the successful coherent emission is a no-jump
trajectory in the model and yields

gv (t ) = −√
κη∗(t )/λ∗(t ), (4)

which corresponds to the temporal mode matching condition.
While the ideal process is fully coherent in our model, the
remaining incoherent processes (Li, i 	= 0) describe unwanted
errors. Thus, we have immediate access to the probability
of these errors pe = 1 − 〈�(t )|�(t )〉 � 0 via the loss of the
wave function norm, underlining that the chosen approach
is perfectly suited to describing the coherent transfer of
population. Within pe we here consider the combined de-
coherence rates γ̃ , 	1, and 	2 for the 3LS states |e〉 , |1〉,
and |0〉, respectively, as well as additional losses of the
cavity κ̃ . In Appendix B we relate the combined decoher-
ence rates to the corresponding dissipators of the Lindblad
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master equation modeling incoherent transitions, e.g., decay
and dephasing processes. We focus on efficient quantum emit-
ters where high fidelities are possible. By employing the
Cauchy-Schwartz inequality we find pe � 1 − F such that
pe is small (pe 
 1) for suitable pulses that reach high fi-
delities. This makes our approach highly accurate because
the unwanted emission of multiple excitations and the back-
action on the coherent trajectory after a quantum jump that
are neglected within the non-Hermitian Schrödinger equa-
tion are highly unlikely. This confirms the usefulness of
the non-normalized coherent trajectory to calculate fidelities
approaching unity.

The pulse shape can be linked to the dynamics via the
temporal mode matching (4). Combining the mode matching
condition (4) with the non-Hermitian Schrödinger equation,
we arrive at a set of differential equations for the amplitudes,
whose solution we calculate in Appendix C. We find

η(t ) = Eα0e−	2t/2v(t )/
√

κ, (5)

λ(t ) = Eα0e−	2t/2

√∫ t

0
|v(τ )|2 dτ , (6)

where the positive proportionality constant E takes into
account that the pulse shape is normalized independently of
the dynamics; we term it matter-photon (amplitude) conver-
sion efficiency since it can be defined as the (renormalized)
amplitude transfer ratio E = [λ(T )/α0]e	2T/2. In turn, the
fidelity (3) is directly bound by α∗

0λ(T ) and thus by the max-
imal achievable Emax. To calculate Emax, we apply the idea
of photon shaping [31], where we solve the non-Hermitian
dynamics in reverse by imposing η and λ, resulting in

ζ (t ) = 	2 + κ + κ̃

2g
η(t ) + 1

g
η̇(t ), (7)

�(t ) = − (γ̃ /2 + i�)ζ (t ) + gη(t ) + ζ̇ (t )

α(t )
. (8)

The remaining amplitude evolves according to

α(t ) = α0eiφ(t )−	1t/2

√
1 − E2

∫ t

0
d (τ )dτ , (9)

with the phase evolution φ(t ) and the (renormalized) depletion
rate d (t ), which are closed-form analytic functions of the
pulse shape v(t ) and system parameters g, κ, γ̃ , κ̃, 	1, and 	2.
The depletion rate is

d (t ) = et (	1−	2 )

({
1 + κ̃

κ
+ γ̃ − 	2

g2

[
κ

4

(
1 + κ̃

κ

)2

+ θ̇2(t )

κ

]
+ 2θ̈ (t )θ̇ (t )

κg2

}
f 2(t ) + 1

g2

(
1 + κ̃

κ

)
f (t ) f̈ (t ) + 2

κg2
ḟ (t ) f̈ (t )

+
[

2

κ
+ κ

2g2

(
1 + κ̃

κ

)2

+ γ̃ − 	2

g2

(
1 + κ̃

κ

)
+ 2θ̇2(t )

κg2

]
f (t ) ḟ (t ) +

[
1

g2

(
1 + κ̃

κ

)
+ γ̃ − 	2

κg2

]
ḟ 2(t )

)
, (10)

where we introduce the photon envelope phase θ (t ) ∈ R and
amplitude f (t ) ∈ R, i.e., v(t ) = eiθ (t ) f (t ). The phase evolu-
tion φ(t ) can be found in Appendix C. We stress that d (t ) is
independent of the detuning � and matter-photon conversion
efficiency E . On the other hand, the phase evolution φ(t ) is
an integral expression additionally depending on �. For a
pulse with constant complex phase and for � = 0 we have
φ(t ) = 0. We highlight that �(t ), d (t ), and φ(t ) are all inde-
pendent of the initial state of the matter qubit (α0, β0).

B. State transfer fidelity bound

A complex square root in Eq. (9) would contradict our
ansatz such that we would find the bound

E � Emax = 1√
maxt�0

∫ t
0 d (τ )dτ

. (11)

Because as soon as the square root in Eq. (9) tends to
zero the Rabi amplitude �(t ) (8) diverges [unless η(t ), ζ (t ),
and ζ̇ (t ) vanish at the same time], the physical bound
can be formulated even stronger such that the inequal-
ity becomes strict (�→<) ensuring |α(t )| > 0. The form
of d (τ ) [Eq. (10)] and Eq. (11) imply that a varying
phase in the rotating frame, θ̇ (t ) 	= 0, is detrimental, i.e.,
reduces Emax, if the phase of |1〉 can be controlled bet-
ter than the ES (	1 < γ̃ ). Using the method of partial

integration, 2
∫ t

0 e(	1−	2 )t [θ̇ θ̈ f 2 + θ̇2 f ḟ ]2dt = e(	1−	2 )t f 2(t )
θ̇2 (t ) − (	1 − 	2)

∫ t
0 θ̇2 f 2e(	1−	2 )t dt , when integrating

Eq. (10) proves that a varying phase in the rotating frame
reduces Emax, as long as 	1 < γ̃ . The bound on the parameter
E also limits the fidelity (3),

F �e−	2T |1 − (1 − Emax) |α0|2|2 . (12)

The fraction of the amplitude transferred from |1〉 to
|1〉v corresponds to the worst-case fidelity F (|α0| = 1) =
|λ(T )/α0|2 = E2e−	2T � E2

maxe−	2T and does not depend on
the initial condition. This result is a generalization of the upper
bound for the maximum efficiency in Ref. [31], and we em-
phasize that by incorporating the imperfections of the emitter
the fidelity has a maximum at a finite time (see Fig. 3) and
is therefore suited to optimize the pulse duration. Considering
that any initial matter-qubit state should be transferred with
a good fidelity, we average the fidelity (12) over the Bloch
sphere

Favg = E2 + E + 1

3e	2T
� E2

max + Emax + 1

3e	2T
. (13)

To compare our result to previous bounds for perfect
emitters (	1, 	2 = 0) and slowly evolving pulses we first
use maxt

∫ t
0 d (τ )dτ �

∫ T
0 d (τ )dτ and

∫ T
0 d (τ )dτ > 0 for

good quantum emitters, where 	1, 	2 < κ, γ̃ , employing
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FIG. 3. Bounds for the (a) average and (b) worst-case fidelity as a
function of the pulse duration for a sin2 pulse [see Eqs. (12) and (13)].
We compare different bounds, derived from different expressions
for E 2 (see legend), the pulse form dependent fidelities based on
the exact maximum (11) (solid lines), the simplified analytic bound
E 2 = 1/

∫ T
0 d (τ )dτ (dotted lines), and the approximation for slowly

varying pulses and perfect emitters E 2 = 2C/(1 + 2C) [see Eq. (14);
dashed line]. The maxima of the fidelity based on the exact maximum
are marked by diamonds. The pulse form dependent bounds are
shown for different decoherences of the matter qubit (	1, 	2)/γ̃ ;
from dark (blue) to light (yellow) the values are (0,0), (0.01,0.005),
(0,0.1), (0.1,0), (0.2,0), and (0.1,0.1). We use cavity QED parameters
that can describe silicon-vacancy defects in diamond (g, κ, γ ) =
2π × (6, 30, 0.1) GHz inside a perfect one-sided cavity κ̃ = 0.

∫ T
0 d (τ )dτ as a “simpler” upper bound for Eqs. (11)–(13).

In Fig. 4 we show exp(	2T )
∫ T

0 d (τ )dτ for sin2 pulses of
different durations and for different decoherence rates of the
emitter. Figure 4 shows that for long pulse durations the
difference between

∫ T
0 d (τ )dτ and maxt

∫ t
0 d (τ )dτ becomes

smaller. It is also readily visible that for short pulses the max-
imum deviates from

∫ T
0 d (τ )dτ . We can further approximate

this for a slowly evolving pulse v̇ 
 κ, g and perfect emitter
to

E2 � κ

κ + κ̃

2C

(1 + 2C)
, (14)

with C = 2g2/[γ̃ (κ + κ̃ )] being the (generalized)
cooperativity. This is in agreement with the photon
escape (or retrieval) efficiency found in [22,29,30,33].

FIG. 4. Integrated depletion rate
∫ t

0 d (τ )dτ [see Eq. (10)] for a
sin2 pulse as a function of integration time t . We use this integral to
calculate the maximum achievable fidelity for a set of parameters.
Here, we consider a sin2 pulse which corresponds to the ansatz in
Eq. (15) with L = 1. We use the same colors and parameters as in
Fig. 3.

FIG. 5. Optimal pulse duration T for L = 1 and worst-case fi-
delity F (|α0| = 1) = |λ(T )/α0|2 as a function of the matter qubit
decoherence rates 	1 and 	2 (see legend). The colors correspond
to different decoherence processes (see legend). We use the same
parameters as in Fig. 3.

However, the photon envelope dependent bounds for
decohering emitters are more accurate and can quantify
the optimal duration (see Fig. 3).

To gain a better understanding of our results, we consider
a pulse shape of the form

v(t ) =
L∑

n=1

vn

[
1 − cos

(
2πn

T
t

)]
(15)

for 0 < t < T ; otherwise, v(t ) = 0. Pulses of this form are
real [v(t ) ∈ R], are symmetric, fulfill v(0) = v(T ) = v̇(0) =
v̇(T ) = 0 [45], and contain L independent parameters T and
vn/v1, with n = 2, . . . , L. For L = 1 this ansatz is a sin2 pulse
with variable pulse duration. Using the basis of Eq. (15), nor-
malization yields v1 = √

6/9T (L = 1), making it apparent
that the only free parameter of the sin2 pulse is the duration.

We show the maximum worst-case fidelity F (|α0| = 0) and
average fidelity for L = 1 as a function of the pulse duration T
in Fig. 3, confirming that the various approximate bounds fail
to capture a useful bound for the maximum achievable fidelity
for all possible timescales and fail to quantify the optimal
duration, in contrast to the bound provided by Eq. (11) that
does not rely on an adiabatic approximation and holds for any
detuning.

The optimal duration balances the finite cavity coupling
strength g and cavity decay rate κ with the decoherence of the
emitter. We more thoroughly investigate the optimal duration
for a sin2 pulse as a function of the qubit decoherence rates 	1

and 	2 in Fig. 5. For Fig. 5 we determine the optimal duration
numerically in two steps. First, we find the optimal duration
on a grid with 200 time points between max(1/g, 1/κ ) and
min(	1, 	2) and then repeat the optimization with 200 ad-
ditional points between the two points around the optimum
of the first run. This approach ensures that even for small
decoherence rates the grid is sufficiently small to avoid arti-
facts of the numerical grid. The decrease of the worst-case
fidelity as well as the optimal duration as a function of the
decoherence rates of the matter system becomes apparent in
Fig. 5. However, the decrease of the duration flattens for
higher rates as the duration is also limited from below due
to the finite coupling between the matter qubit and the cavity
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FIG. 6. Results of optimizing the pulse shape for a maximum worst-case fidelity. (a) shows half of the optimal symmetric pulse shapes f (t )
for different numbers of free parameters L and restrictions on the pulse (see legend). The corresponding worst-case fidelity F (|α0| = 1) and
optimal pulse duration T are depicted in (b) and (c); here. the dashed line corresponds to the perfect emitter bound [see Eq. (14)]. (d) Driving
Rabi frequency �(t ) as a function of time for different pulses [different colors; see the legend in (a)] and E/Emax (see legend). Reducing E leads
to a larger minimal |α(t )| = e−	2t r(t ) (see inset) and smooths out discontinuities in �(t ). Parameters are the same as in Fig. 3, 	1, 	2 = 0.1γ ,
and � = 0. See Appendix E for the optimization results.

and the out-coupling rate of the cavity. Furthermore, we see
that, qualitatively, the rates 	1 and 	2 behave similarly, but
depending on the protocol of interest, it might be preferential
to swap the roles of |0〉 and |1〉, i.e., couple the shorter- or
longer-lived state to the excited state via the cavity.

C. Fidelity optimization by pulse shaping

More generally, we can take an ansatz for the enve-
lope and optimize its independent parameters with regard to
any quantity limited by Eq. (11). Here, we maximize the
worst-case fidelity F (|α0| = 1) [see Eq. (12)] to find vopt =
argmaxv[1/ maxt e	2T

∫ t
0 d (τ )dτ ]. The paradigm shift from

searching for the optimal �(t ) to searching the optimal pulse
shape v(t ) (including the duration) saves one from repeat-
edly solving the dynamics and instead allows the use of the
closed-form function d (t ) [Eq. (10)]; see Appendix D for the
analytic evaluation of

∫ t
0 d (τ )dτ for the ansatz in Eq. (15).

Parametrizing v(t ) by 
v, the optimization is over a finite
parameter space instead of a function space, and the optimiza-
tion assumes the well-known form of a (continuous) minimax
problem [46,47] for finding the optimal 
v. In Fig. 6 we show
results for the ansatz in Eq. (15) and a grid optimization to
find the L optimal parameters T and vn/v1 (n = 2, . . . , L).
It turns out that increasing L allows for higher fidelities
and shorter pulses. We also display the photon shape and
Rabi frequency, both of which we have immediate access to
after the optimization. We remark that the optimization results
can be confirmed using a single simulation of the Lindblad
master equation with the optimal photon shape and Rabi
frequency.

Constraints can be accounted for by different v(t ), e.g., by
fixing some parameters; in particular, if the rate at which the
drive can be modulated is larger than the optimal T , we can
fix it to the minimal achievable T . In Fig. 6 we also show
the optimization results ensuring a continuous drive activation
by imposing v̈(0) = 0 [see Eqs. (7) and (8)]. To this end we
use only odd n as free parameters and set v2n = − n2

(n+1)2 v2n−1.
Additionally, we show in Fig. 6(d) that targeting Emax leads

to a pole in the driving Rabi frequency �(t ) (8) which can be
avoided by smoothing �(t ) by reducing the target efficiency
E < Emax.

V. CONCLUSION

In conclusion, we derived a bound for the fidelity for
cavity-assisted stimulated Raman emission, taking into ac-
count not only the cavity quantum electrodynamic quantities
but also the temporal pulse shape and additional decoher-
ence processes of the three-level system. Due to the cascaded
nature of the equations, we see great potential in applying
the bounds to nontrivial waveguides. Furthermore, we showed
how this bound can be cast into an optimization problem for
the pulse shape for an efficient emission process, providing
a paradigm shift from optimizing the drive to optimizing the
temporal mode (and thereby also fixing the drive). We showed
that this optimization is of a closed-form expression, in con-
trast to the naïve optimization, where the dynamics need to be
solved (numerically) repeatedly. Combined with the encoding
and entanglement protocols we proposed, this is a promising
ingredient for quantum technology. The method of including
the main emission process in the coherent dynamics by com-
bining the novel input-output approach by [39,40] with the
temporal mode matching can potentially be applied to many
problems. While we grid optimized a symmetric pulse, non-
symmetric pulses compatible with the initial conditions, i.e.,
continuously vanishing at t = 0, and different optimization
algorithms could be investigated analogously. A natural next
step would be to study a photon-mediated matter-to-matter
transfer within this framework.
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APPENDIX A: ROTATING FRAME
AND LABORATORY FRAME

Since the main text introduces the Hamiltonian in the rotat-
ing frame, in this Appendix we link the rotating frame to the
laboratory frame. The Hamiltonian in the laboratory frame is

H̃S/h̄ = (� + ωc) |e〉 〈e| − δ |1〉 〈1| + ωcc†c

+ [�̃∗(t ) |1〉 〈e| + gc† |0〉 〈e| + H.c.], (A1)

with � + ωc being the excited state energy (in units of fre-
quency), δ being the qubit level splitting, and ωc being the
cavity frequency. We then apply the transformation to the
rotating frame

U = exp[−i(−δ |1〉 〈1| + ωc |e〉 〈e| + ωcc†c)t], (A2)

leading to

Hs/h̄ = U †H̃S/h̄U − iU †U̇

= � |e〉 〈e| + [�∗(t ) |1〉 〈e| + gc† |0〉 〈e| + H.c.],

(A3)

corresponding to the Hamiltonian in the main text. The
detuning is �, and the drive in the laboratory frame is linked
to the rotating frame by �̃(t ) = �(t ) exp[−i(δ + ωc)t]. Addi-
tionally, we see how the splitting between the qubit states is
absorbed in the time-dependent drive.

Using the same transformation, we can also link the time
dependence of the coupling to the virtual cavity g̃v (t ) =
gv (t )eiωct between the laboratory and rotating frames. This
also links the photon envelopes ṽ(t ) = e−iωctv(t ) and leads
to the correct transformation of the dissipator L0. Because the
remaining dissipators gain only a global phase in the rotating
frame and always occur in pairs (with their adjoint) in the
master equation, we can treat the remaining dissipators as
unchanged in the rotating frame.

APPENDIX B: DECOHERENCE RATES

In this Appendix we show how to derive the combined
decoherence rates arising in the non-Hermitian Hamiltonian
from established dissipators from the Lindblad master equa-
tion. The Lindblad master equation takes the form

dρ

dt
= − i

h̄
[H, ρ] +

∑
i

(
LiρL†

i − 1

2
{L†

i Li, ρ}
)

, (B1)

which is also found in the employed open quantum sys-
tems approach to input-output theory [39,40]. In addition to
the main dissipator L0 introduced in the main text we con-
sider the following dissipators: (1) decays from the excited
state (ES) |e〉 to the ground states (GSs) |1〉 and |0〉, L1 =√

γ cos(ξ ) |1〉 〈e| and L2 = √
γ sin(ξ ) |0〉 〈e|, with ξ being

the branching angle; (2) the important uncorrelated dephas-
ing terms [48], here the dephasing of |1〉 and |e〉 using

the phase of |0〉 as a reference, L3 =
√

	1
ph |1〉 〈1| and L4 =√

	e
ph |e〉 〈e|; (3) incoherent transitions between the GSs, L5 =

√
	0→1 |1〉 〈0| and L6 = √

	1→0 |0〉 〈1|; and (4) unwanted
cavity losses (e.g., losses through the wrong mirror), given
by L7 = √

κ̃c.

The effect of these dissipators on the non-Hermitian
Schrödinger equation

ih̄
∂

∂t
|�〉 = HNH |�〉 =

(
H − h̄

i

2

∑
i

L†
i Li

)
|�〉 (B2)

depends only on L†
i Li. This implies we can combine∑

i=1,2,4 L†
i Li = γ̃ |e〉 〈e| with γ̃ = γ + 	e

ph and
∑

i=3,6 L†
i

Li = 	1 |1〉 〈1| with 	1 = 	1→0 + 	1
ph. In the main text we

refer to 	0→1 = 	2 for a consistent and simpler notation. Last,
the cavity losses lead to L†

7L7 = κ̃c†c.

APPENDIX C: SOLVING
THE NON-HERMITIAN DYNAMICS

Combining the temporal mode matching and the non-
Hermitian Schrödinger equation, the (decaying) dynamics of
the coherent state transfer are

α̇(t ) = −	1

2
α(t ) + �∗(t )ζ (t ), β̇(t ) = −	2

2
β(t ), (C1)

ζ̇ (t ) =
(

−i� − γ̃

2

)
ζ (t ) − gη(t ) − �(t )α(t ), (C2)

η̇(t ) = −	2 + κ + κ̃

2
η(t ) + gζ (t ), (C3)

λ̇(t ) = −	2

2
λ(t ) + κ|η(t )|2

2λ∗(t )
, (C4)

where we combined important uncorrelated dephasing
terms [48] and relevant decays from the states |1〉, |0〉, and
|e〉 in the rates 	1, 	2, and γ̃ , respectively.

To solve these equations we first formally integrate the
pulse amplitude

λ(t ) = √
κeiϕ

√∫ t

0
e	2(τ−t )|η(τ )|2 dτ , (C5)

where we allow for an arbitrary initial phase ϕ. In-
serting this solution into the temporal mode matching
gv (t ) = −√

κη∗(t )/λ∗(t ) and comparing to the definition of
the time-dependent coupling to the virtual cavity gv (t ) =
−v∗(t )/

√∫ t
0 dt ′ |v(t ′)|2 relates η(t ) to the pulse shape,

η(t ) = E |α0| eiϕe−	2t/2v(t )/
√

κ, (C6)

with α0 = α(0). We term the positive proportionality constant
E the matter-photon conversion efficiency and demonstrated
in the main text that it is directly related to the fidelity of the
process. Equation (C6) shows that the pulse shape is directly
linked to the dynamics of the ES, and combining Eqs. (C5)
and (C6) with the temporal mode matching, we see that a
static phase (such as ϕ) can be encoded in either λ(t ) and or
v(t ). Reinserting η(t ) into the formal integral describing the
photon probability amplitude yields

λ(t ) = E |α0| eiϕ−	2t/2

√∫ t

0
|v(τ )|2 dτ . (C7)

Inspired by results for the optimal control to emit a photon
of a certain shape [31], we solve the remaining equations in
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reverse by imposing a fixed photon shape [and thereby η(t )
and λ(t )]. This approach leads us to

ζ (t ) = 	2 + κ + κ̃

2g
η(t ) + 1

g
η̇(t ), (C8)

and the optimal drive

�(t ) = − (γ̃ /2 + i�)ζ (t ) + gη(t ) + ζ̇ (t )

α(t )
. (C9)

Because we can ensure that |α(t )| > 0 for 0 � t < T if
α0 	= 0 and the form of �(t ) is irrelevant for α0 = 0 as no
emission takes place, this provides a solution of Eq. (C2) for
�(t ). Additionally, we now choose ϕ such that �(t ) becomes
independent of the initial condition, i.e., |α0| eiϕ = α0,

implying that the phase of α0 becomes the phase of λ(t ). The
complex phase of �(t ) is then determined by only the system
parameters and the pulse shape v(t ), not the initial condition
of the matter qubit.

To separate Eq. (C1) into two separable (in t) real
equations we take the ansatz α(t ) = α0r(t )eiφ(t )−	1t/2, with
r(t ), φ(t ) ∈ R, r(0) = 1, and φ(0) = 0. The separation yields
rṙ = − 1

2 E2d (t ) with the depletion rate according to Eq. (10)
of the main text. We can integrate both sides of the separated
equation for ṙ to calculate the solution used in the main text
for r2(t ) = 1 − E2

∫ t
0 d (τ )dτ � 0. Note that r(t ) and d (t ) are

independent of the detuning �.
After this integral is solved, the phase evolution also

becomes a straightforward integral, i.e.,

φ(t ) =
∫ t

0

F 2e(	1−	2)t

g2r2(t )

{[(
1 + κ̃

κ

)(
� + θ̇ (t )

) + θ̈ (t )

κ

]
f (t ) ḟ (t ) + � + 2θ̇ (t )

κ
ḟ 2(t ) − θ̇ (t )

κ
f (t ) f̈ (t )

+
[

κ

4

(
1 + κ̃

κ

)2(
� + θ̇ (t )

) +
(

1 + κ̃

κ

)
θ̈ (t )

2
+ 1

κ

(
�θ̇2(t ) − g2θ̇ (t ) + θ̇3(t )

)]
f 2(t )

}
dt, (C10)

where θ (t ) ∈ R is the photon envelope phase and f (t ) ∈ R is the amplitude, i.e., v(t ) = eiθ (t ) f (t ). We can read off from this
expression that φ(t ) = φ(0) = 0 for � = 0 and θ̇ (t ) = 0, implying that the phase φ is constant for � = 0 and θ̇ (t ) = 0, i.e., a
resonant cavity and a pulse shape with a constant complex argument.

APPENDIX D: ANALYTIC SOLUTION OF THE INTEGRATED DEPLETION RATE

In this Appendix we show the analytic expression for G(t ) = ∫ t
0 d (τ )dτ for the real pulse shape introduced in the main text,

given by

v(t ) = f (t ) =
L∑

n=1

vn

[
1 − cos

(
2πn

T
t

)]
=

L∑
n=1

vn fn(t ). (D1)

Because this pulse shape is real, we can write

G(t ) =
∫ t

0
et (	1−	2 )

{[
1 + κ̃

κ
+ γ̃ − 	2

g2

κ

4

(
1 + κ̃

κ

)2
]

f 2(t ) +
[

1

g2

(
1 + κ̃

κ

)
+ γ̃ − 	2

κg2

]
ḟ 2(t )

+
[

2

κ
+ κ

2g2

(
1 + κ̃

κ

)2

+ γ̃ − 	2

g2

(
1 + κ̃

κ

)]
f (t ) ḟ (t ) + 1

g2

(
1 + κ̃

κ

)
f (t ) f̈ (t ) + 2

κg2
ḟ (t ) f̈ (t )

}
dt, (D2)

where using the ansatz (D1) enables us to integrate termwise. This means the full integral takes the form
∑

n,m vnvmX , where
X is made up from products of the prefactor and the integrals shown below. For brevity of notation we use 	 = 	1 − 	2 and
ωn = 2πn

T to write the different terms for the integral

∫ t

0
e	t fn(t ) fm(t )dt =

⎧⎪⎪⎨
⎪⎪⎩

um−n (t,	)+um+n(t,	)
2 + e	t −1

	
− un(t, 	) − um(t, 	) for 	 	= 0,

3t
2 + sin(2ωmt )

4ωm
− 2 sin(ωmt )

ωm
for 	 = 0 and n = m,

um−n (t,	=0)+um+n (t,	=0)
2 − un(t, 	 = 0) − um(t, 	 = 0) + t else,

(D3)

∫ t

0
e	t fn(t ) ḟm(t )dt = ωm

{
1−cos(ωmt )

ωm
− 1−cos(ω2mt )

2ω2m
for 	 = 0 and n = m,

um(t ) + um+n(t,	)+um−n(t,	)
2 else,

(D4)

∫ t

0
e	t ḟn(t ) ḟm(t )dt = 1

2
ωnωm

{
t − sin(2ωmt )

2ωm
for 	 = 0 and n = m,

hm+n(t, 	) − hm+n(t, 	) else,
(D5)

∫ t

0
e	t fn(t ) f̈m(t )dt = 1

2
ω2

m

{
2hm(t, 	 = 0) − t + sin(2ωmt )

2ωm
for 	 = 0 and n = m,

2hm(t, 	) − hm+n(t, 	) − hm+n(t, 	) else,
(D6)
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TABLE I. Optimized pulse parameters. The durations are rounded to two (three for Emax) decimal digits. The duration T is given in
nanoseconds, and the amplitudes are given in units of 1/ns.

L f̈ (0) = 0 Emax T v1 v2 v3 v4 v5 v6

1 yes 0.987 0.50 1.35 −0.34
2 yes 0.987 0.38 1.5 −0.38 0.16 −0.09
3 yes 0.988 0.38 1.44 −0.36 0.27 −0.15 0.08 −0.06
1 no 0.988 0.44 1.23
2 no 0.988 0.44 1.28 −0.07
3 no 0.988 0.34 1.46 −0.30 0.17

∫ t

0
e	t ḟn(t ) f̈m(t )dt = 1

2
ωnω

2
m

{
1−cos(ω2mt )

ω2m
for 	 = 0 and n = m,

um+n(t, 	) − um+n(t, 	) else,
(D7)

with

hm(t, 	) = 1

	2 + ω2
m

{e	t [ωm sin(ωmt ) + 	 cos(ωmt )] − 	}, (D8)

um(t, 	) = 1

	2 + ω2
m

{ωm + e	t [	 sin(ωmt ) − ωm cos(ωmt )]}. (D9)

APPENDIX E: OPTIMIZED PULSE SHAPES

To optimize the pulse shapes in Fig. 3 we use 500 samples for T between max(1/κ, 1/g) and min(1/	1, 1/	2) (here, ≈0.03
and 16 ns) and, for each λn/λ1 (n = 2, . . . , L), 200 samples between −1 and 1. With this we can numerically determine the
maxima of these discrete points. Table I shows the optimization results of Fig. 3 in the main text.
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