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The transport of quantum information between different nodes of a quantum device is among the challenging
functionalities of a quantum processor. In the context of spin qubits, this requirement can be met by coherent
electron spin shuttling between semiconductor quantum dots. Here we theoretically study a minimal version of
spin shuttling between two quantum dots. To this end, we analyze the dynamics of an electron during a detuning
sweep in a silicon double quantum dot (DQD) occupied by one electron. Possibilities and limitations of spin
transport are investigated. Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play
an important role for spin shuttling and are included in our model. Interactions that couple the position, spin, and
valley degrees of freedom open a number of avoided crossings in the spectrum allowing for diabatic transitions
and interfering paths. The outcomes of single and repeated spin shuttling protocols are explored by means of
numerical simulations and an approximate analytical model based on the solution of the Landau-Zener problem.
We find that a spin infidelity as low as 1 − Fs � 0.002 with a relatively fast level velocity of α = 600 μeV ns−1

is feasible for optimal choices of parameters or by making use of constructive interference.

DOI: 10.1103/PhysRevB.102.195418

I. INTRODUCTION

The spin of a single electron confined to a semiconductor
quantum dot (QD) represents a highly coherent and control-
lable qubit realization for quantum information tasks [1–4].
A crucial ingredient for a quantum computer, however, is the
interaction between arbitrary pairs of qubits within the device.
Short-range interaction over distances on the order of 50 nm
is mediated by the exchange interaction while long-range con-
nectivity over cm distances can be provided by spin-photon
coupling [5–11].

For the intermediate length scale there are alternative ap-
proaches that do not require additional components such as
a microwave cavity. Proposed solutions include information
transfer between stationary qubits via a chain of exchange-
coupled spins [12–15] or the transport of mobile qubits in a
sliding potential well [16–18]. Adiabatic passage protocols
[19–22] are another approach that are currently of great in-
terest [23–26].

A different flavor of mobile qubits are spins which are
shuttled in a bucket-brigade manner between neighboring
empty quantum dots [27]. This method to turn stationary into
moving qubits has received much attention recently [28–35].
Coherent spin transfer has already been demonstrated in GaAs
devices [36,37], while charge shuttling down an array of nine
series-coupled QDs has been demonstrated in silicon [38] and
applications beyond transport are conceivable [39,40].

In bucket brigade shuttling, control of the QD gate voltages
is used to drive the electron across a charge transition while
avoiding hot spots where the spin relaxation rate is enhanced
due to degeneracies between interacting spin and valley states
[41–43]. A useful protocol must be robust against environ-

mental effects [33,44,45] and much faster than the relaxation
and decoherence time of the spin, but at the same time slow
enough to avoid errors due to nonadiabatic transitions be-
tween the (instantaneous) eigenstates [46]. Realistically, the
necessity of a tradeoff between the spin transfer time and the
shuttling fidelity can be anticipated.

The transport between neighboring QDs is affected by the
spin-orbit interaction (SOI) that couples the spin of the elec-
tron to its momentum [3,43,47,48]. This mechanism opens
avoided crossings between opposite spin states, leading to
spin-flip tunneling between neighboring QDs. In silicon the
SOI is comparably weak but still relevant for quantum infor-
mation tasks [49–51].

Another peculiarity of silicon-based QDs is the valley de-
gree of freedom [52–54] with a two-dimensional, spin-like
Hilbert space. The origin of the valley is the sixfold degenerate
conduction band minimum in silicon which is partially lifted
in a two-dimensional electron system [55–59]. The valley
splitting between the two lowest valley states, typically in the
range of some 10–100 μeV [54,60], depends on the micro-
scopic environment [54,61–64].

The theoretical framework to describe a driven two-level
system with only one avoided crossing is the famous Landau-
Zener (LZ) model [65–68]. Extensions to the LZ model for
multiple avoided crossings exist [69–73], but it remains in-
trinsically challenging to characterize the error mechanisms
limiting electron spin shuttling in a realistic solid state envi-
ronment. Further extensions to the LZ model known in the
literature include different types of noise [74–78]. Of partic-
ular interest for spin shuttling is 1/ f noise. This so-called
charge noise stemming from electrical fluctuations [4,79–83]
is the leading source of decoherence in a nuclear spin-free host
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FIG. 1. Energy level diagram of the system under consideration:
two quantum dots (QDs) filled with one electron with spin σ . The
vector d points from the center of the left dot to the center of the right
dot and thus determines the orientation of the DQD in the crystal.
An electron is shuttled from the left QD to the empty right QD in
the presence of a global magnetic field B. A micromagnet can cause
a magnetic field difference 2b = 2(bx, by, bz ) between the left and
right QD resulting in different total field BL,R = B ± b and Zeeman
splittings BL(R). The time dependence of the level detuning ε(t ) is
chosen such that it conveys the electron from left to right. In addition
to spin-conserving hopping tsc a spin-flip tunneling term tsf occurs
due to the SOI and noncollinear magnetic fields in the two dots.

material such as isotopically purified 28Si [84]. It has been
shown that charge noise can be a limiting factor for the shut-
tling fidelity [33]. Here, we model the coherent single-electron
spin transfer in a tunnel-coupled silicon double quantum dot
to understand the most elementary unit of any spin shuttling
protocol and the underlying multilevel LZ physics. Our results
show that even without environmental noise the shuttling fi-
delity can be severely limited by nonideal system parameters.

The remainder of this paper is organized as follows. In
Sec. II, a model for the spin and charge degrees of freedom
of a single electron in a DQD in an inhomogeneous magnetic
field and in the presence of SOI is derived. Results for spin
shuttling without (with) regard of the valley are presented in
Sec. III (Sec. IV). In particular, we discuss single shuttles in
Sec. III A and repeated shuttling due to periodic driving with
and without decoherence in Sec. III B. Finally, our results are
summarized in Sec. V.

II. MODEL FOR CHARGE AND SPIN SHUTTLING

The minimal model for electron shuttling considered here
is a double quantum dot (DQD) with Zeeman-split spin levels
in each dot, as depicted in the energy level diagram Fig. 1.
Denoting the spin with the Pauli operators σi and the position
in the left-right basis with the Pauli operators τi, where i ∈
{x, y, z}, the energy levels and the spin-conserving hopping
between the dots are described by

H0 = ε

2
τz ⊗ 1 − tcτx ⊗ 1 + B

2
1 ⊗ σz. (1)

Here, ε = EL − ER denotes the energy detuning between the
left and right dot states, which can be controlled by gate
voltages [85]. In the following sections, the shuttling protocol
will consist of a detuning sweep ε(t ) (or repeated detuning
sweeps) across the interdot charge transition [38]. The interdot
tunnel coupling is given by tc. Additionally, a homogeneous
magnetic field B = Bẑ defining the z axis is included, where
the Zeeman splitting B is given in energy units. For minimal

disturbance an in-plane magnetic field parallel to the DQD
axis is favorable [2].

To include magnetic field gradients, i.e., local differences
of the Zeeman splitting and the inhomogeneous effects of a
static hyperfine interaction, a term

Hgrad = 1
2τz ⊗ b · σ (2)

is added. The difference in the Zeeman field between the
two dots is given by the vector 2b = 2(bx, by, bz ), and σ =
(σx, σy, σz ) denotes the vector of the spin Pauli matrices. A
detailed discussion of the different contributions to the mag-
netic field is given in Appendix A.

Spin-flip tunneling due to the spin-orbit interaction (SOI)
is introduced with a contribution that contains a Rashba
term αR(px′σy′ − py′σx′ ) [2,3] and a Dresselhaus-like term
βD(px′σx′ − py′σy′ ) due to interface inversion asymmetry
[2,86]. The confinement is chosen along z′||[001]. Here,
x′, y′, z′ denote the crystallographic axes. Both SOI terms can
be combined into the Hamiltonian HSOI = pARσ with a ma-
trix A = AR + AD that contains αR, βD and with a rotation R
with (σx′, σy′ , σz′ ) = R(σx, σy, σz ). We use an orthonormalized
basis for the left and right charge states constructed from
the lowest Fock-Darwin state in each dot to calculate the
matrix elements of p and find that the SOI-Hamiltonian can
be expressed as

HSOI = |p|τy ⊗ d̂ARσ, (3)

with the unit vector d̂ = d/|d| where d is the vector connect-
ing the centers of the two QDs (Fig. 1). Intradot effects of
the SOI such as corrections to the g factor [2,87,88] can be
incorporated into Hgrad and H0.

With the vector � = |p|d̂AR = (Im(a), Re(a), s) the SOI-
Hamiltonian finally reads [40,43,89]

HSOI = τy ⊗ � · σ. (4)

The form and strength of the spin-orbit interaction strongly
depend on the geometry of the DQD relative to the crystal
lattice [3,90]: The parameters a and s depend on the angles
between the axes x, z and the axes x′, z′ via R and on the
orientation of the DQD axis in the x′-y′ plane through d̂. For
the chosen confinement direction αR and βD enter via the SOI-
matrix

A =
(

βD αR 0
−αR −βD 0

0 0 0

)
. (5)

The shape of the QDs and the interdot distance determine
the left and right electron wave functions and their overlap
and thus impact the matrix element |p|. Note that the intradot
terms depend on B, the shape of the QDs, as well as the width
of the quantum well [87].

Theory and experimental results obtained from SiMOS
platforms in Refs. [3,49–51] for a DQD along the [110]
crystal axis suggest an estimated range for the SOI-parameter
a ≈ √

2(i − 1)(1 ± 0.4) μeV and s = 0 for a typical interdot
separation of 50 nm. The SOI is kept constant at a = √

2(i −
1) μeV throughout our analysis.

The total Hamiltonian is then the sum of all contributions,

H ′ = H0(ε) + Hgrad + HSOI. (6)
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FIG. 2. Spectrum of the Hamiltonian H ′, Eq. (6), as a func-
tion of the detuning ε, with diabatic (dashed) and adiabatic (solid)
states. Spin-conserving tunneling tc opens avoided crossings at ε ≈
±bz and the spin-flipping interactions a and b open avoided cross-
ings at ε ≈ ±B. Plot parameters are tc = 21 μeV, B = 30 μeV, b =
(30 μeV, 0, 0), and a = √

2(i − 1) μeV. The spin ground state is
labeled with ↓ and the excited spin state with ↑, respectively; by
(σ, 0) [(0, σ )] we denote that an electron with spin σ is localized in
the left [right] dot.

The Hamiltonian H ′ is defined with respect to a global basis
where the spin is projected onto the same quantization axis
determined by B in both QDs. To describe a spin shuttling
experiment we assume that a basis of dot-localized eigenstates
is used to prepare and measure the spin. We refer to this basis
as local spin basis and derive it from the limit of isolated dots,
tc = a = 0. In this limit the 2 × 2 Hamiltonian of each dot can
be diagonalized individually,

UL(R)

(B ∓ bz

2
σz ∓ bx

2
σx ± ε

2

)
U †

L(R) =
BL(R)

2
σz± ε

2
. (7)

For simplicity, the axes of the basis of H ′ have been chosen
such that by = 0. The total magnetic field in the left (right)
dot is

BL(R) =
√

(B ∓ bz )2 + |bx|2. (8)

We define the Hamiltonian H by the transformation U =
UL ⊕ UR,

H = UH ′U †. (9)

In the limit tc = a = 0, H is diagonal. In the following, we
refer to the basis states of the frame defined by U as diabatic
states. The corresponding energy levels are plotted in Fig. 2 as
dashed lines with the charge and spin configuration denoted
by (σ, 0) [(0, σ )] for an electron with spin σ in the left
[right] dot. The spin ground state is labeled with σ =↓ and
the excited spin state with σ =↑, respectively. The energy
levels of states with opposite spin and charge configuration
cross at ε = ±(BR + BL )/2 ≈ ±B; the energies of states with
the same spin but opposite charge configuration cross at ε =
±(BR − BL )/2 ≈ ±bz.

Explicitly, the unitary Ui, i = L, R is given by the rotation

Ui =
( cos (ϑi/2) sin (ϑi/2)
− sin (ϑi/2) cos (ϑi/2)

)
. (10)

The angles ϑi/2 can be understood as the angles between the
global basis of H ′ and the local spin basis of H . They are
defined as the polar angle of the vector

uL(R) = (BL(R) − (B ∓ bz ),±bx ). (11)

With finite interdot couplings the crossings of the diabatic
states are opened to avoided crossings. The spin-conserving
tunneling matrix element

tsc = cos
ϑL

2

(
(tc + is) cos

ϑR

2
+ a sin

ϑR

2

)

− sin
ϑL

2

(
a∗ cos

ϑR

2
− (tc − is) sin

ϑR

2

)
(12)

opens the crossings at ε ≈ ±bz. The crossings at ε ≈ ±B are
opened by the spin-flip tunneling matrix element

tsf = cos
ϑL

2

(
a cos

ϑR

2
− (tc + is) sin

ϑR

2

)

+ sin
ϑL

2

(
(tc − is) cos

ϑR

2
+ a∗ sin

ϑR

2

)
. (13)

Although bx does not couple different dots it does lead to a
dot-dependent tilting ϑL(R) of the spin orientation which in
turn affects the tunneling matrix elements. In view of spin
shuttling this is crucial since the probabilities for spin con-
serving and spin-flip charge transitions estimated from the LZ
formula are exponentially sensitive on |tsc|2, |tsf |2 [65,66]. In
the limit bx → 0 the local bases align, ϑL − ϑR → 0, thus the
spin-flip tunneling tsf is only due to the SOI. The energy lev-
els of the instantaneous eigenstates E1(ε) � E2(ε) � E3(ε) �
E4(ε) of H are depicted in Fig. 2 as solid lines.

The shuttling protocol is chosen to be a linear detuning
ramp from −ε0 to +ε0 with level velocity α within a time
interval 0 � t � 2ε0/α,

ε(t ) = αt − ε0. (14)

The tunnel coupling tc and all magnetic fields are kept con-
stant during the protocol.

The choice of a linear detuning ramp is motivated by both
recent experiments [38,91] and the fact that by this choice
some analytic estimations can be obtained from the LZ model
(Sec. IV C). Reducing the level velocity in the vicinity of the
avoided crossings will reduce the probability of LZ transi-
tions but also requires more time during which the spin state
can suffer from noise. We expect that fidelity and protocol
duration can be further improved by optimizing the protocol
[92,93]. However, this is beyond the scope of this work. An-
other common protocol choice is constant-adiabaticity pulses
for whose high fidelity shuttling has been proposed recently
[35].

To evaluate the shuttling protocol it is assumed that initially
a single electron is prepared in the left dot at the beginning of
the ramp, |in〉 = |σ, 0〉. At time tend = 2ε0/α the state of the
system has evolved to |out〉. Since the aim of the protocol is
an error-free spin transfer between the dots the fidelity [94]
Fs = |〈0, σ |out〉|2 is a measure for the success for the spin
shuttling protocol. In general, Fs depends on the spin σ of the
input state.
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III. SPIN SHUTTLING

In this section we numerically solve the problem of spin
shuttling. In Sec. III A only a single passage through the
avoided crossing region is considered while in Sec. III B a
sequence of back and forth shuttling is analyzed. To determine
a lower bound for the spin shuttling infidelity 1 − Fs we nu-
merically integrate the Schrödinger equation with degenerate
spin levels during a finite-time detuning sweep and com-
pute the charge infidelity 1 − Fc = ∑

σ ′ |〈0, σ ′|out〉|2 where
Fc measures the probability of faithful charge transport. Based
on the findings for charge shuttling the tunneling is set to
the fixed value tc = 21 μeV and the level velocity is set to
α = 600 μeV ns−1 for the entire analysis. In the absence of
spin and magnetic fields this choice allows a charge transport
infidelity of 1 − Fc ≈ 10−5. Our choice of tc and α is based
on recent experiments [38]. Note that with this choice of the
parameter α, a shuttling protocol with ε0 in the order of meV
can be completed multiple times within tens of nanoseconds,
several orders of magnitude faster than the spin dephasing
time of T ∗

2 � 100 μs observed in isotopically purified silicon
[95]. In a nuclear spin-free host material such as isotopically
purified 28Si the time scale of T ∗

2 is set by charge noise
[4,79–83].

A. Single shuttles

We numerically integrate the time-dependent Schrödinger
equation ih̄∂t |ψ (t )〉 = H (t )|ψ (t )〉 and plot the infidelity 1 −
Fs as a function of the magnetic field B and gradient field
bx in Fig. 3. The transverse magnetic field differences bx

and by have equivalent effects, thus, for simplicity by = 0 is
chosen. In Fig. 3(a), where the initial state is chosen to be
the excited spin state |in〉 = |↑, 0〉, we observe two dominant
features of the spin shuttling protocol: an increase of infidelity
with increasing gradient bx and local extrema occurring for
B > 2tc due to interference between the probability to cross
the charge transition either adiabatically in E2 or involving
diabatic transitions between E2 and E3. Figure 3(b) shows a
cut along the bx axis which highlights the effect of SOI and
also shows the infidelity for the case of initialization in the
ground state |in〉 = |↓, 0〉.

The increase of infidelity due to increasing bx visible in
Fig. 3 for both input states can be explained by the fact that a
nonvanishing transverse gradient bx �= 0 causes the local spin
bases to be noncollinear. Consequently, a spin-flip tunneling
term tsf , Eq. (13), occurs even in the absence of SOI (a = 0).
The different spin projections in the left and right dot lead
to an increase of spin infidelity due to diabatic transitions
between states with opposite local spin eigenstates.

If bx �= 0 the SOI a also contributes to the spin-conserving
hopping term tsc, Eq. (12), and can thus compensate the in-
crease of infidelity to some extent. This is shown in Fig. 3(b).
The solid lines with SOI a �= 0 are laterally shifted compared
to the dashed curves with a = 0, in particular, the minimum
of 1 − Fs coming from collinear quantization axes at tsf = 0
occurs at finite bx. As a result, on one flank of the dip the
infidelity with a �= 0 is smaller than with a = 0 while on the
opposite flank the infidelity is increased due to the combined
effects of magnetic gradient and SOI. The magnitude of the

FIG. 3. Spin shuttling infidelity without valley degeneracy.
(a) Logarithm of the spin shuttling infidelity 1 − Fs for initialization
in the excited spin state, |in〉 = |↑, 0〉, as a function of the transverse
magnetic field difference bx and the Zeeman splitting B. Free pa-
rameters are chosen as tc = 21 μeV, ε0 = 8 meV, and bz = 0. With
increasing bx the spin-flip tunneling tsf leads to diabatic transitions,
and 1 − Fs shows local maxima (minima) due to destructive (con-
structive) LZ interference. The cyan line indicates the minimal |tsf |
for each B. (b) Spin infidelity 1 − Fs along a cut through panel (a) in-
dicated by the dashed line (B = 2tc = 42 μeV) for the excited spin
state |in〉=|↑, 0〉 (blue, solid) and the ground state, |in〉 = |↓, 0〉 (red,
solid). The dashed lines correspond to the case without SOI, a = 0.
The ground state does not show interference in a single passage.

lateral shift in the bx-B plane is approximately proportional to
Re(a) = |a| cos(arg a). Note that while in the cut in Fig. 3(b)
the minimal 1 − Fs for |in〉 = |↑, 0〉 is significantly increased
by the presence of SOI (a �= 0) the minimum of 1 − Fs in the
entire bx-B plane is reduced only by ≈0.1% for our choice
of a.

The local minima and maxima on both sides of the line
with tsf = 0 visible in 1 − Fs with |in〉 = |↑, 0〉 are another
effect of tsf . The spin-flip tunneling opens avoided crossings
between the states with spin and charge configuration (↑, 0)
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and (0,↓) as well as between (↓, 0) and (0,↑). Thus, two
paths can lead to faithful shuttling of the excited spin state,
either adiabatically following E2 or by a diabatic transition to
E3 followed by another diabatic transition back to E2. The in-
terference between the probability amplitudes of the two paths
can lead to local maxima of 1 − Fc and consequently 1 − Fs,
which we call destructive interference, and local minima of
1 − Fs which we deem constructive interference. Interference
extrema of first order are visible in Fig. 3(a). In the vicinity of
the maxima of 1 − Fs one diabatic transition E2 → E3 is more
likely than an adiabatic trajectory along E2 or the successive
transitions E2 → E3 → E2. This corresponds to a transition
(↑, 0) → (↓, 0) into the excited charge state with a spin flip
rather than a spin-conserving charge transition. Transfer of
the spin ground state is not affected by the additional avoided
crossings, as Fig. 3(b) emphasizes.

The longitudinal magnetic field difference bz has an ef-
fect only in a protocol with short ramp, i.e., small ε0. Since
the avoided crossings opened by tc appear near ε ≈ ±bz the
length of the second part of the ramp after the anticrossing is
changed. Thus, the phase of finite-time LZ oscillations [67,96]
relative to the end of the protocol is shifted. Consequently,
the infidelity at ε(t ) = ε0 shows oscillations as a function
of bz. During a sufficiently long ramp ε0 � max(B, tsc, tsf )
finite-time oscillations decay and become irrelevant.

To optimize the shuttling results, tc and bx should be chosen
in a way that minimizes tsf and maximizes tsc to increase
the probability of adiabatic electron transport. The loss of
fidelity due to LZ interference can be avoided by either using
a sufficiently weak magnetic field B < 2tc or by tuning B to
exploit constructive interference. Furthermore, a long ramp
ε0 � max(B, tsc, tsf ) helps to avoid timing-related effects.

In general, we will be interested in transporting general
quantum states of the spin, rather than local spin eigenstates.
Spin superposition states are nonstationary in the chosen
basis. When residing in dot j the initial state |ψ (0)〉 =
c1|↓〉 + c2|↑〉 evolves to the state |ψ (t )〉 = c1eiBjt/2|↓〉 +
c2e−iB jt/2|↑〉. This oscillatory behavior leads to a relative
phase of the final superposition state. The outcome obtained
from shuttling the basis states |±, 0〉 = 1√

2
(|↓, 0〉 ± |↑, 0〉)

oscillates between |out〉 = |0,+〉 and |out〉 = |0,−〉 as a
function of the duration of the protocol and the local magnetic
fields BL(R). In the vicinity of the destructive interference
described in Fig. 3 the probability for faithful transport of
a spin superposition drops since at this point the component
with σ =↑ is not shuttled at all with high probability.

Beyond the effects known from the shuttling of states with
binary spin, |in〉 = |σ, 0〉, σ ∈ {↑,↓}, the projection of the fi-
nal superposition state on the local spin eigenstates, |〈0,↑ (↓)|
out〉|2, shows an oscillatory pattern. This can be explained by
the fact that if |in〉 is a superposition state the two lowest-lying
eigenstates E1 and E2 both have a finite population. For tsf �= 0
there is a probability for diabatic transitions between them in
the avoided crossing at εc = (BL − BR)/2 ≈ −bz.

Assuming widely spaced anticrossings we can apply the
LZ formula to approximate the population of the eigenstates
E1(ε) and E2(ε) directly after the avoided crossing at εc.
We assume the state before the anticrossing is c1(εc−)|↓〉 +
c2(εc−)|↑〉 with amplitudes ci(εc−) = limε→(εc−) ci(ε) and

phases ϕi = 1
α

∫ εc−
−ε0

dε Ei, where ci(εc±) = limε→(εc±0) ci(ε)
are the limits from above and below. Then the coefficients
evolve to [65,66](c1(εc+)

c2(εc+)

)
=

(√
1 − Pe−iϕs −√

P√
P

√
1 − Peiϕs

)

×
(|c1(εc−)|eiϕ1

|c2(εc−)|eiϕ2

)
. (15)

Here, P is the probability for a diabatic transition calculated
from the LZ formula and ϕs is the Stokes phase associated
with the avoided crossing. This leads to the emergence of an
interference term ∝ cos(ϕ1 + ϕ2 + ϕs) in |〈0,↓ |out〉|2. Note
that in this estimation |c1(2)(εc−)|2 are not equal to the initial
populations since the avoided crossing opened by tsf at ε =
−(BL + BR)/2 ≈ −B has to be taken into account.

In more complex systems the loss of fidelity due to destruc-
tive LZ interference can be reduced by device optimization. A
minimal example is a cyclic round trip in a triple quantum
dot [36,97,98] in triangular arrangement. Applying our model
of spin shuttling it can be shown that by manipulating the
complex phases of the tunneling matrix elements it is possible
to engineer the phase shift during the charge transition.

B. Sequential shuttling

To access the infidelity more easily than in single shut-
tles, the electron can be shuttled back and forth between
the dots N times. At the end of the first ramp the reverse
protocol is applied to complete the round trip. This cycle is
repeated N times. For ε0 = 800 μeV and level velocity α =
600 μeV ns−1 the time per round trip is 5.3 ns. The intrinsic
spin relaxation with typical lifetimes T1 in the order of ms
to s [64,99–101] can be neglected even for a long sequence
with O(104) round trips with local eigenstates as initial states.
The increase of the spin infidelity as a function of N , shown
in Fig. 4, is thus predominantly due to the error mechanisms
discussed in Sec. III A. In general, with a superposition state
as the initial state, the decoherence time T2 has to be taken
into account. As shown in Fig. 4(a), interference can also be
observed with a spin initialized in the ground state |in〉=|↓, 0〉
and then undergoing several shuttling round trips. This is a
consequence of the system being swept through the same
avoided crossing region multiple times, analogous to Landau-
Zener-Stückelberg interferometry [32,65,66]. For an electron
in the excited spin state, interfering paths are available even
for a single shuttling sweep, and thus the oscillations for σ =↑
are the result of a superposition of multiple interference terms.

In a long sequence of shuttles the decay of fidelity is
approximately modeled by the rate equation

d

dN
n(N ) =

⎛
⎜⎝

−c1 c2 0 0
c1 −c2 − c3 c4 0
0 c3 −c4 − c5 c6

0 0 c5 −c6

⎞
⎟⎠n(N )

(16)
with n(N ) = [n1(N ), n2(N ), n3(N ), n4(N )] the vector of pop-
ulations of the four states. The rate equation describes four
coupled levels with population ni where transitions can occur
between level i and the levels i ± 1 adjacent in energy during
each round trip. The asymptotic limit for any input state is
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FIG. 4. (a) Spin infidelity 1 − Fs for |in〉 = |↑, 0〉 (blue) and
|in〉 = |↓, 0〉 (red) as a function of the number of round trips N in
the DQD, where B = 25 μeV, bx = −3.4 μeV, bz = 1.56 μeV, tc =
21 μeV, and ε0 = 0.8 meV. The interference pattern in the excited
state is more complex since the multiple anticrossings passed per
transition give rise to several oscillating terms. (b) Repeated shuttling
of |in〉 = |↑, 0〉. The dark blue curve is the same as in (a), the light
blue curve additionally takes into account the coupling to reservoirs
described by Eq. (17) with tr = tc/10 and Coulomb repulsion be-
tween the neighboring dots Uc = 5 meV and temperature T = 0.1K.
The effects of spin-flip cotunneling (red) and decoherence (orange)
are indicated with arrows. The (1, 0) ↔ (0, 1) charge transition is
crossed in the middle between the triple points involving the (0,0)
and (1,1) regimes.

Fs = 1/4 with the population equally distributed between all
four basis states.

The interference due to sequential passage through the
same avoided crossing described above can be suppressed due
to charge decoherence associated with loss of the electron
due to coupling to the source/drain reservoirs of the DQD
[e.g., inelastic tunneling to the (0,0) or (1,1) charge state]. To
examine the effects of decoherence the interaction of each of
the two QDs with one fermionic reservoir constituted of a two-
dimensional electron gas (2DEG) is included. For example,
the DQD’s source/drain contacts can form such reservoirs.
The reservoirs are coupled to the DQD by incoherent tunnel-
ing which does not conserve the DQD charge, introducing the
charge states (0,0) and (1,1). Charge states with a doubly oc-
cupied quantum dot are neglected by assuming a large onsite
Coulomb repulsion. The time evolution is then described by
a Lindblad-form master equation (ME) which can be brought
into the form [102]

d

dt
ρnm = 1

i
[H, ρ]nm + δnm

∑
l

wnlρll − γnmρnm. (17)

The transitions rates are derived from Fermi’s golden rule,

wmn = 2π |tr |2DnF (18)

for an electron tunneling from one of the reservoirs to one of
the dots and

wmn = 2π |tr |2D(1 − nF ) (19)

for an electron tunneling to the reservoirs with the tunneling
matrix element tr between a QD and the attached reservoir.
The density of states of the 2DEG near the Fermi energy is
given by D and nF is the Fermi-Dirac distribution function
evaluated at the energy of the added or removed electron. To
doubly occupy the DQD the Coulomb energy Uc between the
QDs must be overcome. The definitions of the decoherence
rates γnm are given in Appendix B.

The interaction with the reservoirs is negligible for a small
number of shuttles, however, it can significantly impact the
result of a long sequence in two ways, as Fig. 4(b) shows.
A spin-flip cotunneling process between the dots and the
reservoir which randomizes the spin in the DQD raises the
infidelity. Additionally, due to decoherence, the oscillations
caused by interference are damped as the incoherent tunneling
is introduced.

IV. SPIN AND VALLEY

The Hamiltonian H from Eq. (9) does not take into account
the valley degree of freedom [52–54]. Thus, the previous
analysis applies to the limit where the valley degree of free-
dom does not affect the system dynamics, e.g., because the
valley splitting exceeds all relevant energy scales appearing
in the shuttling process, and to the case of systems without
valley, e.g., quantum dots in GaAs or InAs. However, the
valley in silicon cannot be neglected when the valley and
Zeeman splittings are comparable. To analyze the effects of
valley transitions in addition to the spin and orbital degrees
of freedom, we extend our model to a Hamiltonian Hv acting
on the product Hilbert space of charge, spin, and local valley
degrees of freedom.

A. Valley Hamiltonian

The general valley Hamiltonian for QD i ∈ {L, R} is given
by [103]

Hvalley,i = vi · ν, (20)

where ν is the vector of Pauli operators for the valley degree
of freedom and vi is a vector that determines orientation and
modulus of the valley splitting in dot i with respect to a global
valley basis. We then introduce the DQD Hamiltonian H ′

v

for spin, position, and valley in its global basis. Using the
Hamiltonian H from Eq. (9) we define

H ′
v = H +

∑
i∈{L,R}

Hvalley,i. (21)

In analogy to the local spin eigenbasis, Eq. (7), a unitary
transformation Hv = UvH ′

vU
†
v is applied to diagonalize the

valley Hamiltonian in each dot individually. The transformed
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Hamiltonian in the local valley eigenbasis has the form

Hv =
∑

i∈{L,R}

[
Hii +

(Ev,i 0
0 0

)]

+
[
HLR

(cos ϑ − sin ϑ

sin ϑ cos ϑ

)
+ H.c.

]
, (22)

where Ev,i denotes the valley splitting in QD i and H.c.
denotes the Hermitian conjugate. The Hamiltonian H
for spin and charge was divided into a tunneling con-
tribution HLR + HRL = ∑

σ,σ ′ 〈0, σ ′|H |σ, 0〉|0, σ ′〉〈σ, 0| +
H.c. and an intradot contribution HLL + HRR =∑

σ 〈σ, 0|H |σ, 0〉|σ, 0〉〈σ, 0| + (0 ↔ σ ). The angle
ϑ = (ϑv

L − ϑv
R )/2 with 0 � ϑ � π can be understood as

the angle between the valley pseudospins in the QDs while ϑv
i

is the angle between the local valley eigenbasis of dot i and
the global valley basis. Note that only the tunneling terms that
couple the two dots depend on ϑ . The new basis states are
{|σv, 0〉, |0, σv〉} with v ∈ {1, 2} indicating the local valley
eigenstate and σ ∈ {↑,↓} the spin state. The valley index
v = 1 is chosen to denote the valley ground state. An example
level diagram of Hv for the cases ϑ = 0, π/6, π/2 is plotted
in Fig. 5.

In addition to the charge and spin fidelities Fc and Fs, we
now introduce the spin-valley fidelity Fs,v = |〈0, σv|out〉|2 to
quantify to which degree the protocol transports information
encoded in spin and valley simultaneously. For 0 < ϑ < π ,
the local valley bases are not collinear and valley-flip tunnel-
ing occurs. In the case ϑ = π/2 every tunneling event flips
the valley quantum number.

B. Valley-induced charge errors

The additional avoided crossings allow for a large num-
ber of paths that can lead to faithful spin transport. Even in
the absence of SOI and magnetic gradients, spin-preserving
transitions between different valley states can lead to LZ in-
terference between the paths if the electron is initialized in
the excited valley state, similar to the interference observed
for the excited spin state. Destructive interference can lead
to a spin-conserving transition into the excited charge state
with the opposite valley quantum number instead of a charge
transfer. Since no spin transition is involved, both spin states
are affected equally by a change of valley parameters. Fig-
ure 6(a) shows the LZ interference extrema of 1 − Fs of first
and second order due to valley transitions and spin transitions
in the bx-B plane for a spin prepared in the excited valley state
|in〉 = |↑ 2, 0〉.

The angle ϑ parametrizes the ratio of valley-flipping to
valley-conserving tunneling terms, similar to bx in the case
of magnetic fields. In direct analogy, ϑ = 0 and ϑ = π

correspond to bx = 0 while ϑ = π/2 corresponds to bx →
∞. Consequently, the charge infidelity 1 − Fc (which lower-
bounds 1 − Fs and 1 − Fs,v) can be drastically enhanced for
certain values of ϑ , as the inset of Fig. 6 shows. This is in anal-
ogy with the spin-related interference extrema in Fig. 3(b).
The minimal error at ϑ ∈ {0, π} is easily explained by the
fact that there is no valley-flip tunneling in this case and
the corresponding crossings in the spectrum remain closed.
Analogously, at ϑ = π/2 there are no valley-conserving

FIG. 5. Spectrum of Hv as a function of the detuning ε (solid)
and diabatic basis states (dashed) for B = 54 μeV, tc = 21 μeV, a =
bx = bz = 0 and Ev,L = 76 μeV, Ev,R = 58 μeV, (a) ϑ = 0, (b) ϑ =
π/6, (c) ϑ = π/2. In the limit ϑ → 0 (ϑ → π/2) the valley-
flip (valley-conserving) tunneling matrix elements ∝ sin ϑ (∝ cos ϑ)
vanish. Pink and green ellipses in (b) indicate where spin-conserving
valley transitions allow for two interfering paths for both spin states.
Arrows indicate upper and lower paths for the spin ground state in
the excited valley which splits at A1 and can interfere at A2.

transitions and again no interfering paths can be found, as
emphasized by Figs. 5(a) and 5(b).

In an experimental realization it is challenging to control
the valley pseudospin. The valley can be faithfully initialized
to |in〉 = |σ1, 0〉 by relaxation. The results of a shuttling pro-
tocol for σ =↑,↓ are displayed in Fig. 6(b). If |in〉 = |↑ 1, 0〉
interference due to spin transitions as discussed in Sec. III A
can still occur. However, with nonvanishing valley-flip tun-
neling there is an additional path leading to the transition
|↑ 1, 0〉 → |0,↓ 2〉. In this case the spin information is lost
while the charge is still transported with relatively low infi-
delity. If both spin and valley are initialized to the ground state
no interference can occur. The shuttling fidelity is limited by
LZ transitions due to noncollinear local bases in analogy to
the case |in〉 = |↓, 0〉 without regard of the valley.

As a function of the valley splittings Ev,L and Ev,R the
infidelity shows an oscillating pattern which agrees with
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FIG. 6. Spin infidelity with valley degree of freedom. (a) Plot-
ted is the logarithm of the spin infidelity 1 − Fs as a function of
the magnetic field B and the transverse magnetic field gradient bx

for |in〉 = |↑2, 0〉 with a = bz = 0, tc = 21 μeV, ε0 = 0.8 meV and
Ev,L = 76 μeV, Ev,R = 58 μeV, ϑ = π/4. Interference extrema of
first and second order due to both, spin and valley transitions are
present. The fine ripples are finite-time LZ effects due to the rel-
atively short ramp. (Inset) Spin-valley infidelity 1 − Fs,v (blue) and
charge infidelity 1 − Fc (red) as function of the valley mixing angle ϑ

for |in〉 = |↑ 2, 0〉 and parameters as in the main plot, B = 54 meV,
bx = 0. At ϑ = π/2 the valley-conserving tunneling matrix elements
vanish. The transport of spin and valley is limited by the charge
shuttling infidelity 1 − Fc whose maxima are due to destructive LZ
interference suppressing the charge transfer. Green dots indicate
spots with vanishing infidelity for which closed analytic expressions
were found in Sec. IV C. (b) Spin (charge) infidelity plotted as solid
(dashed) lines for |in〉 = |↑1, 0〉 (blue) and |in〉 = |↓1, 0〉 (red) as a
function of the transverse magnetic gradient bx with B = 42 μeV,
remaining parameters as in (a). In the case |in〉 = |↑ 1, 0〉 a large
spin shuttling error may come from a transition to |out〉 = |0, ↓ 2〉
while the charge is transported faithfully.

previous results [32]. This can be seen in Fig. 7 for one par-
ticular choice of ϑ and B comparable to Ev,L(R). If one valley

FIG. 7. Charge infidelity 1 − Fc for |in〉 = |σ2, 0〉 as a function
of (Ev,L, Ev,R) for B = 54 μeV, a = bz = bx = 0, tc = 21 μeV, ϑ =
π/4, and ε0 = 8 meV. The density plot is a numerical result, blue
(red) solid lines indicate maxima (minima) predicted by the analyt-
ical model after a constant shift Ev, j �→ Ev, j + k. For small valley
splitting the agreement is good, however, the second order minimum
of 1 − Fs has a large deviation already, as seen in the upper right
corner.

splitting is sufficiently smaller than the orbital splitting 2tsc

only one avoided crossing between different valley states can
form and no interference is observed. If both Evi � 2tsc, i ∈
{L, R} there are no anticrossings between valley states at all.
An analogous comparison with the Zeeman splitting B can be
made [32].

C. Analytical model

To gain further insight into the mechanism behind the
charge error reported in Sec. IV B an analytical model is
derived to estimate the infidelity. To that end, a first-order
Schrieffer-Wolff (SW) transformation [104,105] is applied to
find effective two-level Hamiltonians for the anticrossings A1

at ε = 1
2 (BR − BL ) − Ev,L and A2 at ε = 1

2 (BR − BL ) + Ev,R

indicated in Fig. 5(b). These are the first and the last avoided
crossings between opposite valley states passed in the shut-
tling protocol for |in〉 = |↓ 2, 0〉. The same can be done at the
respective avoided crossings for the excited spin state. This
reduces the Hamiltonian Hv to a LZ problem

HA j = x j1 +
(

(ε + z j )/2 y∗
j

y j −(ε + z j )/2

)
(23)

195418-8



SPIN SHUTTLING IN A SILICON DOUBLE QUANTUM … PHYSICAL REVIEW B 102, 195418 (2020)

for each anticrossing j ∈ {1, 2} individually. Thus, the LZ
formula can be applied to obtain transition probabilities

Pj = e−2π |y j |2/α (24)

at Aj . Additionally, the Stokes phase ϕ j associated with each
avoided crossing is computed [65,66],

ϕ j = |y j |
α

(
ln

|y j |
α

− 1
)

+ arg �
(

1 − i
|y j |
α

)
− π

4
, (25)

where � is the Gamma function.
For the avoided crossings between A1 and A2 it is as-

sumed that the passage through any anticrossing of states
with opposite spin is perfectly diabatic while anticrossings of
states with opposite charge but same spin state are assumed
to be passed adiabatically. These assumptions are justified by
the observation of highly adiabatic charge and spin transfer
(Fig. 3) far from the LZ interference due to spin transitions.
Consequently, the approximation is only valid for negligible
spin-flip tunneling tsf � tsc. This procedure identifies two
possible paths for each spin state. The phase difference

�ϕ = ϕs − 1

α

∫ A2

A1

dε(E−(ε) − E+(ε)) (26)

between the two paths includes the dynamical phase differ-
ence and the Stokes phases ϕs associated with the avoided
crossings along the paths.

Starting with the state |in〉 = |σ2, 0〉 the probability of a
charge error to occur is given as

Perr = P1 + P2 − 2P1P2

+ 2
√

(1 − P1)P1(1 − P2)P2 cos (ϕ1 + ϕ2 + �ϕ), (27)

where the cos term describes LZ interference. To calculate
the dynamical phase difference �ϕ in the vicinity of an
avoided crossing at position ε = −z with interaction term y
the adiabatic states are approximated as functions E±(ε) ≈
±

√
(ε + z)2 + 4|y|2. The minima of Perr = 1 − Fc coincide

with good accuracy with the numerical simulation of the
Schrödinger equation. Alternatively, the eigenstates can be
integrated numerically to avoid approximations when comput-
ing �ϕ. This approach yields slightly better results but cannot
give analytical solutions.

After the SW transformation the valley splittings enter
Eq. (27) only via the phases ϕ j and �ϕ. Thus, the dependence
on the valley splittings is only due to the interference term.
The extrema of the error probability in the Ev,L-Ev,R plane
are determined by the relation sin (ϕ1 + ϕ2 + �ϕ) = 0. No
solution in closed form could be found, therefore we numer-
ically solve this equation and find that the solution can be
fitted to the contour (Ev,L − k1)(Ev,R − k1) ≈ k2 with high
accuracy. This agrees with the numerics up to a variation
in the shift k1. As shown in Fig. 7, the analytically derived
maxima and minima of this interference pattern agree well
with the first few orders of numerically computed extrema
up to a constant shift in the Ev,L-Ev,R plane, Ev, j �→ Ev, j + k.
For large Ev, j the approximations in the analytical model lead
to deviations. This is particularly relevant for higher order
extrema.

Besides the adiabatic protocol limα→0 Perr = 0 a number
of minima of Perr can be found as a closed expression, given

in Appendix C by Eqs. (C1) and (C2). In the inset of Fig. 6
these solutions are indicated by green dots. As a function of
ϑ these minima frame an interval centered around the point
ϑ = π/2 with minimal infidelity. It is worth noting that these
solutions are independent of the valley splittings Ev, j . If the
Zeeman splitting becomes dominant over the tunnel splitting
the assumptions of the model are no longer valid and the
equations yield no solution.

At ϑ = 0, π the valley-flipping matrix elements vanish,
y1 = y2 = 0, and the avoided crossings remain closed. Con-
sequently, the LZ probabilities are P1 = P2 = 1 resulting in
Perr = 0. Both y j reach their maximum at ϑ = π/2. Due to the
dependence given by Eq. (24) the probability exponentially
decays to its minimum value at ϑ = π/2, granting a plateau
with low infidelity due to the tail of the exponential function.
In the regime 0 < ϑ < π/2 between these two limiting cases
the infidelity can also fall to minimal values, ensured by con-
structive interference depending on Ev,i.

A physical process that can lead to dephasing and thus
reduce the effectiveness of constructive interference is charge
noise [4,79–83]. We find that in the presence of charge noise
both the maxima and minima of 1 − Fc collapse to the de-
phased function Pdeph

err = P1 + P2 − 2P1P2. Furthermore, in the
literature there are plenty of results already dealing with the
LZ problem under the influence of charge noise [74,77,78]
which can be adopted to estimate the changes in the transition
probability at the avoided crossings.

Note that even though this model was derived to analyze
the interference between valley states while the spin is trans-
ported faithfully it can easily be adapted to the interference
between spin states in the local eigenbasis in the case of
irrelevant valley splittings. This is accomplished by mapping
Ev, j → Bj and tan ϑ to the ratio tsf/tsc.

Respecting both spin and valley, it is in principle possible
to achieve a spin infidelity which compares well to the case
without valley. However, since the valley parameters are set
during device fabrication and are often not controllable to
a large degree an unfortunate occurrence can significantly
increase the infidelity compared to the case with spin only. It
is still possible to exploit constructive interference to achieve
a low shuttling infidelity, although this requires precise tuning
of the device parameters, which may be difficult to achieve in
practice.

V. CONCLUSIONS

A detuning sweep in a singly occupied DQD was
investigated as a building block of a scalable electron shut-
tling protocol. It was found that although an infidelity
of 10−5 of charge transfer, even without optimization of
the pulse shape is realistic, the SOI and magnetic gradi-
ents can introduce errors into the spin shuttling. Optimal
shuttling results are achieved when the spin-flip tunneling
term tsf vanishes. Transient effects can be mitigated by
preparing and measuring stationary local eigenstates of the
system and by using a sufficiently large final and initial
detuning.

With optimized parameters we find that a spin shuttling in-
fidelity 1 − Fs � 0.002 for the excited spin state and 1 − Fs �
0.001 for the spin ground state is achievable for a ramp with
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a level velocity of α = 600 μeV ns−1. Realistically, lower fi-
delities can be expected since a flawless parameter setting
would also require control over the valley pseudospin. We
expect that the numbers reported here can be further improved
by optimizing the pulse shape away from a simple ramp
[35,92,93].

In a periodically driven DQD performing a shuttling se-
quence the resulting infidelity is modulated by LZ interference
due to the repeated passage through the avoided crossings.
Diabatic transitions to the other eigenstates during the re-
peated shuttling protocol are a major loss mechanism in a fast
protocol. We examined the interaction with nearby reservoirs
in long shuttling sequences as an example how the envi-
ronment can lead to a significant shuttling error probability.
Incoherent spin-flip cotunneling between the system and the
reservoirs further increases the spin infidelity and also intro-
duces decoherence limiting the observation of interference
effects.

Due to multiple avoided crossings involving the excited
spin or valley state strong transport errors up to complete
destructive interference can occur even in single shuttles if
the protocol is not sufficiently adiabatic. For B � 2tc and
tsf �= 0 avoided crossings between opposite spin states open
interfering paths. Similarly, when Ev,L, Ev,R � 2tsc, B valley
transitions become significant. However, this entails possible
applications of LZ interference in a DQD as a filtering or read-
out device to spatially separate electrons with different spin
or valley state. Sophisticated device engineering and control
provided, constructive interference can ensure high fidelity
shuttling.

The interference allowed by spin-conserving valley transi-
tions was characterized in detail numerically and by means of
an approximate analytical model which can also be adopted to
the situation of valley-conserving spin transitions. The analy-
sis confirms that destructive LZ interference is a major error
mechanism in fast electron shuttling protocols and provides
a means to estimate optimal experimental regimes where the
transport fidelity is protected by constructive interference.
The analytical model is still not perfectly precise. Possibly,
further improvements could be achieved by using the full
finite-time solution of the LZ problem [67] instead of the LZ
formula.
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APPENDIX A: MAGNETIC FIELD CONTRIBUTIONS

Here, we detail the different contributions to the Zeeman
terms in H0 and Hgrad, Eqs. (1) and (2). Our Hamiltonian
includes a homogeneous external magnetic field B̃ext, the field

of a micromagnet, B̃
L(R)
m , which is inhomogeneous and thus

different in the left and right dot, and lastly the hyperfine

interaction. The tilde denotes the use of magnetic field rather
than energy units. Although the hyperfine interaction can be
suppressed by choosing isotopically purified silicon as host
material [84] in natural silicon only ≈95% of the nuclei are
nonmagnetic [2]. For the purpose of this work a semiclassical
description of the hyperfine interaction with the Overhauser
field B̃

i
N = (giμB)−1 ∑

k AkIk is sufficient [2]. Here, gi is the
electron g factor in dot i = L, R, Ak is the coupling between
the electron and the nuclear spin Ik , and μB is the Bohr
magneton.

With B̃
i
int = B̃

i
m + B̃

i
N the Zeeman Hamiltonian in

dot i is given by Hi
z = giμB(B̃ext + B̃

i
int ) · S where

S = h̄σ/2 is the electron spin operator. With B =
h̄μB[gL(B̃ext + B̃

L
int ) + gR(B̃ext + B̃

R
int )]/2 and b = h̄μB

[gL(B̃ext + B̃
L
int ) − gR(B̃ext + B̃

R
int )]/2 we find the total

Zeeman Hamiltonian H tot
z = HL

z ⊕ HR
z = (1 ⊗ B · σ +

τz ⊗ b · σ)/2. The homogeneous part of H tot
z is included in H0

while the inhomogeneous part is treated as Hgrad.

APPENDIX B: TERMS OF THE MASTER EQUATION

Using the notation, (0, 0) = 0, (↑, 0) = 1, (↓, 0) =
2, (0,↑) = 3, (0,↓) = 4 (↓,↓) = 5, (↑,↓) = 6, (↓,↑) =
7, (↑,↑) = 8 for the spin and charge configurations the terms
γnm in Eq. (17) are given by

γnn =
∑

l

wln, (B1)

γ12 = 1
2 (w01 + w02 + w61 + w81 + w52 + w72 + w21),

(B2)

γ13 = 1
2 (w01 + w03 + w61 + w81 + w73

+w83 + w21 + w43), (B3)

γ14 = 1
2 (w01 + w04 + w61 + w81 + w54 + w64 + w21),

(B4)

γ23 = 1
2 (w02 + w03 + w52 + w72 + w73 + w83 + w43),

(B5)

γ24 = 1
2 (w02 + w04 + w52 + w72 + w54 + w64), (B6)

γ34 = 1
2 (w03 + w04 + w73 + w38 + w54 + w64 + w43).

(B7)

Furthermore, the conjugate terms γ21, γ31, γ41, γ32, γ42, γ43 oc-
cur with respectively interchanged indices. The contributions
w21 = 1/T1L and w43 = 1/T1R account for spin relaxation in
the left and right dot.

APPENDIX C: MINIMA OF THE ERROR PROBABILITY

Some minima of the infidelity as a function of ϑ can be
derived analytically. Introducing the notations b = bx + iby

and τ̃ = tc + is, we used the following conditions to obtain
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the local minima of Perr (ϑ ) = 1 − Fc(ϑ ),

ϑ = (−1)k arcsin
[(

(bz − B)(B + bz )2(ab + (B − bz )τ̃ ∗)

+ b∗((B2 − b2
z

)
(bτ̃ − (B − bz )a∗) + b

(
B2 + b2

z

)
τ̃ ∗))

× (−Bτ̃ ∗(2B|a|2 + 4B|τ̃ |2 + 2iRe(ab)s))−1
]1/2

+ nπ, (C1)

ϑ = arctan
{
(−1)k

[
b∗(bτ̃b2

z − (
B2 − b2

z

)
((B + bz )a∗ − btc)

)
−(B − bz )2(B + bz )(ab + 2τ̃ (B + bz ))

]1/2[
(B − bz )2

× (B + bz )(ab + 2τ̃ (B + bz )) − 8B2τ̃ |τ̃ |2 + ib
(
2aBτ̃

− b2
z b∗)s + a∗(b∗((B − bz )(B + bz )2 + 2iBτ̃ s) − 4aB2τ̃ )

− |b|2B2tc
]−1/2} + 2πn, (C2)

with n ∈ N0, and k ∈ {0, 1}. These solutions are indicated in
the inset of Fig. 6. Note however, that these are not all minima
of Perr (ϑ ).
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