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Abstract

We theoretically investigate tunneling through free-space or dielectric nanogaps between metallic
nanocontacts driven by ultrashort ultrabroadband light pulses. For this purpose we develop a
time-dependent quasiclassical theory being especially suitable to describe the tunneling process in
the non-adiabatic regime, when tunneling can be significantly influenced by photon absorption as
the electron moves in the classically forbidden region. Firstly, the case of driving by an ideal
half-cycle pulse is studied. For different distances between the contacts, we analyze the main
solutions having the form of a quasiclassical wave packet of the tunneling electron and an
evanescent wave of the electron density. For each of these solutions the resulting tunneling
probability is determined with the exponential accuracy inherent to the method. We identify a
crossover between two tunneling regimes corresponding to both solutions in dependence on the
field strength and intercontact distance that can be observed in the corresponding behaviour of the
tunneling probability. Secondly, considering realistic temporal profiles of few-femtosecond pulses,
we demonstrate that the preferred direction of the electron transport through the nanogap can be
controlled by changing the carrier-envelope phase of the pulse, in agreement with recent
experimental findings and numerical simulations. We find analytical expressions for the tunneling
probability, determining the resulting charge transfer in dependence on the pulse parameters.
Further, we determine temporal shifts of the outgoing electron trajectories with respect to the
peaks of the laser field as a function of the pulse phase and illustrate when the non-adiabatical
character of the tunneling process is particularly important.

1. Introduction

Together with quantum interference and entanglement, tunneling is one of the core phenomena
characterizing the essence of quantum physics. For all these three phenomena, the comparison to the
classical description benchmarks new possibilities opening in the quantum world. In the case of tunneling
we also have a formalism at our disposal, connecting both the classical and quantum description,
represented by the quasiclassical Wentzel-Kramers—Brillouin method, first proposed in the general
mathematical context of linear second order ordinary differential equations [1]. This formalism in many
cases allows one to obtain analytical or semi-analytical solutions and gain additional insights into their
behaviour based on an extended classical intuition. The original quasiclassical approach is, however, suitable
only in energy-conserving situations with static potential barriers or in some formally equivalent cases of
time-dependent potentials which can be mapped to static descriptions since the time variable can be
effectively seen as a spatial coordinate [2, 3].

The work of Tien and Gordon [4] pioneered the research field of photon-assisted tunneling. Originally,
their model provided an explanation to the experimentally observed phenomenon of the enhancement of
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the electron tunneling between superconducting films separated by a dielectric barrier due to the driving by
an applied microwave field [5]. The success of the Tien—Gordon approach was followed then by studies of
the field-driven tunneling in various nanostructures. In place of the periodic modulation of the spatially
constant potential in one of the contacts, as in the original Tien—Gordon model, also the situation of a
spatially constant, periodically driven intercontact barrier potential was considered [6, 7]. This treatment
was extended to cases where the intercontact region can be considered as a layered structure, potentially
capturing the situation of an arbitrary spatial shape of the time-dependent intercontact potential [8, 9].
Such theoretical developments contributed to the understanding of ac-driven photon-assisted tunneling
through complex spatial potentials corresponding to quantum dots [10, 11], resonant tunneling diodes [12]
and more [13, 14], and references therein. These studies uncovered quite rich physics of the charge
tunneling transport through periodically-driven nanostructures, including also many-particle effects, and
led to a number of applications, such as quantized charge pumping [15]. One should remark though that
the implementation of this approach for strong driving fields corresponding to the driving potentials
essentially varying also in space, such as can be induced by laser fields in the intercontact gaps, becomes
involved and requires a numerical treatment. Moreover, since this theoretical technique is strongly based on
the periodicity of the field, at the moment it is unclear how to generalize it for descriptions of tunneling
induced by ultrashort driving fields and if this would be possible at all.

Almost contemporarily to the paper by Tien and Gordon, the seminal work of Keldysh [16] established a
connection between the picture of tunneling and multiphoton ionization induced by laser fields, i.e. in
temporally changing spatial potential barriers. This breakthrough achievement was followed by the
development of quasiclassical approaches applicable in situations of tunneling through spatial energy
barriers varying with time [17—19]. Thus, also the regime of so-called non-adiabatic tunneling [20-23],
when a considerable energy is absorbed in the process of the underbarrier motion, could be captured within
the same physical picture. Conceptually, time-dependent quasiclassical approaches can be related to the
path integral formalism [24], extended to the complex time plane and corresponding generally complex
trajectories. In atomic physics, under certain conditions a formal derivation can be based on the strong-field
approximation (SFA) [25-28].

Developments in ultrafast photonics leading to the appearance of tailored few-cycle laser sources opened
new opportunities for studying the control of pulse-induced dynamical tunneling from atomic systems
[29, 30], metal surfaces [31] and plasmonic nanoparticles [32]. It was demonstrated that the
carrier-envelope phase (CEP) of the light pulses can be utilized as a control parameter that found its
practical application, e.g. as a method of the CEP measurement [33—35]. It was further shown both
experimentally and theoretically that strong ultrashort pulses can populate the conduction band in
dielectrics [36] and semiconductors [37] due to non-resonant interband Landau—Zener tunneling of the
electrons from the valence band into the conduction band and generate currents in unbiased systems on
ultrafast time scales [38, 39], whereby the current direction is controlled by the CEP of the pulse.

Recently we can also observe an increased interest in tunneling in nanosystems, opening new
perspectives for ultrafast nanoscale devices. The quantum tunneling regime was predicted and observed for
plasmonic systems with nanoscale gaps and resulting plasmonic response properties were studied [40—42].
Another highly interesting case is realized in the tunneling microscope configuration where the charge
transport between the tip and the surface can be strongly influenced by an external light field [43] or can
lead to interesting phenomena like the overbias light emission [44, 45]. Moreover, application of tailored
femtosecond few-cycle pulses (FCPs) in this configuration opened possibilities for sub-cycle coherent
manipulation of the charge transport through the nanogap [46—49], enabling angstrom-scale spatial and
sub-femtosecond temporal resolution in tunneling microscopy [50]. In contrast to the strong spatial
asymmetry in the configuration of the tunneling microscope, metallic nanoantennas with nanoscale gaps
represent devices with a symmetric stationary part of the spatial potential barrier so that the whole control
of the charge transfer across the gap can be realized solely via the CEP-controlled FCPs or sequences of such
pulses [51, 52]. These experiments and prospective applications based on them serve as one of the main
motivations for our work.

We develop a quasiclassical description of the charge transfer between two nanocontacts induced by
CEP-controlled femtosecond light pulses and determined by the probabilities of the field-driven
non-adiabatic tunneling. Therefore we consider the tunneling process in the corresponding potentials being
both space- and time-dependent and leading to widely varying values of the resulting Keldysh parameter -,
which determines the transition from the direct tunneling to the multiphoton regime [16]. We base our
theory on a Lagrangian formulation [19, 53—55] of the quasiclassical imaginary time method (ITM) [17,
18] that brings, in our opinion, certain advantages with respect to the original I'TM formulation concerning
the justification of the derivation steps and finding the spatio-temporal structure of the resulting solution.
With our approach we can address also the case of driving by the CEP-controlled FCPs that until now
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remained out of reach of the existing ITM considerations, where only solutions for even FCPs could be
found [56—59], whereas a related approach of Keldysh provided us recently with a solution just for one case
of a fixed-CEP odd single-cycle pulse [60]. Furthermore, the existing quasiclassical descriptions are rather
suitable for free-space ionization problems whereas, as we will see, in the nanogap configuration the aspect
of a small intercontact distance has to be addressed appropriately and eventually affects the solution
structure.

2. Quasiclassical description of non-adiabatic tunneling in ultrafast laser fields

2.1. General formalism
We will limit our consideration to the one-dimensional motion of an electron along the coordinate axis z.
In the quasiclassical approximation the electronic wave function W(z, t) is given by

U(z,t) RS, (1)

where S(z, t) is the action. In order to find it as a function of z and t, one should find the general solution of
the Hamilton—Jacobi equations [61, footnote on p 148], [19, p 298], [62]

@ = _H(P>Z) t) > % =

where H and p denote the Hamiltonian and conjugate momentum of z, respectively. The general solution
S(z, t) can be constructed using a complete solution

t
S= / L(Z,Z,¢)dt' + C =S, + C, (3)
to

where C is an arbitrary constant, t, and ¢ are the initial and final times, respectively, z is reserved for the
final position, and £(z,Z,1') is the Langrange function, as

S =Sy + Clto). (4)

Here C(1) is generally an arbitrary function of t,, whereas t, has to be expressed as a function of zand ¢

a8

Taking into account (g—fg)” = H|,—,,» equation (4) results in

using the equation

dC(t)
dn e (©)

The form of the function C(#) has to be selected in a way to match the boundary condition on the
incoming part of the wave function at the position where the electron enters the region under the barrier,
which we assume to be located at z = 0. At z = 0 and t = t, the wave function is given by

(0, ty) o eFSO1=t0) — o7 Clto), Comparison of this expression with the wave function in the region outside
the barrier in the neighborhood of z = 0, up to the exponential factors, allows to determine the form of the
function C(#). If outside the barrier we can consider the electron energy E to be insignificantly influenced
by the perturbation of the system, then we have

C(ty) = —Et (7)

and equation (6) turns into E = H|t:t0. This is the case for an electron tunneling between two metallic
contacts (see figure 1), because the electric field of the pulse is screened inside the contacts, due to a quick
plasmonic response. Note that it is also the case for a charge carrier which is initially confined by a
short-range potential [19, pp 295-297], [53, 54].

The Lagrange function in equation (3) corresponding to one-dimensional motion of the electron in the
laser electric field £(t) and a potential U(z) is given by

m é/Z

L(Z,Z,t) = +ZF(t'") — U(Z), (8)
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Figure 1. (a) Geometry of the nanogap (width d) formed by two metallic nanocontacts and the incoming driving few-cycle
femtosecond light pulse with the electric field inside the gap £(¢) polarized along the z-direction. The nanocontacts are attached
to an external electric circuit which allows to measure the electric charge transferred upon the pulse application. (b) The
corresponding energy diagram for an electron moving between the nanocontacts through the field-influenced time-dependent
barrier. Here, AE is the energy barrier for an electron at the Fermi level Ep inside the metal. The time dependence of the
field-induced barrier is symbolized by the double-headed arrow. The red line shows an example of how the energy of a tunneling
electron changes with its position.

where F(t) = e£(t) with e = —|e| denoting the electron charge and m denoting its mass. 2/ (¢') satisfies the
equation of motion:
du(Z
m? = B¢y — W) 9)
dz’
with the boundary conditions
Z(t) =0, Z(t) =z. (10)
Additionally, in this case from equation (6) we have
dC(ty) muv3
— ("™ Ly, 11
dto 5 + Uy (11)
where vy = Z/(t' = ty) is the initial velocity and Uy = U(z = 0%") with z = 07 being the position just
beyond the barrier boundary (left and right limits of U(z) are different at z = 0 in the case of an abrupt
potential step, which will be considered below). In the case of the tunneling from the state with energy E
this gives
AE =E — Uy = mv} /2. (12)

As far as for a tunneling state under the barrier AE < 0 [cf figure 1(b)], we see that vy has a purely
imaginary value.

Solving the equation of motion together with the boundary conditions allows to determine S and
vy = Z/(f' = ty) as functions of z, t, and ty. Inserting the result for v, into equation (12), we can find then #,
as a function of z and t. As a result, the action S can be expressed as a function of merely z and t. Thus,
using equation (1), we are able to find the wave function W(z, t). As we will see below, #y(z, 1) is generally a
multivalued function resulting in multiple solutions for W(z, t). Within the presented formalism each of
these solutions has to be analyzed separately and describes a part of the single tunneling process. However,
there is no known recipe of how to combine them together consistently. This issue is mostly relevant for the
underbarrier dynamics close to the tunnel exit. Otherwise, the time-dependent probability density at each
particular point in time t and space z is typically dominated by just one of these solutions (see section 3). If
the electric field has several oscillation cycles, there is an additional multiplication of the number of the
solutions, which are separated in time approximately by the oscillation period.

Let us now assume that the electron exits the classically forbidden region before it reaches the opposite
metallic contact at z = d, excluding for a moment the case of very small spatial gaps between the contacts
from the consideration. In order to determine the tunneling probability with exponential accuracy it is
sufficient to know the value of |¥(z, t)|* at the set of points in the region behind the barrier where it has its
maximum. Taking into account equation (1), we can see that these positions are determined by the
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condition %Img = Im p = 0 and therefore
Im[Z ()] = 0. (13)

Equation (13) fixes the optimal classical complex trajectories [28] of the tunneling electron zoy(¢). The
value of t, must satisfy z,p(fo) = 0. We see that for the optimal trajectories the electron velocity becomes
real in the classically allowed region, which is intuitively expected. For other possible trajectories the

velocity generally remains complex.
IIm S(z, 1)
= =0, 14
( 5 > (14)
Imp=0

From equation (2) follows
where we have a conditional partial derivative on the left-hand side. This equation means that the
imaginary part of the action does not change with time along any chosen optimal trajectory when the
electron moves in the classically allowed region behind the barrier. Moreover, in order to calculate the
corresponding imaginary part of the action, technically we can select any arbitrary value of time ¢ on the
real axis, even one corresponding to a time moment before the ultrafast laser pulse has arrived. This is
possible because there is always a purely real classical trajectory z.(t) coinciding with the optimal complex
trajectory for sufficiently large times after the laser pulse application, ¢ > f.,. This real trajectory z. ()
corresponds to a fictitious electron coming from the classically allowed region to the potential barrier and
then reflected back. It can be obtained from z, (%), starting at t > f., and propagating back along the real
time axis (cf also [63, 64]).

The consideration above becomes, however, inapplicable if the width of the potential barrier becomes so
small that the electron is not able to exit out of the barrier before reaching the opposite contact. For brevity,
we will call this situation small-distance scenario. Equation (13) does not generally apply for this case since
|¥(z, t)|* may continue to change inside the barrier with increasing value of z up to z = d. To determine the
tunneling probability with exponential accuracy we have to analyze the shape of |¥(z, t)|* at z = d. Then in
order to find the optimal complex classical trajectory we need to formulate an appropriate replacement for
equations (13) and (14). The optimal trajectory should lead to the maximum of |¥(z, t) \2 being located at
z = d with respect to different possible values of time ¢ so that in place of equation (14) we obtain

9Im S(z, 1) B
(at ) 15)

Denoting the particular moment in time when this condition is satisfied as fg, in the case of the optimal
complex trajectory we are searching for the second of the boundary conditions (10) takes the form

Z(tg) = d. (16)
With exponential accuracy, the tunneling probability is given by
P. = exp(—2S.) , S. = ImS/h, (17)

where § is evaluated at any final point (t,z) belonging to the trajectory z.(t), unless the small-distance
scenario is realized when we have to take (t = tg,z = d).

2.2. Action and the propagating wave packet
Solution of the equation of motion (9) with the boundary conditions (10) gives

Z =o' —ty) + Z(t, ty), (18)
Z =v+V({), (19)

where the functions V(¢') and Z(#, ty) are defined as

V() = i/t F(¢"ydt", (20)
m.Jo
Z(t 1) = / V(¢")dt’, (21)




10P Publishing

New J. Phys. 23 (2021) 083006 S Kim et al

and the complex parameter v = Z'(t = 0) is given by

v =

= [z — Z(t,10)] = v(zt, fy). (22)
t—1p

Now t, in equations (18), (21) and (22) is a yet unknown complex parameter that should be expressed as a
function of z and ¢ with help of equation (12). For that a system of two real equations

Rev(z, t,ty) + Re V(ty) = 0, (23)

Imu(z, t, ty) + ImV(ty) = £/ 3AE (24)
m

for the real part 79 = Re fy and imaginary part 7. = Im #; of
to = To + iTe (25)

has to be solved. The selection of a positive or a negative sign in equation (24) leads to the same physical
results. Without loss of generality, we may restrict our consideration to the positive sign. Explicit solutions
can be found when the laser pulse shape F(t) is fixed.

Having fy(z, t), the action S(z, t) can be determined using equations (3), (4), (7) and (8). If the
Lagrangian entering as the integrand in equation (3) does not have any singularity points as function of the
complex time we may use integration by parts and write

t
S(z,t) = —%/ [v(z, t,to) + V(t’)]2 dt’ + mz[v(z, t,ty) + V(t)] — Ut + AEt,,. (26)
to
The imaginary part of S(z, t) is then given by
t
ImS(z,t) = —%Im/ [v(z, t,ty) + V(t')]2 dt’ + mzlmu(z, t, ty) + AET.. (27)
fo

Inserting #o(z, t) into equations (26) and (27) we can determine the corresponding wave function. In
particular, if it accommodates the real trajectory z.(t), as explained below equation (14), we obtain the
shape of the propagating wave packet. The probability density is given by |¥(z, t)|* e~ RImSGD),

In order to discuss a more involved situation when the Lagrangian does have singularity points, let us
define the standard path 0, in the complex time plane. This path starts at ¢ = fo, first goes parallel to the
imaginary time axis from the point (7, 7.) to (79, 0) and then parallel to the real time axis to (¢, 0), thus

connecting fy and t, whereby not crossing any singularity point. For such a path equations (26) and (27) can

still be used. Moreover, these equations stay valid for any other path ¢ such that the closed path (05 =05 —9
does not encircle any singularity points. All these paths lead to the same result and are therefore physically
equivalent. The case of a general choice of the integration path is analyzed in appendix A for one particular
example of the pulse shape F(t), which is also studied in section 3.1. For clarity, the consideration there is
limited to optimal complex classical trajectories. We found that also for trajectories encircling singularity

points equation (27) holds. Considering the closed path <O5 mentioned above, it is helpful to introduce the
winding number n; for each singularity point j and the total winding number N = 3~ ;. One can show
that the standard path d,, having N = 0, leads to the maximal possible value of the probability, whereas any
paths with N # 0 give smaller values. Physically, for a pulse-driven tunneling process the latter paths
correspond to multiple reflections in the induced dynamic potential. The quasiclassical approach considered
here is applicable only when the difference in probabilities between J, and paths with N # 0 is very large
(for more precise formulation, cf appendix A). Below we restrict our consideration to this applicability
region, where it is sufficient to take into account only trajectories with N = 0. Outside of this region the
utilized quasiclassical description is not readily justified and can lead to inconsistencies [cf discussion after
equation (64)].

2.3. Optimal complex trajectory and tunneling probability
As indicated above, in order to determine the tunneling probability with exponential accuracy it is not
necessary to possess information about the whole wave packet of the electron. The knowledge of Im S(z, t)
along the optimal trajectory zop(f) (or trajectories, if there are several of them) in the region behind the
barrier suffices. Therefore the task reduces to finding z,p (1), together with the related real trajectory z.(1),
followed by calculation of Im S(z, t) for any real tand z = z..(1).

In this case the solution of the equation of motion, equations (18) and (19), should satisfy the following
conditions:
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(a) Im[Z(f =0)] =0,
(b) Z(t =1)) =i/ ZAE,

which are also valid for any complex classical trajectory, and additionally
(c) Imv=Im[Z( =0)] =0,

due to equation (13). For (b) we have selected the plus sign in front of the square root, in accordance
with the convention we decided to use for equation (24).

The choice of ¥ = 0 for (a) and (c) is convenient but not compulsory as far as any real value of # can be
taken here. From (c), we see directly that v is real. Then, taking into account AE > 0, these three conditions
result in

—vTe +Im Z(0, 79 + i7e) = 0, (28)

v+ ReV(ry +ite) =0, (29)
. 2

ImV(71y + iTe) = ;AE, (30)

Generally, these three equations allow us to find the three unknown real quantities v, 79 = Re ty, and
Te = Im to. When they are determined we can express the imaginary part of the action through a real
integral as

ImS = g/ {[v+ReV(ry +ir)]* — [ImV(7 + i7)]*} d7 + AEre. (31)
0

With equation (17) this gives the tunneling probability. However, generally we may find multiple results for
it if there are several physically different solutions of (28)—(30) for {v, 79, T}, e.g. as illustrated in
section 3.2.

Let us again consider separately the small-distance scenario where the electron does not manage to exit
out of the barrier into the classically allowed region before reaching the opposite contact. Proceeding as
above but now taking into account equations (15) and (16), we obtain

i) Z( =tg) = d,
(ii') Z(t =1) =i/ ZAE,
(iii") ImH|,_, = 0,ie. Im [Z'*(f = )] =0,
where condition (c) originates from equation (15). It has a clear physical meaning that at the moment the
electron reaches the opposite contact it has a real value of the kinetic energy. Note that this value has

actually to be negative since we have assumed that the electron does not leave the classically forbidden
region. The listed conditions result finally in a system of five equations,

(tg — 10)Rev + TImv + Re Z(tg, 79 + i7e) = d, (32)
— 1.Rev + (g — 79)Imv + Im Z(tg, 70 + ite) = 0, (33)
Rev + Re V(1y +it.) = 0, (34)
Imv + Im V(7 + ite) = %AE, (35)
Imwv [Rev + ReV(tg)] = 0, (36)

for five real quantities: tg, 7o, Te, Re v, Im v. With these quantities determined, the imaginary part of the
action at z = d and t = 1 is expressed as

ImS = g/ e {[Rev + Re V(19 + in]? = [Imv + ImV(1 + iT)]z} dr
0
+ mdlmv + AETe., (37)

replacing equation (31) for the considered scenario.
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3. Results for specific pulse shapes

3.1. Ideal half-cycle pulse
In order to demonstrate in detail how the approach works for a particular case allowing for analytical
results, let us consider the following pulse shape (cf references [18, 56, 57]):

F(t) = F, (38)

cosh’T't’
Here the parameter I', having the dimension of frequency, determines the pulse duration. One can notice
that the temporal integral over the field for such a pulse does not vanish, and that is generally forbidden for
light pulses propagating in the far field zone. However, one might, e.g. assume that the corresponding
experimentally realized pulses possess merely weak oscillating or decaying tails [65—67]. The regions of the
opposite polarity in respect to the main half-cycle assure that the integral of the field over the whole time
axis converges to zero. However, the dependence of the tunneling probability on the electric field strength is
highly non-linear. As a consequence, the impact of the weak tails of the pulse on charge transfer processes
governed by tunneling is negligible. Hence models like equation (38) may be used. They can be considered
for a qualitative understanding of what happens during a single half cycle of a FCP.

Inserting equation (38) into equations (20) and (21) we obtain

F
V() = — tanh I'7, (39)
ml’
F
Z(t 1) = % (ln cosh I't’ — In cosh Fto) ) (40)
m
Here we restrict our consideration to one branch of the multi-valued complex logarithm function: its
principal value (for a more general situation, see appendix A). Setting # = ¢ in these equations we use them

in equations (22)—(24). This leads to an equation for the complex time t, = 7 + i7. (or a system of two
equations for real 7y and 7.):

1
- |2 In cosh I't + In cosh I'ty| + tanh T'ty = ivypcp, (41)
I't =Tt | 29
providing us with fy(z, t). Here
Fy
20 = W (42)
is a characteristic length and
r
THep = 7oV 2mAE (43)
0

is a generalized Keldysh parameter [16, 28, 58, 68] for the case of ideal half-cycle pulses.

As mentioned in the previous section, we obtain several solutions for #, from equation (41) for each pair
of values of z and ¢ (even though we have limited the consideration to the principal value of the complex
logarithm function). The behaviour of these solutions in dependence on the position in the (z, t) plane is
analyzed in appendix B. For the considered type of driving field there are two physical solutions which give
dominant contributions to the resulting probability distribution, while other solutions may be neglected.
There is a branch point of order 1 located at (z = z, t = 0). By going around this point in the plane (z, t)
one of the two main solutions for #, transforms into another. The behaviour of the multi-valued functions
To(z,t) and 7.(z, t), limited to the two main solutions, along the line t = 0 is illustrated in figure 2(a). Their
topological structure close to the point (z = z., t = 0) is similar to the Riemann surfaces for the real and
imaginary parts of complex function 1/ in the neighborhood of the branch point ¢ = 0. We can separate
the two main solution branches from each other in order to obtain distinct single-valued functions.

Dependencies 7¢(z, t) and 7.(z, ) are illustrated in figures 3(a) and (b) for one of the main solution
branches (let us name it first solution here) and the region t > 0. The position and time are normalized by
zp and I, respectively. The dependencies 7o(z, t) and 7.(z, t) for the other main solution branch (second
solution) are shown in figures 4(a) and (b). As we will discuss below, the second solution dominates for the
spatial region where the electron is under the barrier as well as in a certain vicinity after it may exit from
this region. This solution, however, does not possess the corresponding real classical trajectory z.(t) and
decays at larger distances at all times ¢, for which then the first solution overtakes the leading role.

Using equations (22), (39) and (40) in equation (27), we obtain

Fg

2
%Im S(z,t) = Wﬁ(z, 1), (44)
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Figure 2. (a) Normalized values of 7¢(z, t = 0) and 7.(z, t = 0) corresponding to the two main solution branches in dependence
on the position z. At the selected time t = 0 the electric field of the applied pulse reaches its maximum. The solutions are found
from equation (41) for yycp = 0.94. The branch point lies at Z. = z./zj, where z, is given by equation (42). (b) Corresponding
tunneling probability obtained using equation (44) in dependence on the position z, with F2 /(hmT?) = 34.7.
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Figure 3. First solution branch. Starting time of tunneling 7o = Re #; (a) and imaginary tunneling time 7. = Im t, (b) are
multiplied by I' (for normalization) and shown as functions of final real coordinate z and time . They were determined from
e ac
equation (41) for yucp = 0.94. (c) Resulting time-dependent distribution of the tunneling probability e~ 7™ 5** evaluated using
equation (44) with F} /(hmI®) = 34.7. Dashed lines in all plots indicate the real classical trajectory z.(t) of a fictitious reflected
electron coinciding with the optimal complex trajectory z,(t) for real values of . Along this trajectory 7y = 0, 7. ~ 0.7545 are
determined by equation (53) and e FImS = P, ~ 5.7 x 1078 is given by equation (58). Black contour line in (b) corresponds to
Te = 0.752 < 0.7545 and encircles a region with even lower values of 7, than for the optimal complex trajectory.
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Figure4. Second solution branch for the same multi-valued functions as in figure 3 and the same calculation parameters. There
is no outgoing real classical trajectory for this solution.

where the dimensionless function &(z, t) is given by

£z0) =T +T 7217 [S%(To,’]’) — 5%(70,7)]
0
[z/2z0 — In cosh(I't) + In cosh(lﬂto)]2 (45)

I
+im I't —T't
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Here
1 sinh(2I'7y)
T)= S m 46
8T 7) = 5 b, Tr) (46)
1 sin(2I'7)
T)= S 47
270 7) = 5 £y, ) (47)
with
f(x,y) = cosh’ cos¥ + sinh*sin%. (48)

Everywhere ty = ty(2, 1) [Te = Te(2, 1), To = To(2, 1)], as it is determined by equation (41). The dynamics of
the probability distribution following from equation (44) is illustrated in figure 3(c) for the first solution
and in figure 4(c) for the second solution. Both probabilities are plotted together at t = 0 in figure 2(b),
where we can see that they actually coincide for sufficiently large z if this particular moment in time is
considered. Concerning the first solution, notice that the maximum probability for any fixed time moment ¢
remains the same. It is also preserved along the optimal trajectory for real z and ¢. Thus if we view the
temporal evolution of the spatial probability distribution shown in figure 3(c) as the dynamics of the wave
packet of the emitted electron we should take into account that this wave packet is not normalized in a way
that the particle number is conserved. Clearly, such a normalization is beyond the exponential accuracy of
the applied method. It may be partly recovered going beyond the zeroth order of the saddle-point
approximation used in the derivation of the standard ITM based on the SFA [27, 28]. Alternatively, the
wave packet can be normalized to match the total probability resulting from its form at a fixed time, e.g. at
t = 0. Looking at figures 3(a)—(c) we can see that along the real classical trajectory we have 7¢(z, t) = 0,
Te(z, 1) = const. and Im S(z, t) = const.. Im S(z, t) reaches its maximum value on this trajectory. T¢(z, t) has
there a conditional minimum value, under the condition that this value of 7. appears for any f, including
t — oo. In fact, on the real classical trajectory 7. = min, 7c(z,t)|,_,... Smaller values of 7.(z, t) are possible
for finite t — see the region encircled by the solid black line in figure 3(b), but they disappear as ¢ grows. In
contrast to the first solution, the probability distribution corresponding to the second solution has an
evanescent character away from the barrier, as can be observed in figure 4(c). The values of the probability
at each time increase along with the electric field of the applied pulse so that the probability density is
instantaneously dragged in the direction of the opposite contact.

To find the corresponding optimal complex trajectory, assuming that the electron exits into the
classically allowed region before reaching the opposite contact, we use equations (39) and (40) for ¢ = 0
and write the real and imaginary parts at this time explicitly,

sinh(2I'my) + 1 sin(2['7e)

i € - F >
V(ry + i7e) = 2 2f(Tro,Tr)

(49)

1
Z(0, 19 +i7e) = —2 5 In f(I'ro, I'1e) +iarg (cosI're cosh 'y + 1 sinI'7e sinh I'rp) | . (50)

Let us find solutions with the absolute value of ', being below 7 /2 (for other possible solutions as well for
a clarification when and why they can be neglected, see appendix A). Inserting equations (49) and (50) into
equations (28)—(30) and eliminating the variable v leads to two equations for the determination of two real
quantities 7 and T,

I're sinh(2I'ry) — 2f (I'1g, I'7e) arctan(tan I'7, tanh I'rp) = 0, (51)

sin(2I'7e)

2 (T, Tre) | HEP (52)

Generally, such a problem should be treated numerically. Here the solution is simplified by the fact that the
left-hand side of equation (51) vanishes only if either 79 = 0 or 7. = 0. For 7. = 0 equation (52) cannot be
satisfied. Thus we must have 7o = 0 and therefore (I'7¢, 'T.) = cos’I'7.. Then from equations (29) and
(49) follows v = 0, i.e. the electron leaves the classically forbidden region with zero velocity. Notice that this
property is not assumed but does follow from the derivation. As a result equation (52) simplifies to

tan(I‘Te) = YHCP- (53)

For fixed values of vycp and T this equation has only one solution in the range I'7, € (—m/2,7/2) giving

Te = 7= (arctan yucp).
Having obtained 7y, 7. and v, we can then determine the full optimal complex trajectory,

Zopt(t) = Z(t,i7.) = 2 [In cosh(I't) — In cos(I'7e)], (54)
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Figure 5. (a) Function G(7) entering condition (61). Inset shows the dependence of the distance travelled by the electron under
the barrier w given by equation (56) and critical distance z. when 7y¢p is varied in the same way and for the same conditions as
described below. (b) Dependence of the tunneling probability on the Keldysh parameter. Green line shows the case of an ideal
half-cycle pulse, equation (58). We start from the parameters as in figures 2 and 3, assume y = ~y¢p and then vary +y by altering
the value of the peak electric field strength. Gray vertical bar with label ‘v’ indicates the validity threshold (65). To the left of this
bar we cannot rely on the result represented by the green line. Blue line illustrates the case of a FCP with a Gaussian envelope
with the temporal shape given by cos(wt)e /27) whereas we selected o = 1/w =T, connecting the time scales to the case of
an ideal half-cycle pulse. Red line shows the case of continuous wave (CW) driving, also with 1/w = T. In both latter cases, the
calculation was based on the results given in [58]. Full black line corresponds to the approximation given by equation (62) (direct
tunneling limit). The remaining color lines show the results corresponding to the first and second solutions for d = 0.3 nm and
d = 0.6 nm. To have a better overview, the first solution is plotted only when it differs from the case d = oo (green line) whereas
the second solution is plotted only when it exceeds the first solution. For comparison, for d = 0.6 nm also the quasiclassical
probability in the case of a static rectangular barrier of this width and height AE = 5.5 eV is indicated by the dashed black
horizontal line.

Zopt(t) = V(1) = zoI" tanh(I't). (55)

In the case of the standard path J; in the complex time plane, we can divide the trajectory into two parts:
(1) underbarrier motion t where changes from i7. to 0 and (2) the following motion in the classically
allowed region where ¢ is real and ¢ > 7 = 0. For part (2) we find that z,,, > w holds, where

1
w=zgln| —— (56)
{ cos(arctan yycp) ]

is the distance travelled by the electron under the barrier. Considering equation (54) only for real ¢ but
extending it to negative values, we obtain the real trajectory z.(t) of the fictitious electron reflected from the
barrier (see figure 3). It is interesting to notice that the value of w, somewhat counter intuitively, does not
coincide with the distance to the branch point z.. For example, for the parameters of figures 2—4 we have
w = 0.3166z; whereas z. ~ 0.3461z, i.e. the difference is around 10%. This means that the second solution
still dominates over the first solution not only within the dynamic tunnel barrier but also in its immediate
neighbourhood. However, the probability density of the second solution is evanescent at larger distances
and therefore does not induce there a density flow towards the opposite contact, in contrast to the first
solution. These findings are in agreement with the numerical observations for the electronic density in the
gap between contacts obtained by time-dependent density functional theory [52] in the case of relatively
large gaps (~ 6 nm). Thus our theory is able to contribute to the understanding of the pulse-induced
tunneling dynamics of the electron density in vicinity of the nanocontacts. Furthermore, we will discuss
below that in the strongly non-adiabatic regime, with large values of the Keldysh parameter, z. can
considerably exceed w [cf inset to figure 5(a)] increasing the role of the second solution, in particular for
gaps < 1 nm. In terms of finding optimal complex trajectories and corresponding probabilities, this
situation is captured by the small-distance scenario, treated separately in the end of this section.

For the imaginary part of the action acquired along the optimal trajectory we obtain from equation (31)
withv =0and 7o = 0,

- F?
ImS = Folﬁ ((’yflcp + 1)I'7, — tan FTe) . (57)
With equation (17) and the solution of equation (53) for 7, we find the tunneling probability
_ F
P, = exp D ((Yicp + 1) arctan yucp — yuce) | - (58)

This is the result obtained in [56—58] by the ITM, where the problem of atomic ionization by an ultrashort
light pulse was considered. In contrast to these works, here we use an alternative formulation of the
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quasiclassical approach to tunneling in time-dependent fields [19, 53, 54]. With that, firstly, all the
intermediate steps have been consistently explained avoiding ad hoc assumptions. As we will see below, this
is especially important for the following consideration of more realistic waveforms of the applied light
pulses. Secondly, the details of the two main solution branches for the time-dependent, real-space
quasiclassical wave function have been clarified, with important physical consequences highlighted below.

Let us discuss the applicability range and limit cases. The quasiclassical description used here is
appropriate only if the condition hw < AE is fulfilled for the frequencies w belonging to the spectral
content of the pulse. This implies here

' < AE. (59)

Another applicability condition is given by a general requirement that the tunneling probability remains
small,
P. < 1. (60)

Finally, in our derivation of equation (58) we have assumed that the distance travelled by the electron under
the barrier w does not exceed the distance between the contacts d. This restricts possible values of the
generalized Keldysh parameter from above by the condition

dF,

1
—>G = In(1 4+ ~24cp). 61
N (Yrce) i n(1 + Ycp) (61)

Failure to fulfill this condition always means that the small-distance scenario is realized, with a different
procedure to find the optimal complex trajectory, as we described in section 2.3. We will return to this
scenario below. The dependence G(~yycp) is shown in figure 5(a). For a fixed value of vycp, it follows that d
should exceed G(vycp) AE/F,. For example, we have G(vycp) = 1/2 if yycp & 1.585. This implies

d > AE/(2F,): during the motion inside the classically forbidden region the electron absorbs an energy
being equal to AE/2. We will revisit conditions (59)—(61) in discussion section, deliberating on realistic
system parameters.

In the direct tunneling limit, i.e. yycp — 0, we have w = AE/F,. No energy is absorbed in the process.
Inequality (61) is satisfied when the barrier height AE does not exceed the potential drop across the
intercontact region corresponding to the peak value of the electric field of the light pulse, i.e. d > AE/F,.
Then decomposing the left-hand side of equation (53) in Taylor series we obtain 't & 7ycp and therefore
Te — 0 with ycp — 0. In the leading order in 7y¢p in the exponent, equation (58) simplifies to

B 2, }:exp [_4@(@3/2]

__to < 62
hmI? 3 THCP 3 hF, (62)

P. = exp [
which is just the well-known expression for the quasiclassical probability of tunneling through a static
triangular barrier. From equations (62) and (60) follows a condition limiting the electric field strength’:

V2mAEAE
Fp < X2 (63)
I
For yycp2 1, the applicability of the quasiclassical approach would break down for smaller values of Fy than
dictated by equation (63).
In the multiphoton limit, with yyep — 0o, formally we get I'7. — 7/2 and equation (58) reduces to
o]
P.=exp |——],

hm=1T (64)

where AE/(hn~'T") is the average number of absorbed photons in the multiphoton transition. Notice that
in contrast to the conventional continuous wave (CW) case here photons of various energies belonging to
the pulse spectrum participate in the process. However, it is immediately clear that equation (64) cannot
represent the correct limiting case result because this limit can be reached by decreasing the electric field
amplitude and keeping other system parameters constant. Obviously, when the electric field vanishes the
probability must also vanish which is, however, not the case for equation (64). In fact, as we discuss in
appendix A, the utilized quasiclassical description becomes invalid for too large values of the (generalized)
Keldysh parameter. The validity is restricted by the condition

AE
< .
THEP S BT

(65)

? In the case of atomic ionization this corresponds to the requirement that the maximum applied electric field should be still much
smaller than the characteristic atomic electric field.
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In order to obtain the full picture, it is important to calculate the optimal complex trajectories and
corresponding probabilities also in the small-distance scenario. Looking at equations (32)—(36), we can
eliminate there variables Re v and Im v by expressing

Rev = —zoI's1 (19, Te)s (66)

2
Imv =/ —AE — zI's, (19, 7e), (67)
m

from equation (35). Then we can find from equations (39) and (40)

from equation (34) and

V(tg) = ﬂ tanh(I'tg), (68)
ml’

F, 1
Z(tg, 70 + iTe) = —= |In cosh T'tg — = In f(I'rp, I'7e.)
mlI’ 2
—iarg (cosI'te cosh I'ry +1 sinI'7, sinh I'rp) (69)

that by inserting into equations (32), (33) and (36) leaves us with a system of three equations for three
variables: tg, 79, Te. Solving this system we can determine these variables and find then the corresponding
probability.

However, we can notice that equation (36) actually means that Im v = 0 or/and Rev + Re V(tg) = 0
must be fulfilled. The first option would lead actually again to equations (51) and (52) and then to
equation (53), obtained above for the case when the electron leaves the classically forbidden region before
reaching the opposite contact, that would contradict to the assumption of the small-distance scenario.
Choosing the option Re v + Re V(#z) = 0 and using equations (68) and (69), equations (32), (33) and (36)
can be recast as

I'tg = arctanh s (7e), (70)

[I'7y — arctanh s, (7e)] 51 (7e) + I'7e [vacp — s2(7e)]

1
+ In cosh arctanh s; (7.) — 5 In f(I'r, I'1e) = i, (71)
20

I'7esi (7e) + [arctanh s; (7e) — I'ro] [yace — 52(7¢)]

—arg (cosI're cosh I'ry 41 sinI'7, sinh I'ry) = 0. (72)

In general the system of these three equations has to be solved numerically but we can notice that there is
always a solution with 79 = 0, leading also to #z = 0. This results in

I'7e [vucp — tan(I'7e)] — In cos(I'7e) = i, (73)
20

from which we can find then also 7. Note that this equation actually coincides with equation (41) if we
take there z = d and t = 0. Thus we have actually already analyzed its solutions and illustrated them in
figure 2 for a particular choice of parameters. For d < z. there are two solution branches, whereas it is
actually the second solution which plays the dominating role in this scenario. Moreover, for w < d < z.
where the first solution possesses also the optimal complex trajectory exiting into the classically allowed
region before reaching the opposite contact and merging there with the real classical trajectory z.(t), the
second solution, having the optimal complex trajectory without this property, still leads to higher values of
probability. Other possible solutions of equations (70)—(72), which can be found numerically and cannot
be related to our first and second solution branches, lead to much smaller probabilities than the dominating
solution branch and may be therefore neglected.

Finally, using equation (37) we can find

Fg

ImS =
m 2mI?

[FTe [{'YHCP — tan(l“Te)}2 + Yiep + 1] — tan(FTe)} , (74)
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so that the resulting tunneling probability in the small-distance scenario can be expressed as

F2
Pe = exp {— 0 [FTe('VHCP — tan FTe)z + ’VI%ICP + 1] — tan(FTe)} } . (75)

hEmI?

Dependence of the tunneling probability on the Keldysh parameter is illustrated in figure 5(b) for the
studied half-cycle pulsed driving in comparison with the driving by a FCP with a Gaussian envelope, CW
driving as well as the result that follows from equation (62) (direct tunneling limit). The validity threshold
following from equation (65) is indicated by the gray bar labeled by v’. Note that for large electric-field
strengths, and correspondingly small values of +, the results for the tunneling probability converge to the
direct tunneling limit in all cases. On the double logarithmic scale chosen for figure 5(b) it leads to an
exponential behaviour log,,P = —ael"?°81' (g > 0). This agrees with the corresponding limiting case
result given in [26] (cf p 1797 there) but seems to disagree with some later numerical calculations [43, 50]
used to model related experimental data and showing linear behaviour on the double logarithmic scale,
logio P = - logio v (@', b' > 0), in the limit v — 0. However, the latter calculations are actually based
on the Reiss theory [26] so it remains unclear to us why they do not reproduce the result of the direct
tunneling limit inherent to the Reiss theory (or generally Keldysh—Faisal-Reiss theory) as mentioned above.
The experimental data provided in [43] would not allow to differentiate strictly between the two
dependencies. Concerning the experimental and theoretical data in [50] we do not recognize the underlying
physical reason for a quite abrupt slope change at v ~ 1 indicated there and cannot confirm it by our
theory.

In the discussion of the behaviour of the probability for large values of yyp the crucial aspect is to
know the value of the intercontact distance d. For very large d the probability is always determined by the
first solution and decays rapidly with increase of the Keldysh parameter, though somewhat slower than for
the CW driving and even more slowly than predicted by the direct-tunneling expression. In this
consideration we have to keep in mind the restriction imposed by the condition (65). However, due to the
decrease of the probability to very small values the discussion of the first solution for extremely large values
of yycp has anyway no practical sense. Moreover, for d < 1 nm it is the second solution that plays the
dominating role with much larger probabilities for large vycp, rather than the first solution. At finite d the
second solution has a clear physical asymptotic behaviour for vanishing field strengths, i.e. for yyep — 00 in
the context of figure 5(b). This limiting case corresponds to tunneling via a static rectangular potential
barrier of height AE and width d, as we also illustrate in figure 5(b) for d = 0.6 nm. We see that at such
small gaps the second solution overtakes the first one already at values yyp below 1, determined by the
condition z.(yycp) = d, and leads then to much higher probabilities than the first solution for larger values
of the Keldysh parameter. As a result, the whole dependence of the tunneling probability on the field
strength, converted to the Keldysh parameter, is significantly different from the result taking into account
the first solution only or equivalently the assumption of large d. This has to be kept in mind when
discussing related experiment results similar to whose presented in [43, 50].

3.2. Realistic few-cycle pulse
To model a realistic FCP [65] we use a wave packet with a rectangular spectral shape [69] and a variable flat
phase. The temporal profile determined by

F(t) z/wzF(w)ei‘”dw +c.c., (76)

2t

where the Fourier transform F(w) is constant and can be decomposed into a real positive amplitude F, and
a phase factor e?,
Fo 5,
e
2Aw
Here Aw = w; — wj is the spectral bandwidth of the pulse and ¢ is the CEP.
In this part we limit our consideration to the optimal complex classical trajectory and tunneling
probability, keeping in mind the structure of the quasiclassical wave function discussed in the preceding
subsection. Using equations (76) and (77) in equations (20) and (21) we find

Flw) = (77)

V() = L0 / L [sin(wt’ + ¢) — sin @], (78)
mAw J,  w
, Fy “2 11 1 , "o
Z(t,ty) = / dw — [— cos(wty + @) — — cos(wt’ + @) + (ty — t') sin ¢| . (79)
mAw J,  w |w w
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Figure 6. Dependence of the complex tunneling time #, and the tunneling distance w travelled by the electron under the barrier
(when it does not exceed the distance between the contacts d) on the CEP ¢ of the driving FCP. (a) shows multiple solutions for
7o = Rety corresponding to the field peaks around the FCP center. Red (blue) color is used when the tunneling direction is from
the left (right) contact towards the right (left) contact, determined by the corresponding sign of the electric field. Dashed lines
limit the region, where we always have exactly six solutions being closest to the center of the applied pulse, independent of the
CEP value. (b) illustrates the behaviour of corresponding 7. = Im f,, whereas the lines show the absolute values. The sign,
determined by the tunneling direction, is reflected in the line color. 7. increases with the separation between the corresponding
7o and the pulse center. The dashed line again limits the region with six most relevant solutions. (c) depicts the tunneling
distance w for these solutions. FCP parameters: Fy = 4 eV nm ™!, w, /(27) = 180 THz, w,/(27) = 330 THz; other parameters:
AE =5¢eV.

Substituting these expressions into equations (28)—(30) and eliminating the variable v leads to the following
equation system for the times 7o and 7,

w)
dw sin(wry + ¢)i; (wTe) = 0, (80)
w1
w?
Te [ dw cos(wTy + @)ig(wTe) = Yecp, (81)

w1
with

A
Yrcr = ——V2mAE (82)

0

and i,(x) denoting the modified spherical Bessel functions of the first kind [70]. For each pair 7¢ and 7. we
find the optimal complex trajectory and the tunneling probability determined by

2 ~ F2 Te
ﬁImS = WXM {WécpAwTe + Aw/o [st(1) — 55(7)] dT} , (83)
where
W
si(m) = dw — sin(wTy + ¢) [cosh wT — cosh wTe], (84)
w1 w
w) 1
s(r) = dw " cos(wTy + @) sinh wr. (85)

w1

The behaviour of the solutions of equations (80) and (81) in dependence on the CEP is illustrated in
figures 6(a) and (b) [for the temporal shape of the chosen FCP, see figure 7(a)]. We see multiple solutions in
these figures. Each solution can be attributed to a peak of the FCP. Tunneling takes place at a time close to
the temporal position of the corresponding peak, in the sense that there is a value of 7 being close to that
position (but generally not exactly coinciding with it, as we will discuss below). The absolute value of the
imaginary tunneling time 7. increases monotonically with the distance of the peak from the center of the
pulse as it is changing with ¢. In figure 6(c) for each of the solutions we show the tunneling distance w
travelled by the electron under the barrier, for the case when this quantity is smaller than the distance
between the contacts. We see that w behaves non-monotonically in dependence on the phase. For the six
main solutions, having the smallest values of || and |7.| with respect to the remaining solutions, the
values of w are confined to a relatively narrow interval, which for the selected parameters constitutes
around 0.05 nm.

For a FCP the distance between contacts d with respect to w brings an additional aspect for the resulting
charge transfer. When d is large enough with respect to w the electron might have no chance to reach the
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Figure 7. (a) Temporal profile of the light-induced force F(t) = e£(t) (black line) determined by the applied electric field pulse
&(t), shown for the same parameters as in figure 6 and ¢» = 0. The same plot illustrates the classical trajectories z.(f) originating
from the two main positive peaks. Full (dashed) blue lines are for t > 7¢ (t < 7¢), with the fictitious reflection happening around
t = 7, and the contact boundaries, interrupting the trajectories, being ignored for this plot. (b) Magnified region in the vicinity
of the first positive peak. The blue line shows the velocity of the fictitious/real electron. Neither 7 nor the time moment when
this velocity vanishes coincide with the temporal position of the peak. The difference between 7, and the latter is denoted as
ATy. (c) Dependence of A1, on the CEP ¢ for three main peaks of the pulse. Here N numbers the peaks according to the inset.

opposite contact after the tunneling through the barrier because the electric field changes its polarity after a
certain time and might drive the electron back to the original contact. The corresponding motion is
determined by the corresponding classical trajectory z.(t). In figure 7(a), as an example, we show two such
trajectories originating from two positive peaks being closest to the center of the pulse at ¢ = 7 /2. Whereas
the trajectory belonging to the right peak does not return back to the left contact, the electron appearing in
the gap around the left peak moves a certain distance towards the right contact but then turns around due
to the changed polarity of the field and flies back to the left contact. If the distance between the contacts is
too large the latter electron never reaches the opposite contact. Then, neglecting possible reflections by the
contact boundaries, it does not contribute to the resulting charge transfer. For larger gaps between the
nanocontacts it is thus essential to model not only the tunneling process but also the following dynamics in
the classically allowed region. An example can be found, e.g. in [52]. Here we focus our attention on the
regime where d > w for any of the contributing trajectories but where d is still small enough so that the
tunneling process determines the charge transfer. Before that let us look more closely at the positions of 7
associated with the exit point of the standard complex classical trajectory to the classically allowed region.

In figure 7(b) we zoom into the time interval close to the position of one of the field peaks. We can
observe that the corresponding value of 7y does not exactly coincide with the position of the peak. In the
figure we also show the electron velocity found from the classical trajectory z..(¢). The time when the
velocity vanishes determines the turning point of the trajectory. We see that this time generally neither
coincides with 7 nor with the peak-field position. This fact is remarkable in view of recent suggestions to
associate the tunnel exit time with the time moment when the velocity vanishes that can be determined, e.g.
by the backpropagation of the emitted electronic wave packet [63, 64, 71]. One justification argument
behind these suggestions is that ‘the pure tunneling dynamics in a semi-classical description is characterized
by an imaginary momentum component in at least one degree of freedom’ whereas ‘all momenta are real in
classically allowed regions’. However, in general the ad hoc assumption that the momentum of the electron
during its underbarrier dynamics has a vanishing real part, implied by the ITM, has no justified reason to
hold. As it is in fact happens for the situation of figure 7(b), this momentum runs generally over complex
and not purely imaginary values. Thus at the moment when the electron enters the classically allowed region
and its momentum becomes real, it should not necessarily also vanish. In fact, it depends on the particular
chosen path in the complex time plane. For the standard vertical path, when ¢ changes from t, to

16



10P Publishing New J. Phys. 23 (2021) 083006 S Kim et al

—~
Q
N

-
e
A

3 P
o Pt ~J
o, 3 ey _ AN o
o 105 , Fy=10 eV/nm o g
= o A 1)
= f f 5
_:% 107"k a:
2 Ll s
g 10°F 2
< =
S 10" 2
= 2
D 1070 — non-?ldlab_atlc g
é E ~ quasi-static
10-15 N L ! N 1 N 1 N 1 N 1 s 1 s
-4TT -2T 0 21 4T -3 -2TC -1TT 0 17T 2T 3n
phase ¢ (rad) phase ¢ (rad)

Figure 8. (a) Dependence of the tunneling probability corresponding to a fixed FCP peak on the CEP ¢ for two selected values
of the pulse amplitude Fy = e&,. Other parameters are as in figure 6. The result of the non-adiabatic approach is compared

to the quasi-static approximation. (b) Difference in probabilities resulting from the whole waveform of the FCP. Here we took
Fy = 4eVnm ! and d = 0.7 nm. Color scheme as in (a).

Re(ty) = T, considering the situation of figure 7(b) we can see that the momentum does not vanish at

t = T but acquires a finite real value. The momentum, of course, vanishes if an alternative, non-vertical
path reaching the real time axis at t with z..(¢) = 0 is selected. The discussion on the definition and
meaning of the tunneling time with the related controversy [68, 71, 72], and references therein, is out of the
scope of the present paper but we hope that our findings bring an additional useful insight in this context.

It is interesting to analyze the attosecond time shift A7y between 7y and the temporal position of the
corresponding peak of the electric field. We illustrate this in 7(c). For ¢ = 0 there is no shift for the central
negative [in terms of the induced force F(t) = e£(t)] peak, whereas the electron is emitted later (earlier)
when it might be expected for the proceeding (succeeding) peak. When the CEP ¢ is changed away from
zero the time shift A7, appears also for the central peak, due to the breaking of time-reversal symmetry
about the pulse centre. Generally, the absolute value of AT, grows as the position of the peak moves away
from the center of the FCP, with its sign being positive (negative) for 79 < 0 (79 > 0). It would be
interesting to explore whether this effect is possible to measure experimentally.

Finally, having obtained the solutions for #, based on equation (83) we can calculate the resulting
transition probabilities belonging to each of these solutions. In order to represent the result for all main
solutions simultaneously it is convenient to fix a particular peak of the electric field and the related solution
and then evaluate the dependence of the tunneling probability on the phase in the extended phase scheme,
where the CEP ¢ can take any real values, not limited by the interval (—, 7). The result is shown in
figure 8(a) for two different values of the peak electric-field amplitude. For comparison we also plot the
results corresponding to the quasi-static approximation when the probability is calculated using the
direct-tunneling approach with the static potential determined by the value of the electric field at the
corresponding peak. We see that the quasi-static approximation significantly underestimates the probability,
especially for lower field values. For lower Fy the effect is pronounced already at ¢ = 0 (central peak). The
non-adiabatic enhancement grows with increasing absolute value of the CEP, as the distance between the
peak and the FCP centre raises. Therefore, in order to determine the charge transfer from the whole FCP it
is sufficient to take into account just several contributions coming from the closest peaks to the FCP centre,
with the respective sign determined by the direction of the field.

In order to calculate the resulting probability difference between positive and negative contributions we
limited the consideration to the six closest peaks to the FCP centre, with 7 and 7. limited to the intervals
indicated in figures 7(a) and (b). For each electron emerging from the tunneling region we calculate its
classical trajectory and take its contribution into account only if it reaches the opposite contact avoiding in
the meantime the original contact. For larger values of the distance between the contacts d it happens that
the classical field-induced dynamics plays a major role in determining the overall charge transfer [52]. It is
then insufficient to limit the consideration to optimal complex trajectories zop () and related real
trajectories z.(t). All complex trajectories (or in other words whole emitted electronic wave packets)
emerging at each field peak should be taken into account. It can happen that the part of the wave packet
reaching the opposite contact does not contain the optimal trajectory at all. In order to have a situation
dominated by the tunneling process we consider a configuration when d is close to the tunneling distance w
for all real trajectories but still always exceeds it by a certain amount, so that we may consider only the
wave-packet-like (first) solution (cf section 3.1) neglecting the evanescent (second) solution. In this regime
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we can also neglect the effect of interference between electronic wave packets emitted at neighbouring
electric-field peaks [28, 58]. We take the parameters of figure 6(c) and select d = 0.75 nm.

The resulting probability difference is shown in figure 8(b). For comparison we show also the results for
the quasi-static approximation when the electron would not gain energy during tunneling. As expected, we
see that the non-adiabatic description leads to significantly higher values of the probability difference than
the naive quasi-static approach. We can also nicely observe the modulation of our calculated quantity
determining the total charge transfer induced by the FCP in dependence on the CEP. Thus the direction of
the charge transfer can be controlled by FCP on an ultrashort time scale, in agreement with the
experimental observations and other theory predictions [50—52, 73]. In the studied case the modulation can
be fitted by a cosine function so that the difference of the fit to the calculation result in figure 8(b) is visually
barely distinguishable and we therefore did not plot it separately.

4. Discussion of the relevant system parameters and approximations

Let us at first briefly discuss the relevant parameters of light pulses (cf, e.g. reference [65]). Taking typical
pulses in the near-infrared with wavelength A ~ 1.1 ;m we have the half-cycle duration ~ 2 fs that gives
the relevant scale for 1/T" in case of the considered ideal HCPs. Realistic FCPs can be as short as

Trwnm ~ 6 fs. The peak electric-field strength E, can be estimated from the pulse energy E, ~ 200 p]J
that is focussed to an area of A ~ 20 ym?. Taking into account that the pulse energy can be expressed as
E, ~ % |Eo|? ATewrm, where ¢ denotes the speed of light and ¢, is the vacuum permittivity, we arrive at
Ey ~ 1V nm™!. Between the nanocontacts the field is amplified due to the plasmonic enhancement by a
factor 6, which can take values up to ~ 100 but it is strongly dependent on a particular realized
configuration. The pulse typically also experiences certain phase shifts or/and distortion. In our modelling
we operate with the anticipated field in the gap. In our illustrating examples, we orient ourselves on

Ey =4V nm!and E; = 10 V nm ! inside the gap.

Next, we want to review the parameters of the nanocontacts. We assume that the contacts are made of
gold having the Fermi energy Er ~ 5.5 eV. Depending on the manufacturing method, currently different
sizes of the nanogap width d are possible: from 30—50 nm [51, 74] to 6 nm [52, 73] and further to
subnanometer values in break junctions [50, 75]. The height of the effective energy barrier is determined by
the gap medium or it can be also influenced by the properties of the utilized substrate. For example, we
would have AE & 5.1 eV for a Au/vacuum/Au composition of the nanocontacts and AE =~ 4.2 eV for a
Au/SiO,/Au junction. In our calculations we took AE = 5 eV.

Based on the above parameters of the driving light and nanocontacts we can estimate other important
relations for our study. The relation of the average photon energy to the energy barrier width amounts to
hI'/AE ~ 0.07 so that one of the conditions for the validity of the quasiclassic approach given by
equation (59) can be seen as well satisfied. Concerning the (generalized) Keldysh parameter, assuming
Ep =4V nm ! we estimate yycp = 0.94. This value corresponds to the intermediate regime between
the direct tunneling and multiphoton ionization and we used it for many of our illustrations. For
Ey = 10 V. nm~! we have a 2.5 times smaller value of y;;cp. The other validity condition given by
equation (60) is also well satisfied for all parameter values discussed above.

Further, it is useful to review the characteristic spatial scales of the investigated system. The maximum
tunneling distance for an electron at the Fermi level wgm.x = AE/(|e|Ey) constitutes ~ 1.25 nm taking
Ey =4V nm . It decreases to just ~ 0.31 nm for E; = 10 V nm™'. For the electrons at the bottom of
conduction band in the contacts the maximum underbarrier distance to overcome would be ~ 2.6 nm
(~ 0.65nm) for Ey = 4 Vnm~! (E, = 10 V nm™!). The characteristic length z, defined by equation (42) is
estimated to ~ 2.8 nm (~ 0.7 nm) for E; = 10 Vnm™! (E; =4 Vnm™!) with 1/T = 2 fs.

Beyond the evaluation of the tunneling probability for a single electron at the Fermi level we can
roughly estimate the total number of electrons transferred between the nanocontacts by the applied pulse.
We take the electron density of gold ny, = 5.9 X 10%® m~2, assume that the area of the nanocontacts
constitutes ~ 100 nm?, calculate the Fermi velocity of the electrons vg from Ep as 1.4 x 10° ms~!, and
estimate the number of electrons with energy close to the Fermi level and hitting the boundary in the
temporal vicinity of the field peak as (100 nm?) x (2 fs/10) X (14,/20) X vg ~ 100. Depending on the
resulting probability difference being in the range 10~7—10"7 this gives 2 X 107°-2 x 10! transferred
electrons per pulse. With the standard pulse repetition rate of 40 MHz this amounts to ~ 10°~107 electrons
per second or approximately 10™* — 1 pA. Note that whereas our theory does not allow for a quantitatively
precise evaluation of the magnitude of the transferred charge it provides its dependencies on various
parameters of the system, and that in an analytical or semi-analytical way.

There is one effect neglected in our consideration that potentially can significantly influence the
tunneling barrier and resulting probability. When the electron is outside the metal in a static case it should
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experience the interaction with its own image charge created inside the metal contact. Taking the image
charge into account leads to the modification of the triangular shape of the barrier leading to the so-called
Schottky—Nordheim barrier [76, 77] given by

eZ

Usn(z) = —eEgz — (86)

16megz’

where the factor 167 appears here in place of the usual 47 for the usual Coulomb potential because the
distance from the tunneling electron to the image charge is the double of the distance to the metal, leading
to the additional factor 1/4 in the force and therefore also in the potential. This leads to the lowering of the
maximum height of the potential barrier with respect to AE by [78]

3E
ABg =2,
41eg

For By =4V nm ' (E; = 10 Vam™!) this amounts to ~ 2.4 eV (~ 3.8 eV) reduction and could even
remove the barrier completely for higher fields. However, we have to keep in mind that we deal here with a
charge transfer process that takes place on an ultrashort time scale. In fact, the charge density
reorganization leading to the appearance of the image charge interaction requires some time to be formed,
determined by the inverse plasmon frequency. The image charge effect becomes essentially time-dependent
and can be taken into account, e.g. by using the corresponding velocity-dependent potential [79, 80]. One
can expect that the resulting barrier reduction is considerably lower than following from equation (86)
[79-82]. We think that our quasiclassical approach, due to its time-dependent nature, has a good potential
to be able to incorporate the image charge effect and to ultimately clarify the importance of the dynamic
barrier reduction.

5. Conclusion and outlook

We have presented a quasiclassical theory for the description of tunneling and charge transfer in
nanocontacts that is driven by half-cycle and phase-controlled FCPs. The theory is capable to account for
the dynamics of the underbarrier motion and the energy absorption taking place during this process. Based
on a simple model of an ideal half-cycle pulse we are able to construct analytical solutions for the main
solution branches of the electronic wave function in the classically forbidden region as well as after exiting
out of this region. We have derived the expression for the tunneling probability that was already known
from the ITM in the case of sufficiently large distances between the contacts but now it has been determined
for arbitrary intercontact distances. We have found that for larger intercontact distances the solution branch
corresponding to an increasing electron density inside the barrier and forming an outgoing wave packet
plays the dominating role in most of the classically allowed region whereas the solution branch with the
decreasing electron density inside the barrier eventually forms an evanescent wave that can be neglected,
unless we consider the behaviour in vicinity of the tunnel exit. Here the evanescent-wave solution already
may start to give a larger probability. This is especially pronounced in the strongly non-adiabatic regime
with higher values of the Keldysh parameter, where there is an extended spatial region in which the
evanescent-wave solution dominates over the solution corresponding to the outgoing wave packet with a
classical trajectory. It is one important finding of this work that this effect has to be taken into account if the
boundary of the second contact occurs to be in this region. At very short distances such that the electron
always remains in the classically forbidden region the roles of the solution branches definitively interchange
and the decreasing-density solution branch plays the leading role. Based on these results we were able to
calculate the dependence of the tunneling probability on the strength of the applied field, also in the regime
where a crossover between both solution branches takes place.

Further, in case of the phase-controlled FCPs we used our theory to find analytical solutions for the
complex tunneling times and probabilities which determine the amount of the total induced charge transfer
through the nanogap. In particular, we studied the configuration when the intercontact distance is such that
the outgoing wavepacket solution with corresponding real trajectories can be used to calculate the resulting
probabilities. We compared the turning points of these trajectories with the real parts of the tunneling times
and with the temporal positions of the field peaks. We found that in general all these quantities are
different, with temporal shifts being in the attosecond range for typical parameters. The amount of the
transferred charge and the transfer direction can be controlled by the CEP of the pulse, whereas the values
obtained in the non-adiabatic regime are significantly higher comparing to the quasi-static direct tunneling
approximation.
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One natural extension of the studied problem can be a consideration of a more complex spatial
structure of the tunneling region, e.g. having an additional quantum well/dot inside the tunneling barrier
[83]. In such a case one may expect an intriguing interplay between the tunneling process steered by an
ultrashort pulse and the energy level structure inside the quantum well that should enable an ultrafast
selective population of the levels. In order to treat such a problem, a generalization of our method beyond
the exponential accuracy [28, 84] is probably required, which also represents an important and interesting
task by itself. Finally, an appropriate inclusion of the dynamical image effect [79-82] into the description
might lead to further improvement of our understanding of the light-induced tunneling in nanocontacts.
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Appendix A. Paths encircling singularities in the complex time plane

For the pulse shape as in equation (38), Z(#', ), defined in equation (21) and entering equations
determining fo, is a multivalued function. The value depends on a particular integration path ¢ between f,
and . For real ¥, we can calculate Z(', 1) as a sum of an integral along the standard path J; and an

integral along the closed path § = d; — J, as discussed in the end of section 2.2. Proceeding in this way we
write

Z(t' 1) = 2o / tanh #’dt" + z, j{ tanh ¢’dt”. (A.1)
& B
The integral in the second term can be evaluated using Cauchy’s residue theorem and we get
Z(t 1) =z {/& tanh 7'dt” + 27TiN:| , (A.2)
where the total winding number
N =Y NG, a) (A3)
k

is a sum of all winding numbers N (9, ax) of the path § for each singularity point ay = 3 + kr (k € N). The
remaining integral along d; in equation (A.2) has two parts: one where ¢’ runs parallel to the imaginary axis
from (I'ty, I'te) to (I'7g, 0) and another from (I'7y, 0) to (¢,0). This leads to

I're t
Z(t', 1) = 2o [—i/ tanh(I'ry + 17)d7T +/ tanh(7)d7 + ZWW] . (A.4)
0 FT[]
Evaluating the second integral in the brackets we obtain
I're
Z(t 1) =z {—i/ tanh(I'ry + i7)d7 + In cosh I't’ — In cosh I'ry + 27T.1N:| . (A.5)
0

It is instructive to limit our attention to the imaginary part of Z(#', ;) only, since it is sufficient when we
want to determine £, in the case of optimal trajectories. From equation (A.5) we get

ImZ(t,t) = —2z [Arg n(Tr, I'1e) + 27Tnt0t] , (A.6)
where Arg7n denotes the principal value of the multi-valued argument function arg 7 of a complex variable

U(X)J’) = a(x)}’) + ib(x’)’) (A7)
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Figure Al. Solutions (full points) of the system (A.12) and (A.13) determining the initial complex time t, = 7¢ + i, and
corresponding representative paths (full color lines) in the complex time plane. The cross indicates a singularity point. The
solutions and paths are labeled by 1, defined in equation (A.11), having here the same absolute value as the winding number N
[cf equation (A.3)] but the opposite sign. Solutions with || > 4 are not shown in this figure, just to keep a better overview.
Dashed lines for ny,, = 1 and n,,, = —2 indicate the corresponding standard paths ¢,. Here we used vycp = 0.94.

Figure A2. Solutions (full black points) of the system (A.12) and (A.13) for a wider region in the complex time plane than in
figure A1, including n’ # 0. The solutions on the ordinate axis have always #,,, = 0. The solutions with 79 > 0 are marked by the
corresponding values of 1, (up to ny = 4), whereas for the solutions with the same absolute values of 7 but the opposite sign
also the sign of n; should be flipped respectively. The crosses indicate singularity points. The shown exemplary path belongs to
the solution with n’ = 1, N = 4 and n,, = —3.

with
a(x, y) = cosh x cos y, (A.8)
b(x,y) = sinh x sin y. (A.9)

Argn(x,y) € (— m, 7] can be calculated as

b(x,y) } : (A.10)

Argn(x,y) = 2 arctan [
s In(x, )| + a(x, y)

where [n(x, y)| = \/f(x, y) (positive sign of the root is taken) and f(x,y) = a*(x, y) + b (x, ) is introduced
in equation (48). The integer number ny, in equation (A.6) is given by

e =1 — N, (A.11)

where n' = [I'7/(27)] and [x] denotes here the nearest integer function of a real number x.
From equations (28)—(30) we get then the following equation system for the determination of 7. and 7:

sinh(2T'7y)

e o = Argn(I'ro, I're) + 2740, A.12
Tzf(Fro,Fre) rg (7o, I'7e) + 27 hg; (A.12)
sin(2I're)
_— = . A.13
2f (D70, D7) YHCP ( )
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Figure A3. Tunneling probabilities for solutions with I'T. € (0, 7) (cf figure A1) in dependence on 1, and the electric field
amplitude scaled by a dimensionless factor E,. The probability is determined from equations (17) and (A.15) with
Yucp = 0.94/E, and F} /(hmI®) = 34.7E2, correspondingly. The inset shows the magnified region of larger probabilities where
logyo P is closer to zero. The black horizontal line in the inset indicates the limit-case value for vanishing electric field after
equation (60).

In figure Al we illustrate the behaviour of the solutions of this system in dependence on 7, for the case
when #' = 0. Moreover, for this figure we restrict 't to I't. € (—m/2,7) for a better overview of possible
paths corresponding to these solutions.

In figure A2 solutions of equations (A.12) and (A.13) are shown for a larger range of I'7, including also
the possibility of #' = 0. Selecting an arbitrary solution, we indicate a possible path corresponding to this
solution so that its characteristic features are clear.

For paths that may encircle singularities in the complex time plane, in place of equation (31) at first we
have to use

Im:g = m/% {[Re V(TO + 17') - ReV(to)]z — [ImV(TO + 17—)]2} dr + AE’TC
2 0
(A.14)
+ Imjg{F(t) [Z(t,t0) — Re V(1) (t — tp)] + %[V(t) _ ReV(to)]z} dar.
d

However, at least for the pulse shape given by equation (38), we can find that the two terms in the curly
brackets of the integral on the second line of equation (A.14) lead to contributions having opposite signs
and eliminating each other. Therefore, equation (31) may still be used. It can be recast into the following
form:

) F3 I're
ImS m2 = {[Re tanh(I'ry + i7) —Re tanh(I'ry + il'7)]* — [Im tanh(I'r + i7~')]2} dr
Ey 0 (A.15)
+ YaicpL Te.

Calculating the probabilities P for various possible #, in the complex time plane based on
equation (A.15), we found that all values of #, with negative imaginary part 7. lead to P > 1. All these
solutions have probability densities rising with the distance inside the barrier. They also have a property that
the electron initially moves to the left, away from the barrier, when moving in the complex time plane from
the corresponding f, directly towards the real axis. Such solution branches are unphysical in the context of
the posed tunneling problem and therefore can be ruled out from our present consideration.

For solutions in the upper part of the plane, i.e. with 7. > 0, we found that the maximum value of the
tunneling probability corresponds to the solution with n,, = #' = N = 0 having the standard path d, as a
possible integration path in the complex time plane (see blue path in figure A1). Typically with increase of
the values of |ny,| or #’ the probability values drop extremely rapidly with respect to the standard-path
solution. In such a situation we can justify neglecting all solutions with non-vanishing 7, or/and #’. The
situation changes if the respective probabilities do not vary drastically with respect to the standard-path
solution. This occurs, e.g. when the amplitude of the driving electric field is decreased, resulting also in the
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Figure B1. Behaviour of the multlple solutions of equation (41) is illustrated for the case when the path at t = 0 along the z-axis
across the branch point at z = z is chosen. The positions of several points on this path (numbered by letters (b)—(f)) are shown
in (a). We used vycp = 0.94 leading to z. = z./z, &~ 0.3461, where z, is given by equation (42). For each of the points, the figure
numbered by the respective letter shows —|h(I'ty)| in dependence on I"Re ty = 'ty and I' Im t, = I'7,, where the function
h(T'ty) is given by equation (B.1). Maxima of —|h(I'fy)| occur exactly when h(I'ty) vanishes. Their positions (inside of the red
spots) determine all possible solutions for f, = 7¢ + i7. in the shown range for I'7 and I'7.: in all cases except of (e) there are 4
solutions whereas only 3 solutions are present for (e), which corresponds to the branch point.

correspondingly increased value of vy cp. In figure A3 we illustrate how the probabilities corresponding to
solutions from the part of the complex time plane shown in figure A1 behave in dependence on 7, when
the amplitude of the driving field is varied. We can see that for larger electric fields, with yycp ~ 1, the
change of 7, from 0 to 1 already leads to a drop in the probability value as large as several 100 orders of
magnitude. However, when the electric field is decreased and the value of the probability of the
standard-path (1, = n' = N = 0) solution declines towards the value given by equation (64) the
probabilities of 71y, # 0 solutions in contrast rise. For small enough fields, which for our choice of
parameters in figure A3 correspond to yycp 2, 100, the dependence of P(#,) in the neighbourhood of

et = 0 saturates to the constant level given by equation (64). In this limit there are many solutions
delivering comparable values of the probability. However, within the utilized quasiclassical description there
is no straightforward way to combine the corresponding multiple solution branches taking interference
effects into account. Since we cannot use solely the standard-path solution in this case, the validity of the
whole approach in its form presented in the current paper breaks down. Where would we then set the
validity threshold in terms of the value of vyp? Looking at figure A3 we can argue that this threshold is
observed when the deviation of the standard-path probability given by equation (58) from the value of the
limit-case probability given by equation (64) is comparable with the latter value. Using for the argument
of the exponential in equation (64) that for large yycp we have arctan yucp = 5 — arctan(1/yucp) ~
-0 /7 mcp), we obtain the validity condition (65).

Note that this subtle issue had remained insufficiently clarified in references [18, 56—58], whereas it was
actually addressed in the last published paper of Keldysh [60] based on the Keldysh—Reiss—Faisal approach,
comparable with other quasiclassical descriptions. Moreover the approach of [60] allowed to obtain
appropriate limit case expressions for the tunneling probability. We agree with Keldysh that [60] ‘the weak
field regime seems to be of more academic interest: for such short pulses, the effect is hardly experimentally
observable’. However, we should remark that for us it has been also important to resolve any apparent
unexplained paradoxes, like finite probability values in the limit of vanishing strengths of the driving field
following from equation (64), to ensure the overall consistency of the utilized method. Finally, one should
also mention that whereas the issue connected to multiple solution branches, originating physically from a
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Figure B2. Behaviour of the multiple solutions of equation (41) illustrated similar to figure B1 but now selecting a path around
the branch point located at (z = z., t = 0).

multiple-reflection behaviour of the electron moving in the dynamical potential induced by the field, occurs
for the pulse shape given by equation (38) it may be just absent for other pulse shapes [57, 60].

Appendix B. Branches of the main solution for #,(z, )

Let us illustrate the behaviour of the branches of the main solution for fy = 7 + i7. determined from
equation (41) in dependence on the final position z and time t considered as the coordinates of the
propagating electronic wave packet after the barrier. For the visualization it is convenient to introduce an
auxiliary function

1
z In cosh I't + In cosh T'ty | + tanh T'ty — iypcp (B.1)

h(Tty) = =———
( 0) I't —T'ty | 29

defined as the difference between the left-hand side and the right-hand side of equation (41). Analyzing the
dependence of —|h(T'fy)| in the complex plane for #, we can determine the points where it becomes zero,
which then means finding the roots of equation (41). Moreover, we can study the behaviour of these points
upon varying the final position z and time ¢. In figure B1 we fix the final time at t = 0, corresponding to the
peak value of the driving electric field, and change the position z. Several selected points situated along the
corresponding path in the plane (z, t) and labeled as (b)—(f) are shown in figure B1(a). The behaviour of
—|h(T'ty)| in the plane 7y, 7 at each of these points is then illustrated in the corresponding

figures B1(b)—(f).
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As we noticed in appendix A, the solutions in the lower part of the complex time plane are unphysical
and may be ignored. In figures B1(b)—(f) we observe that there are two main solutions, which are
imaginary for small z. With increase of z these solutions move towards each other along the real time axis
until they merge at z = z.. Then with further increase of z they again split and start to move parallel to the
real time axis away from each other [see also figure 2(a)]. Having the same imaginary part of #;, these two
solutions then lead to the same value of the probability at = 0 and large z [cf figure 2(a)]. In fact, as we
can clearly see from figure B2, these are two branches of the same multivalue solution. The solution
branches go over into each other [see figures B2(a)—(h)] by performing a full turn along a circular path
around the branch point at (z = z., t = 0) [see figure B2(i)].
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