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Valley relaxation in a single-electron bilayer graphene quantum dot
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We investigate the valley relaxation due to intervalley coupling in a single-electron bilayer graphene quantum
dot. The valley relaxation is assisted by both the emission of acoustic phonons via the deformation potential and
bond-length change mechanisms and 1/ f charge noise. In the perpendicular magnetic-field dependence of the
valley relaxation time T1, we predict a monotonic decrease of T1 at higher fields due to electron-phonon coupling,
which is in good agreement with recent experiments by Banszerus et al. (arXiv:2402.16691). We find that the
dominant valley relaxation channel in the high-field regime is the electron-phonon coupling via the deformation
potential. At lower fields, we predict that a peak in T1 can arise from the competition between 1/ f charge noise
and electron-phonon scattering due to bond-length change. We also find that the interlayer hopping γ3 opens a
valley relaxation channel for electric charge noise for rotationally symmetric quantum dots in bilayer graphene.
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I. INTRODUCTION

Bernal-stacked bilayer graphene (BLG) has a tunable band
gap controlled by an out-of-plane electric field [1–7]. This
semiconducting property enables the formation of quantum
dots (QDs) in BLG via electrostatically induced quantum
confinement. The possibility of hosting electron spin qubits
in graphene-based QDs [8] has received some attention due
to their expected long-lasting spin coherence including low
hyperfine interaction and weak spin-orbit coupling [9–18].
Recently, long spin relaxation times of a single-electron state
in BLG QDs exceeding 200 µs [19] and even up to 50 ms [20]
were reported, suggesting that BLG is a promising material
for spin qubits.

In addition to spin, the valley pseudospin is another
degree of freedom in graphene and other van der Waals
materials, arising from their two-dimensional honeycomb lat-
tice structure. While in the two-dimensional transition-metal
dichalcogenides, the strong spin-orbit coupling locks the spin
and valley degrees of freedom together, leading to interesting
combinations of spin and valley qubits [21–23], the weak
spin-orbit coupling in graphene ensures that the spin and val-
ley degrees of freedom are nearly independent. Specifically,
BLG has two independent energy valleys located at the K
and K ′ points of the hexagonal Brillouin zone. With broken
spatial inversion symmetry, the two inequivalent valleys in
gapped BLG experience opposite Berry curvatures and as-
sociated orbital magnetic moments [24–26]. This leads to a
valley splitting which grows linearly in the applied out-of-
plane magnetic field, and which can be viewed as a valley
Zeeman splitting similar to the spin Zeeman splitting. The
valley Zeeman effect has already been demonstrated recently
by single-carrier measurements in BLG QDs [27]. This ef-
fect provides a promising path towards controlling the valley
degree of freedom and to further establish valley-based elec-
tronics (valleytronics) [28,29] as well as valley-based qubits
in graphene QDs [30,31]. To assess the potential of valley bits

and qubits, the valley relaxation time of single-electron states
in a BLG QD is a crucial parameter since it limits the life-
time of both the encoded classical and quantum information.
Recently, Banszerus et al. measured valley relaxation times as
large as several microseconds using pulsed-gate spectroscopy
[32]. In the out-of-plane magnetic-field dependence of valley
relaxation time, a monotonic decay at higher fields and a peak
at smaller fields was observed. To explain the experiment,
theoretical work on valley relaxation in BLG QDs is required.

In this paper, we investigate both the bound-state energy
levels and the valley relaxation time of a single-electron BLG
QD as a function of the out-of-plane magnetic fields B⊥ (see
Fig. 1). We employ an exact diagonalization method to ob-
tain the energy levels and the eigenstates. At zero magnetic
field, the lowest four energy levels form two Kramers pairs
separated by an intrinsic spin-orbit gap. At finite magnetic
fields, the energy levels become linearly dependent on B⊥ due
to both spin and valley Zeeman effects. At the value of B⊥
where the intrinsic spin-orbit gap and valley Zeeman energy
splitting coincide, intervalley scattering causes an anticrossing
between the two different valley states. Based on the single-
electron spectrum of the BLG QD, we then calculate the
valley relaxation time using Fermi’s golden rule. The valley
relaxation channels are enabled by the intervalley coupling
together with (i) 1/ f charge noise and (ii) electron-phonon
coupling via the deformation potential and the bond-length
change. We find a peak at lower fields and a monotonic decay
at higher fields. The low-field peak arises from the com-
petition between the contributions of 1/ f charge noise and
bond-length change electron-phonon coupling. The mono-
tonic decay at higher fields is due to the dominant contribution
of the deformation potential. Moreover, we find that the inter-
layer hopping γ3 opens a valley relaxation channel for electric
charge noise when the quantum dot has rotational symmetry.
Upon detailed comparison with the experiment [32], we find
a good agreement between experiment and theory at higher
magnetic fields.
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FIG. 1. (a) Calculated electronic probability density |φ(x)|2
(brown solid curve) of the lowest-energy level at B⊥ = 0.2 T as a
function of position x for fixed y = 0. An electrostatic step potential
(black dotted curve) defines a QD of radius R. Inset: Schematic
picture of a BLG QD. (b) Bound-state energy levels as a function of
perpendicular magnetic field B⊥ in a BLG QD. The energy splitting
between different valleys is dominated by the valley Zeeman effect
with the valley g-factor gv . From our calculation (shown in this
plot) we extract gv = 31. The anticrossing between the bound states
K ↑ and K ′ ↑ is enlarged in the inset. For this calculation, we have
set U0 = 42.5 meV, V = 25 meV, R = 25 nm, �i = 43 µeV, and
�KK ′ = 10 µeV. Energies are plotted in units of h̄v f /R where v f

denotes the Fermi velocity (see Table I).

The remainder of this paper is organized as follows. In
Sec. II we describe our model and the methods used for
the calculation of the valley relaxation time. In Sec. III we
describe the relevant mechanisms that contribute to valley
relaxation, and in Sec. IV we show the resulting valley re-
laxation times obtained from the numerical evaluation of our
model. Finally, we conclude our work in Sec. V.

II. MODEL AND METHOD

We consider Bernal (AB) stacked BLG in the presence
of a homogeneous out-of-plane magnetic field B⊥ and an
electrostatic confinement potential U (r) with r = (x, y). The
total single-particle Hamiltonian can be written as

HQD = H τ (k) + U (r) + HSO + HZ + HKK ′ , (1)

where H τ (k) is an effective 4 × 4 Hamiltonian describing the
spinless π -band structure of BLG near the K and K ′ valleys
[2,33],

H τ (k) =

⎛
⎜⎜⎝

V γ0 p γ4 p∗ γ1

γ0 p∗ V γ3 p γ4 p∗
γ4 p γ3 p∗ −V γ0 p
γ1 γ4 p γ0 p∗ −V

⎞
⎟⎟⎠, (2)

TABLE I. Parameters used in the calculation: γ0,1,3,4, gs, and a
are introduced in Eq. (1), vTA,LA and ρ are used in Eq. (4), and v f

appears in Fig. 1.

γ0 2.6 eV γ1 0.339 eV
γ3 0.28 eV γ4 −0.14 eV
gs 2 a 2.46 Å
vTA 1.22 × 104 m/s vLA 1.95 × 104 m/s
v f 8 × 105 m/s ρ 1.52 × 10−7 g/cm−2

in the on-site orbital Bloch basis �A1 (k), �B1 (k), �A2 (k),
and �B2 (k), where A1 and B1 refer to the A and B sub-
lattices in the lower layer, A2 and B2 denote the A and B
sublattices in the upper layer, and k = (kx, ky) represents the
two-dimensional wave vector measured from the K (τ = 1) or
K ′ (τ = −1) point. Here, 2V describes the potential difference
between the two graphene layers, which is controlled by an
out-of-plane electric field, and γ0 and γ1 represent the nearest-
neighbor intralayer and interlayer hoppings whereas γ3 and γ4

are the indirect hopping parameters between the two layers.
The momentum dependence is given by p(k) = −√

3a(τkx −
iky − ixB⊥e/2 − τyB⊥e/2)/2 which includes the orbital ef-
fect due to the out-of-plane magnetic field, with a being the
lattice constant. The second term in Eq. (1) is the confinement
potential, which for simplicity is chosen to be a finite circu-
larly symmetric step potential,

U (r) =
{

U0, r � R,

0, r < R,
(3)

where U0 and R denote the potential depth and QD radius,
respectively. The third term HSO = �iτσzsz + �R(τσxsy −
σysx ) describes the spin-orbit coupling with strength �i (�R)
for the intrinsic (Rashba) spin-orbit effects, and σx,y,z (sx,y,z)
are the Pauli matrices for the sublattice (spin) degree of
freedom. While the intrinsic spin-orbit coupling does not con-
tribute to the intervalley mixing, it does have an effect on the
spin and valley resolved QD energy levels. Note however that
the contribution of the Rashba term is negligible and therefore
we take �R to be zero throughout this paper. The fourth term
describes the spin Zeeman coupling as HZ = gsμBszB⊥/2
with gs the spin g factor and μB the Bohr magneton. The
last term HKK ′ = �KK ′τx/2 represents the intervalley coupling
possibly induced by disorder where �KK ′ quantifies the inter-
valley coupling strength and τx denotes the Pauli x matrix for
valley [27,34]. All the parameters are listed in Table I.

Note that in the absence of the Rashba term, the total
Hamiltonian (1) can be divided into two independent spin
blocks, i.e., spin up and spin down. Within each spin block, we
first solve the Schrödinger equation of the Hamiltonian H0 =
H τ (k) + U (r) numerically by discretizing two-dimensional
real space using a square lattice grid. To rid ourselves of the
Fermi doubling problem arising from the lattice discretization,
we include a Wilson mass term wk2 in H0 with w denoting the
Wilson mass [35]. Then, we take into account the remaining
terms in Eq. (1) in the eigenbasis of H0 in both valleys. Finally,
we can exactly diagonalize the total Hamiltonian and obtain
single-particle eigenvalues and eigenfunctions which we plot
in Fig. 1(b).
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III. VALLEY RELAXATION MECHANISMS

With the eigenvalues and eigenstates at hand, we can now
calculate the valley relaxation rate from the initial state |i〉 to
the final state | f 〉 using Fermi’s golden rule. Here, we consider
valley relaxation due to (i) the electron-phonon coupling via
the deformation potential and the bond-length change mecha-
nisms [36–38], and (ii) 1/ f charge noise [39,40].

A. Relaxation induced by electron-phonon coupling

We consider two different electron-phonon interaction
mechanisms, the deformation potential on the one hand and
the bond-length change on the other. The deformation po-
tential is induced by a phonon-induced area change in the
unit cell, whereas the bond-length change is caused by a
modified hopping matrix element. Since we are interested
in the low-energy regime, only acoustic phonons near the

 point are considered. Furthermore, out-of-plane phonon
modes are irrelevant since we assume that the host BLG sheet
is placed on a substrate. Therefore, we take into account
in-plane longitudinal-acoustic (LA) and transverse-acoustic
(TA) modes only. The intravalley electron-phonon coupling
is described in the sublattice basis as [41]

Hλq
EPC = q√

Aρ�q,λ

(
g1a1 g2a∗

2
g2a2 g1a1

)
(eiq·rb†

λq − e−iq·rbλq), (4)

with A the area of the graphene sheet, ρ the mass density
of BLG, g1 (g2) the coupling strength of the deformation
potential (bond-length change), a1 = i and a2 = ie2iφq for LA
phonons, and a2 = e2iφq and a1 = 0 for TA phonons. The
phonon energy is given by �q,λ = vλq with vλ the sound
velocity for the phonon branch λ = TA, LA, while b†

λq and
bλq denote the creation and annihilation operators for branch
λ phonons with wave vector q. Considering the weak coupling
between the two graphene layers, we can approximate the
bilayer electron-phonon coupling as the combination of the
single-layer electron-phonon couplings for each layer sepa-
rately [33].

Using Fermi’s golden rule, we can calculate the valley
relaxation rate due to electron-phonon coupling from |i〉 with
energy εi to | f 〉 with energy ε f away from the anticrossing
shown in Fig. 1(b) as

1

T1
= 2πA

∑
λ

∫
d2q

(2π )2

∣∣〈i|Hλq
EPC| f 〉∣∣2

δ(ε f − εi + �q,λ).

(5)
The relaxation process is only possible due to the presence of
the intervalley coupling HKK ′ in HQD which leads to a small
intervalley mixing in the eigenstates |i〉 and | f 〉 of HQD. This
so-called admixture mechanism is known from spin relaxation
[42] and allows for valley relaxation via the valley-preserving
electron-phonon coupling. Note that only the phonon emis-
sion process is taken into account here by assuming that the
temperature is much lower than the valley splitting.

B. Relaxation induced by 1/ f charge noise

Electric (charge) noise with its typical 1/ f power spectral
density often arises as a consequence of fluctuating two-level
systems in the environment of the localized QD electron.

More precisely, the electric charge noise spectra can be given
by SE(ω) = S0/ω

α where S0 stands for the power spectral
density at 1 Hz and the exponent α is device dependent and
typically reported to be between 0.5 and 2 [43]. We can
calculate the valley relaxation rate from |i〉 to | f 〉 away from
the anticrossing shown in Fig. 1(b) using

1

T1
= 4πe2

h̄2 SE(εi − ε f )
∑

j

|〈i|r j | f 〉|2 (6)

= 4πe2

h̄2 SE(εi − ε f )
|〈i|r+| f 〉|2 + |〈i|r−| f 〉|2

2
, (7)

with r = (x, y) and r± = x ± iy [39,40].
In the absence of γ3 in (2), the Hamiltonian of each valley

has rotational symmetry and hence commutes with the to-
tal angular-momentum operator Jz = Lz + τ h̄(σz/2 − ηz/2).
Here, Lz and ηz represent the orbital angular momentum oper-
ator and the Pauli z matrix for the layer degree of freedom,
respectively. Thus, we have Jz�(τ, m) = mh̄�(τ, m) where
�(τ, m) is an eigenstate within each valley τ = ±1. Due
to the existence of the intervalley coupling HKK ′ , the states
�(τ = 1, m1) in the K valley can be coupled to the states
�(τ = −1, m2) in the K ′ valley with coupling matrix element
Mm1m2

KK ′ = �KK ′�†(τ = 1, m1)�(τ = −1, m2)/2. It is easy to
demonstrate that Mm1m2

KK ′ is nonzero only when m1 = m2. This
means that only the states with the same angular momentum
in two valleys are coupled. Further, by referring to Eq. (7), the
valley relaxation due to 1/ f noise is absent unless the angular
momentum between the initial and final states differs by ±1.
This can be used as a selection rule for valley relaxation due
to 1/ f noise in the presence of rotational symmetry. This
selection rule can be generalized to other types of electric
charge noise.

IV. NUMERICAL RESULTS

In Fig. 1(a), we show a schematic picture of a BLG QD
defined by an electrostatic step potential. The probability den-
sity associated with the lowest-energy level at B⊥ = 0.2 T
is plotted as a function of the coordinate x for fixed y = 0.
This indicates that the wave function is localized within the
QD. We then calculate the lowest four bound-state energy
levels as a function of out-of-plane magnetic field, shown
in Fig. 1(b) with labels |K↑〉, |K↓〉, |K ′↑〉, and |K ′↓〉. At
zero magnetic field, we find two Kramers pairs (|K↑〉, |K ′↓〉)
and (|K↓〉, |K ′↑〉), separated by the intrinsic spin-orbit gap of
around 70 μ eV. At finite magnetic fields, all of these energy
levels show a linear dependence with slopes 1

2 (±gs ± gv )μB

according to the spin and valley Zeeman effects. Here, we
find gv = 31.0 as the valley g factor. In addition, we find
an anticrossing between the states |K↑〉 and |K ′↑〉, which is
enlarged in the inset of Fig. 1(b). This anticrossing results
from the intervalley coupling HKK ′ .

A. Valley relaxation: Theoretical calculation

As mentioned previously, in the absence of the Rashba
spin-orbit term, our system is divided into two independent
sectors, one with spin up and another with spin down. Then,
the valley relaxation time can be calculated within each spin
sector. Since the valley relaxation times of spin up and spin
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FIG. 2. (a) Total valley relaxation time T1 as a function of per-
pendicular field B⊥ on a double-logarithmic scale, for different
noise strengths S0 = 0, 1, 10, 20 µeV2/Hz (1/ f noise). (b) Val-
ley relaxation time due to deformation potential (blue dashed
curve), bond-length change (red dotted-dashed curve), and 1/ f
charge noise (green dotted curves). For the 1/ f charge noise, S0 =
1, 10, 20 µeV2/Hz are represented by dots, squares, and triangles,
respectively. In the calculation, we have used U0 = 42.5 meV, V =
25 meV, R = 25 nm, �i = 43 µeV, �KK ′ = 10 µeV, g1 = 50 eV,
g2 = 2.8 eV, and α = 0.5.

down are very close to each other, we focus on the spin-down
sector in the present work.

In Fig. 2(a), the total resulting valley relaxation time is
plotted as a function of the perpendicular magnetic field B⊥
for different values of S0 characterizing the strength of the 1/ f
noise. In the absence of 1/ f charge noise, the valley relaxation
time shows a monotonic decrease with increasing magnetic
field. With finite 1/ f charge noise, the valley relaxation time
becomes much shorter at lower fields, indicating that 1/ f
charge noise plays a more important role at lower fields. In
addition, a peak is predicted at lower fields for sufficiently
strong 1/ f noise (large S0). To understand these behaviors,
we show the contributions of deformation potential, bond-
length change, and 1/ f charge noise separately in Fig. 2(b).
In the absence of 1/ f charge noise, the valley relaxation is
dominated by the bond-length change (deformation potential)
at lower (higher) fields. Both the valley relaxation time due
to the bond-length change at lower fields and the deformation
potential at higher fields decrease with increasing magnetic
field, arising from the increase of the valley splitting, i.e., the
energy splitting between initial and final states. This gives
rise to a monotonic decrease of valley relaxation time. When
1/ f charge noise comes into play, the valley relaxation at
higher fields is still dominated by the deformation potential.
However, at lower fields, there exists a competition between
the 1/ f noise and bond-length change when the noise spectral
density is strong. This competition leads to a peak in the
magnetic-field dependence.

FIG. 3. Log-log plot of the valley relaxation time T1 as a function
of perpendicular magnetic field B⊥. The olive dots stand for the
experimental data from Ref. [32], while the black curve with dots
represents the theoretical result obtained by fitting to the experi-
mental data using least-squares method with fitting parameters g1 =
50 eV, g2 = 5.4 eV, �KK ′ = 50 µeV, R = 25 nm, U0 = 39.6 meV,
and �i = 35 µeV. The blue dashed curve (red dotted-dashed curve)
denotes the valley relaxation time due to deformation potential
(bond-length change).

In addition, we also investigate the valley relaxation with
different exponents α in the 1/ f charge noise power spectral
density. We find that with increasing α, the valley relaxation
time exhibits an overall increase. In particular, the increase
at lower fields is dramatic, suggesting the importance of 1/ f
charge noise at lower fields. Similar to the situation of dif-
ferent noise spectral densities mentioned above, a peak is
also observed in the magnetic-field dependence for small α,
attributed to the competition between 1/ f charge noise and
the bond-length change mechanism.

B. Comparison with experiment

Very recently, Banszerus et al. [32] reported experimen-
tal single-particle valley relaxation times in a BLG QD as
a function of perpendicular magnetic field, shown in Fig. 3
as olive dots. At higher fields, a monotonic decay is ob-
served. To explain this behavior, we take into account the
contribution of deformation potential and bond-length change,
while 1/ f charge noise is not included due to its negligible
contribution at higher fields. We perform a least-squares fit
of the electron-phonon coupling strengths g1 and g2 to the
measurement data, taking into account the experimental error
bars. The result of our numerical fit is shown as the black
curve with dots, which agrees with the experimental data both
qualitatively and quantitatively. At lower fields, a peak is ob-
served in the experimental data. Our theory suggests that the
origin of this peak lies in a competition between electric noise
and phonons. However, similar peaks may also arise from
a competition between different electron-phonon coupling
mechanisms or from a valley crossing. Further research can
shed more light on the origin of the nonmonotonic behavior
of T1(B⊥).

V. CONCLUSIONS AND DISCUSSION

We have studied the electronic valley relaxation time
T1 in a BLG QD with magnetic field B⊥ perpendicular
to the graphene plane. The valley relaxation is induced
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by the intervalley coupling together with 1/ f charge noise
and electron-phonon scattering via deformation potential and
bond-length change. In the magnetic-field dependence of val-
ley relaxation time, a peak at lower fields and a monotonic
decay at higher fields are predicted, which agree with a recent
experiment [32]. The origin of the peak at lower fields is
explained as arising from the competition between the con-
tributions of 1/ f noise and phonon emission via bond-length
change. The monotonic decay for large B⊥ is due to the con-
tribution of both the deformation potential and bond-length
change at higher fields. In addition, we show that while the
contribution of 1/ f charge noise to valley relaxation is more
important at lower fields due to smaller noise frequency, at

higher fields the deformation potential dominates the valley
relaxation process.

The valley relaxation has also been studied in a BLG
device containing gate-defined double QDs where the valley
relaxation time between the valley triplet and singlet states
was reported to be remarkably long [44]. This experiment
requires future research to understand the singlet-triplet valley
relaxation mechanisms.
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