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Relaxation of single-electron spin qubits in silicon in the presence of interface steps
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We develop a valley-dependent envelope function theory that can describe the effects of arbitrary configu-
rations of interface steps and miscuts on the qubit relaxation time. For a given interface roughness, we show
how our theory can be used to find the valley-dependent dipole matrix elements, the valley splitting, and
the spin-valley coupling as a function of the electromagnetic fields in a Si/SiGe quantum dot spin qubit. We
demonstrate that our theory can quantitatively reproduce and explain the result of experimental measurements
for the spin relaxation time with only a minimal set of free parameters. Investigating the sample dependence of
spin relaxation, we find that at certain conditions for a disordered quantum dot, the spin-valley coupling vanishes.
This, in turn, completely blocks the valley-induced qubit decay. We show that the presence of interface steps can
in general give rise to a strongly anisotropic behavior of the spin relaxation time. Remarkably, by properly tuning
the gate-induced out-of-plane electric field, it is possible to turn the spin-valley hot spot into a “cold spot” at
which the relaxation time is significantly prolonged and where the spin relaxation time is additionally first-order
insensitive to the fluctuations of the magnetic field. This electrical tunability enables on-demand fast qubit reset
and initialization that is critical for many quantum algorithms and error correction schemes. We therefore argue

that the valley degree of freedom can be used as an advantage for Si spin qubits.

DOLI: 10.1103/PhysRevB.104.085309

I. INTRODUCTION

Silicon quantum dots offer an attractive platform for scal-
able quantum computing [1]. Two plausible properties of
silicon that make it a suitable host material are the weak
spin-orbit interaction as well as the abundance of nuclear
zero-spin isotopes. These have enabled achieving long re-
laxation [2,3] and dephasing times [4—6] in individual spin
qubits. It has recently been shown that the quantum coher-
ence in silicon spin qubits can be maintained even for high
temperatures above 1 K [7,8]. In order to scale up and build
a quantum network of spin qubits, one promising approach
to couple the long-distance spins is via coherent interaction
with microwave photons [9,10]. While the strong coherent
spin-photon coupling using superconducting resonators has
already been realized [11,12], another possibility to couple
spin qubits is to coherently transport them by tuning the
electric gates. This so-called spin shuttling is investigated for
Si spin qubits from both experimental [13,14] and theoretical
[15] perspectives.

While silicon quantum dots enjoy the properties mentioned
above, they also suffer from one well-known problematic
feature, namely, the sixfold-degenerate valley states in bulk
silicon. In Si heterostructures and quantum dots, a combina-
tion of biaxial strain together with the sharp interface potential
lifts the valley degeneracy and gives rise to two low-lying
states [1]. These two valley states can in principle be used to
encode the quantum information [16-20]. However, for spin
qubits, the presence of the valley states significantly limits
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the qubit lifetime when the valley energy splitting becomes
comparable to the qubit Zeeman splitting. This spin-valley re-
laxation hot spot was first experimentally observed in Ref. [3],
and since then, it has been the subject of numerous studies
[21-26].

In order to properly understand the behavior of the spin
relaxation induced by the valley states in a Si quantum dot,
one needs to have a number of important quantities at one’s
disposal. These include the valley splitting, the intervalley
and intravalley dipole matrix elements, and the spin-valley
coupling caused by the spin-orbit interaction. While the valley
splitting has been thoroughly studied by a number of papers
[27-34], to our knowledge, the works concerned with analyz-
ing the behavior of the spin relaxation have always postulated
that the dipole matrix elements and the spin-valley coupling
are finite quantities, and these are then simply treated as fitting
parameters without considering their microscopic origin. As
we will show in this paper, the valley splitting, the dipole
matrix elements, and the spin-valley coupling do not explicitly
depend on each other. However, they are all strongly influ-
enced by an important common factor: the Si/barrier interface
roughness.

Given the experimental process of fabricating silicon het-
erostructures, the formation of steps and miscuts at the
Si/barrier interface is very probable [25,35]. It has been
shown that the presence of interface steps can severely
suppress the valley splitting [29,32-34]. Furthermore, the in-
terface steps generally break the in-plane mirror symmetry
and therefore one expects that the in-plane dipole moments
in a disordered quantum dot become finite (i.e., nonzero)
quantities. To our knowledge, so far, all of the published works
that use the effective mass theory in analyzing the valley
splitting neglect the corrections to the envelope function due
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to the valley coupling. We argue in this work that using such
a valley-independent envelope function is incapable of deter-
mining the intervalley matrix elements, even in the presence of
interface steps. Here we develop a valley-dependent envelope
function theory in the presence of interface disorder. This
theory then enables us to calculate and analyze the mentioned
important quantities, namely, the valley splitting, the interval-
ley and intravalley dipole matrix elements, and the spin-valley
coupling. We can calculate these quantities for an arbitrary
configuration for the interface roughness as a function of the
lateral size of the quantum dot and the electromagnetic fields.

While the spin-orbit interaction is relatively weak in bulk
silicon, the structural inversion asymmetry and the symmetry
breaking due to the Si/barrier interface lead to both Rashba-
like and Dresselhaus-like spin-orbit interaction. Indeed, it has
been shown that the spin-orbit interaction occurs locally at the
position of the interface, and it quickly vanishes away from
the interface [36-38]. As such, the presence of the interface
steps, in turn, modifies the interface-induced spin-orbit inter-
action. In particular, each time a single-layer atomic step is
encountered at the interface, the coefficient of the Dresselhaus
term must change sign due to the crystal symmetry of silicon
[39-41]. Here we employ a description for the spin-orbit
interaction which is localized at the disordered interface. Our
model describes a three-dimensional (3D) electron and takes
into account the sign change of the Dresselhaus term that
occurs due to the presence of single-layer interface steps.

We proceed by using our theory to find the modifications
to the spin-qubit levels due to spin-valley mixing (SVM) and
spin-orbit mixing (SOM). This enables us to formulate the
theory of spin relaxation in the presence of interface disorder
that involves only a minimal number of free parameters. This
theory can well describe the spin relaxation for all ranges of
the magnetic field including below, around, and above the
spin-valley hot spot (Fig. 1). We consider a simple model
where there are (up to) two interface steps, one to the right
of the quantum dot center and the other to the left of the dot
center (Fig. 2). Using this simple model, we show that our
theory for the spin relaxation can quantitatively reproduce the
results of experimental measurements presented in Ref. [23].
We find that whereas models with a single step cannot quan-
titatively explain the experimental data around the hot spot,
assuming more than two interface steps would give rise to a
similar behavior to what we find with up to two steps.

Having verified that our model can explain the relevant
experimental findings, we consider a crossover from a highly
disordered quantum dot (where at least one step is very close
to the quantum dot center) to a nearly ideal quantum dot
(where both steps are away from the quantum dot center)
and study the behavior of qubit relaxation time. It has been
known that the change in the quantum well thickness due to
interface steps would give rise to a phase shift that reduces
the valley splitting. This renders the spin relaxation time a
device-dependent quantity. Here we show that for certain
interface roughnesses and electromagnetic fields, the spin-
valley coupling vanishes. This has a profound effect on the
qubit relaxation time as it completely removes the valley-
induced qubit decay and, therefore, in this case the spin-valley
hot spot is absent. As a next step, we investigate how the
qubit relaxation time behaves as a function of the out-of-plane
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FIG. 1. The qubit relaxation rate 1/7; as a function of the mag-
netic field for some fixed values for the out-of-plane electric field.
Here for each value of F;, the hot spot (cold spot) is marked by a red
(blue) point and it is additionally highlighted by a flame (snowflake)
symbol for F, = 15 (8) MV/m. Inset: Magnetic field at which the
hot spot and cold spot occur as a function of the electric field. All the
other parameters are the same as given in the caption of Fig. 7.

electric field (see Fig. 1). In our case, this electric field F; is
in turn generated, and can be tuned, by the gate electrodes
surrounding the quantum dot, and it sets the amplitude of
the electron wave function at the interface. Therefore, the
electric field controls the valley splitting, the dipole matrix
elements, and the strength of the spin-orbit interaction. As
such, changing F, completely alters the spin-qubit levels and,
consequently, the qubit relaxation time. Remarkably, we can
show that by properly tuning the electric field, the spin-valley
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FIG. 2. Schematic of a quantum dot with stairlike disordered
interface. The top gates with applied voltages £V are used to trap and
confine a single electron in the silicon layer. The pink area marks the
upper Si/SiGe interface. The single-layer atomic steps have width
ay/4 where ay = 0.543 nm denotes the lattice constant.
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hot spot (highlighted in Fig. 1 by a flame symbol) can dramat-
ically be turned into a “cold spot” (highlighted by a snowflake
symbol) at which the relaxation time is enhanced by several
orders of magnitude, and is additionally first-order insensitive
to magnetic field fluctuations. While controlling the interface
roughness during the fabrication can be a difficult task, tuning
the electric field appears to be more achievable. We show
that even a small proper change of the electric field can
substantially improve the qubit performance by limiting the
valley-induced decay.

On the other hand, electrically tuning the qubit to the spin-
valley hot spot is one possible way for a quick initialization to
the ground state. The ability to initialize the qubit is one basic
criterion for the physical realization of quantum computation
[42], and it also has a crucial importance in performing quan-
tum error correction [43]. Indeed, while the valley degree of
freedom has so far been viewed as a disadvantage for silicon,
we argue that, provided the ability to electrically tune the
electron wave function at the interface, the valley coupling can
serve as a very useful resource for qubit initialization, paving
the way towards salable silicon-based quantum information
processing.

We finally consider the qubit relaxation as a function of
the direction of the magnetic field. Controlling the strength
of the spin-orbit interaction via the direction of the B field is
an interesting subject and has been experimentally studied in
Ref. [44]. Our analysis enables us to thoroughly investigate
the anisotropic behavior of the spin-valley coupling. We find
that for a disordered quantum dot, the spin relaxation time can
have a strong dependency on the magnetic field direction. This
phenomenon was recently noted in an experiment [24]. Here
we provide an alternative explanation by taking into account
the effects that emerge when interface steps are present.

The remainder of this paper is structured as follows. In
Sec. II we develop the valley-dependent envelope function
theory and show how we can calculate the valley splitting
and dipole matrix elements. In Sec. III we discuss the form
of symmetrized interface-induced spin-orbit interaction and
study how in our model the interface roughness influences
the spin-orbit interaction. In Sec. IV we analyze the mod-
ifications to the spin-qubit levels due to spin-valley mixing
and spin-orbit mixing. We further calculate the spin-valley
coupling and study its anisotropic properties. In Sec. V we
present the relations for qubit relaxation rates due to SVM and
SOM caused by electron-phonon interaction and the Johnson
and 1/f charge noise. In Sec. VI we present our results on
the qubit relaxation time and discuss several cases where we
investigate the relaxation as a function of interface roughness,
direction of the magnetic field, and the electric field. Finally,
in Sec. VII we present our conclusions and outlook. The
Appendixes contain further details of our analysis.

II. VALLEY-DEPENDENT ENVELOPE
FUNCTION THEORY

A. Valley-dependent wave functions

In this section we employ the formalism introduced in
Ref. [27] and build on some of the results and methodology
developed in Ref. [34] in order to obtain a valley-dependent

envelope function in the presence of magnetic field and inter-
face steps. We note that the effects of an in-plane magnetic
field as well as interface steps are considered in Ref. [34]
within the framework of a valley-independent envelope func-
tion theory in order to study the valley splitting. However, in
the following we show that using a valley-independent enve-
lope function is not sufficient to study the intervalley dipole
matrix element, as one requires knowledge of the correction
to the envelope function that originates from the coupling
between the two valleys.

In the effective mass approximation, the wave function can
be written as

v) =Y a;e"u(r)wl., (1)

j==%z

where ki, = tko, ko = 0.85%, and ap = 0.543 nm is the
length of the silicon cubic unit cell. Here u,(r) are the pe-
riodic parts of the Bloch functions for the £z valleys. We can
express these functions by a plane-wave expansion,

wez(r) =Y Ce(G)e'ST, )
G

where the sum runs over reciprocal lattice vectors G =
(Gy, Gy, G;). The coefficients in this expansion for the two
valleys are related via the time-reversal-symmetry relation
C_(G) = C;(—G). The wave vectors and their corresponding
co¢fﬁcients C,(G) for Si are studied and given in Ref. [30].
Wy, in Eq. (1) is the valley-dependent envelope function. As
we will see in the following (shown originally in Ref. [27]), in
the absence of interface steps and magnetic field, the envelope
function of the complete ground state at the leading order
contains only the orbital ground state, and it is independent
of the valley state. In this special and ideal case, the valley
and orbital indices are good quantum numbers.

However, particularly in the presence of interface steps,
the envelope functions lll){yz will contain not only the orbital
ground state but also the orbital excited states. Furthermore,
the dependency of the envelope functions on the valley state
also becomes more important. The Schrédinger equation gov-
erning the valley-dependent envelope functions for strained
silicon is [27]

> a;e"HH, 4V, (r) — EYW]_ = 0. 3)

j==%z
Here, V, (r) is the valley coupling parameter [27] that vanishes
everywhere except at the Si/barrier interface, at r = ryy, and
from which we can deduce the valley splitting. The term H,
in Eq. (3) describes the electron confinement. Assuming a
SiGe/Si/SiGe quantum dot with ideal Si/SiGe interface, in
the absence of a magnetic field, we can write H. = H with

2 2
Px 1 22, Py 1 2.2
H() = 2—% + zm,a)xx + 2—’nt + Em,a)yy
p2
+ = —eFz+ U(2), %)
2ml

where m, = 0.19 m, and m; = 0.98 m, are the transverse and
longitudinal effective masses, and w, = h/m,xé and wy, =
h/mty(% are the confinement frequencies along % and 3.
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Following Ref. [34], the out-of-plane potential profile for
SiGe/Si/SiGe reads

U@R)=U0(—z—d) +UpB(z) + U0z —dp), (5)

where Uy = 150 meV is the energy offset between the minima
of the conduction band in Si and Si;_,Ge, with x = 0.3, 4, is
the thickness of the silicon layer (located between —d; < z <
0), and dj, is the thickness of the upper SiGe barrier.

We now perform a perturbation theory in the valley cou-
pling V, in Eq. (3). At zero order, we ignore the valley
coupling and see that, because of the fast oscillations due to
the exponential factor, ¢*i% the contributions from the two
valleys become (nearly) decoupled. As such, from Eq. (3)
we arrive at the Schrodinger equation below for the valley-
independent envelope function:

Hy 1ﬂxyz = wayz . (6)

This equation has been the starting point for many works
concerned with studying the valley splitting, including but not
limited to Refs. [28,30,31,34].

Given the confinement Hamiltonian H,, we can write
for the ground-state envelope function ¥y, 0 = ¥, 0¥y,0¥2,0-
Here, the in-plane envelope functions are trivially given by
the well-known harmonic-oscillator wave functions. The out-
of-plane envelope functions v, , are discussed in detail in
Ref. [34]. In particular, for the ground state we can write

~1/2 _AlCEg),
Voo~ 0 _JAi(=&g)e 0T 220 (g
) Al(=r0) | Ai(—Z — &) 7<0,

while the (normalized) ground-state energy reads
g.o~r—U; ' 8)

Here Ai is the Airy function, Ai’ its first derivative, and
—rg >~ —2.3381 its smallest root (in absolute value). We also
used normalized position Z = z/z, energy &, o = €, 0/¢€p, and
potential Uy = Uy/€q for which the length and energy scales
read, respectively,

72
©= |:2mleFZi|

For later use, we note that by substituting Eq. (8) into Eq. (7)
and expanding €, around ry, we find, for the ground state at
the interface position at the leading order,

V0(z =0) = ek, /Up. (10)

As noted in Ref. [34], we emphasize that Eqgs. (7) and (8), and
therefore Eq. (10) as well, are valid provided that the ampli-
tude of the envelope function at the lower barrier/Si interface
is negligible. Assuming the thickness of the Si layeris d, = 10
nm, F, 2 2 MV /m validates the assumption of neglecting the
lower interface. Throughout this paper, we consider circular
SiGe/Si/SiGe quantum dots where the relevant value for the
electric field is typically F, = 15 MV/m [28,31]. As such,
neglecting the lower interface is well justified. In Ref. [34]
it is also discussed in detail how to find the excited states of
the out-of-plane electron motion V. ,>; and E ,>;. Knowing
the excited states is essential to carry on with our analysis, and
we take them as given quantities in this paper.

1/3 2

€) = .
2le(%

©))

Let us now consider the general case where we take
into account the valley-coupling parameter V,(r), and allow
the presence of interface steps and an in-plane magnetic
field, B), = (B, By, 0) = B(cos ¢3, sin ¢og, 0). For simplicity,
throughout this paper we assume that the interface steps are
all parallel to the § axis. We further assume there are two
single-layer interface steps located at the left and right sides
of the dot center, at x;, < 0and x;zx > 0, as depicted in Fig. 2.
As we show in detail in Appendix A, within the first order in
the perturbation, the valley-dependent envelope function from
Eq. (3) for the ground (¢ = 0) and the first excited (g = 1)
valley-orbital states reads

WED =y o+ W+ g (11)

Here, for the correction to the envelope function due to the
presence of an in-plane magnetic field B;|, we find the similar
result as presented in Ref. [34],

WH = _inwx,Owy,l ZanWZ,n
n=1

+ By 1 V0 D BuVien — BBy 191 ¥z0. (12)

n=1

The valley-dependent correction to the envelope function due
to the presence of interface steps and the valley-coupling reads

U =Y D Y, (13)
(m,n)7(0,0)
where the coefficients are related via the time-reversal-
symmetry relation, ¢,;5% = [cns'?T*.

The exact definitions of the perturbative coefficients used
when writing ¢,/* and Y% and for their numerical cal-
culation are given in Appendix A. In Tables II and III of
Appendix A we show an example for the obtained values for
the perturbative coefficients in a disordered quantum dot with
realistic parameters. We note here that, as shown in Ref. [34],
in a Si/SiGe quantum dot and at the realistic value of F, = 15
MYV /m, there are only three out-of-plane excited states with
€n.; < Uy (the excited states energies are shown in Table II).
Therefore, in the summation over n in Eqgs. (12) and (13),
we can set ny.x = 3 as the cutoff. Moreover, we find that by
taking up to four in-plane excited states, the coefficients C,jf,;(q)
in Eq. (13) substantially decay. Therefore, we set my,x = 4 as
the cutoff.

Having found the valley-dependent envelope function at
the first order in the perturbation, we also find for the valley
splitting

ES;S _ E(q:O) _ E(f{:]) — 2|A‘lﬁs , (14)
in which we have
A(lns = Vv / EiZikOZSim(-xa Z)szyz,()d:;r’ (15)

and, therefore, the valley phase reads ¢, = arg[ASS].
In Appendix A we show in detail that the parameter V, reads

eF.z 1 koz !
V, = —iCo 1000<1—[1——~+i°—f’] ) (16)
2ko 200 /O,
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FIG. 3. Amplitude squared of the envelope function for the (a) ground and (b) excited valley-orbital state in the x-z plane, | W, >0 (x,y =
0,2)|? and W >Y=D(x, y = 0, z)|2. Probability density of the (c) ground and (d) excited valley-orbital state, Py = (v@=0|p@=0) and P, =

xyz,0

p@=D|p@=D) "in the x-z plane. The results shown in all panels have the unit of 1/nm3. Here we set B = 0, x;, = —0.95x, x,;r = 0.3xo,
p p

hiw, = 3.9 meV (which gives xo = /li/m,w, >~ 10.14 nm), and F, =

where Cy = ) C;(G)C_(G) is determined from the details
of the periodic parts of the Bloch function, 1y (7). Based on
the atomistic calculations performed in Ref. [30] for silicon,
it is reported in Ref. [34] that Cy >~ —0.2607. The interface
function Siy (x, z) vanishes everywhere except at the interface,
and for a disordered quantum dot within our model it reads

Sm(x,2) = 8(z+ ‘;—")em —x)
+8(2)0(x — x,L)0 (k. — x)
+5<z — ‘Z—")e(x —Xp). (17)

We can now also obtain the full valley-orbital wave func-
tion from the effective mass theory. Let us first define the pure
valley states,

| 2) =t (MW, (18)

xXyz

where ¢ = 0, 1. Using these as well as Eq. (1), the valley-
orbital wave function, up to a global phase factor, can be
written as

=) = %{I +20) —e =20, (19

|1)(q:1)> — %“ +Z(1)> +e*i¢u| _ Z(1)>}' (20)

In Figs. 3(a) and 3(b), we show the amplitude squared of
the ground and first excited envelope function, |\l’;;§’(”:0)|2

and |\IJ$§’(q=1)|2, in the x-z plane for a disordered quantum
dot. The coefficients CI,Z;,(‘FO) and c,‘,tf;,(q:]) obtained for this

disordered quantum dot are shown in Table III in Appendix
A. As can been seen from Fig. 3, due to the presence of
the interface steps, the two envelope functions lack mirror
symmetry along %. Furthermore, the envelope functions of the
ground and excited states are different from each other. This,
in turn, causes the intravalley and intervalley dipole moment
along X to become nonzero. We study this in detail in the
following section. We have also shown in Figs. 3(c) and 3(d)
the probability density of the ground and first excited valley-
orbital state in the x-z plane. Here we used Ref. [30] in finding
the periodic parts of the Bloch function, uy(z). All wave
functions in Fig. 3 are shown with their actual aspect ratio, and

15 MV/m (which gives rise to zp ~ 1.4 nm).

the fact that the out-of-plane confinement is much stronger
than the in-plane conferment is clearly visible. The assumed
locations for the interface steps for Fig. 3 are x;;, = —0.95x¢
and x;g = 0.3x9. We note that by using this specific choice
for the location of interface steps, we were able to fit some
experimental data for the spin-qubit relaxation time originally
presented by Ref. [23], as we discuss in Sec. VI (see Fig. 7).

B. Dipole matrix elements

We now turn to consider the dipole matrix elements be-
tween the two low-lying valley-orbital states. Our objective
here is to study how the interface roughness, the dot lat-
eral size (which sets the in-plane orbital splitting), and the
electromagnetic field influence the dipole matrix elements.
Using Eqgs. (19) and (20), for any operator O we can write

o)
= 3{(+2V101 +29) — (=101 = %)
— e (472010] — 2O + e (—z V0] + 2O,
@1)

and

(v(q)|0|v(q)> — %{<+Z(q)|0| _|_Z(q)) + (_Z(q)|0| _ Z(q)>
+ €7i¢1’<+Z(q)|0| _ Z(q)>
+ (=210 + 7). (22)

We note here that as long as the dipole matrix elements are
concerned, the last two terms in both of the above equations
are negligible; this is due to the fast-oscillating factor of ¢*%%o?
inside the integrand of those terms. We then immediately see
that if one starts from a valley-independent envelope func-
tion theory, Eq. (6), the intervalley dipole matrix element,
Eq. (21), vanishes even in the presence of interface steps (it
is straightforward to verify (+z|r|4+z) = (—z|r|—z) in this
case; note that the ¢ index is naturally not relevant within the
valley-independent envelope function theory).

However, using the valley-dependent envelope function
theory that we developed earlier in this section, we are now
able to calculate both the intervalley and intravalley dipole
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FIG. 4. The intervalley and intravalley dipole matrix elements
defined by r;; = (v@="|r|v@=)) as a function of the position of the
interface steps located at x,z. Inset: Valley splitting as a function of
x,r. Here we set all the other parameters to be the same as given in
the caption of Fig. 3.

matrix elements. The x dipole matrix elements read (see
Appendix B for details)

’ .x/ _ ’
(v(q)|fc|v(q)> — %Im[cl,g(tﬁ + Ctg(q )], (23)
(@12 @) = V2xiRe[c] 5], (24)

while the z dipole matrix elements at the leading order become

3
<v(l])|2|v(q’)> — Zlm[c&i(’]) + C(J)rj;(q )]sm (25)
n=1

3
(V@2 @) = 59+ 2 ) " Re[cgs @ ]sa, (26)

n=1

where in the above relations g # ¢’ and we defined s, =
fj;o Y. 0¥, ndz. Given that the z intervalley dipole matrix
element is entirely originating from the coupling to the out-
of-plane excited states, we conclude that generally this matrix
element is very small due to the strong out-of-plane confine-
ment in quantum dots. On the other hand, we see that the
dominant contribution to Eq. (26) only depends on ;. This
indicates that the z intravalley dipole matrix element is only
slightly influenced by interface roughness.

In Fig. 4, we show the obtained dipole matrix elements
from Eqgs. (23)—(26) as a function of the position of the step
located at x;g whereas we fixed x;;, = —0.95xp. As expected,
we observe that the z intravalley dipole moment remains
nearly constant when changing the step location while the z
intervalley dipole moment is always very small. We observe
that for x,r 2 xo the dipole moment x;; starts to saturate to a
finite value whereas the dipole moments xyy and xo; decrease
much faster and nearly vanish by placing x,g far away from
the quantum dot center. The saturation observed in the be-
havior of x;; can be attributed to the presence of the other
step at x, . In the presence of the stairlike interface steps as
considered in our model (see Fig. 2), the silicon quantum well

is thicker at the right side of the quantum dot. As such, it
is energetically favorable for the electron wave function to
shift towards the right side of the quantum dot, as observed
in Fig. 3. However, since the valley-orbital excited state ¢ = 1
has higher energy than the ground state, the wave function
has further spatial spread within the quantum well compared
to the ground state, and particularly the excited state envelope
function has a larger amplitude at x, . In the inset of Fig. 4,
we show the valley splitting, Eq. (14), as a function of the
position of the interface step located at x,g. The suppression
of the valley splitting due to the presence of interface steps is
discussed in detail in Ref. [34].

In Appendix B we present further details on how to arrive
at the relations for the dipole moments we presented in this
section. In addition, in Fig. 10 we show the in-plane dipole
moment xo; as a function of the positions of xg and xg.
Within the parameters used in Fig. 10, we observe that |xq|
can be as large as 2.4 nm. Furthermore, in Fig. 11 we analyze
the dipole moments as a function of the out-of-plane electric
field and the in-plane orbital splitting. In the current literature,
the values reported for the in-plane dipole moment found from
fitting to experimental data are xo; >~ 1-2 nm [3,21,26] which
is well in agreement with the values that we can directly
calculate using our analysis.

III. INTERFACE-INDUCED SPIN-ORBIT INTERACTION

The interface inversion asymmetry gives rise to a Rashba-
like, Hg, and a Dresselhaus-like, Hp, spin-orbit interaction
[36]. For an ideally flat quantum dot with the upper Si/SiGe
interface at z; = 0 we have

HE = yr(pyor — pe0y)8(2), 27)

ngeal = VD(Pxe - pyay)(S(Z), (28)

where o,y are Pauli matrices and yg(p) are 2 x 2 matrices in
the two-dimensional valley space. Here the lower interface is
neglected since, due to the electric field, the amplitude of the
wave function is negligible, as discussed in Sec. IT A. Note that
the presence of the § function in the above equations is to en-
sure that the spin-orbit interaction quickly vanishes away from
the interface. This has been the justification in some works to
integrate over the out-of-plane degree of freedom and con-
sider the spin-orbit interaction only for two-dimensional (2D)
electrons. In this case, the 2D spin-orbit coefficients become
a function of the applied electric field and this dependence is
found to be linear for both the Rashba and Dresselhaus terms
[38,45].

Here we aim to take into account the influence of inter-
face roughness on the spin-orbit interaction. As such, we
keep considering the spin-orbit interaction for 3D electrons.
In the presence of the interface steps, the 3D Rashba and
Dresselhaus-like spin-orbit terms, Eqgs. (27) and (28), have
to be generalized to include the interface function Siy(x, z),
given by Eq. (17) in our model, instead of the é function. We
note that in general the momentum operator may not commute
with the interface function, [py(), Sin(r)] # 0. Therefore,
symmetrization of py(,) and Sjy is required. Such symmetriza-
tion is analogous to the one performed in systems where, due
to the local disorder, the coefficients involved in spin-orbit
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TABLE 1. The coefficients for the intervalley and intravalley
spin-orbit interaction. The terms ag and «p are introduced in Eq. (31)
and their values are reported from Ref. [38].

Intervalley Intravalley
ag (enm?/h) 1.5x1073 0.7x1073
ap (enm?/h) 97.8x107 30.6x107°

v8 (neV nm?/h) 2.25 1.05
v) (ueV nm?/h) 146.70 45.90

interaction are dependent on the in-plane coordinates [46,47].
Moreover, we note that, due to the crystal symmetry of silicon,
a vertical shift of the interface location due to a single atomic
step, z; — Z; + ap/4, is equivalent to an in-plane rotation by
/2. This, in turn, indicates that the Dresselhaus term must
change sign under such transformation whereas the Rashba
term remains the same [39-41]. We therefore write, for the
symmetrized spin-orbit interaction in the presence of interface
steps,

1
Hp = EVR{PyUx — Px0y, Sint(¥, 2)}, (29)

1 4z
Hp = 7 ¥p cos (a—>{pxox — pyoy, Sim(x, 2)}. (30)
0

Here {B, C} = BC + CB is the anticommutator and the factor
of cos(4mz/ay) in the Dresselhaus term ensures the necessary
sign change caused by a single-layer interface step.

We note that the above forms for the spin-orbit interaction
are aligned with the observation that the spin-orbit interaction
is sample dependent, as the matrix elements of the Rashba
and Dresselhaus terms, (V@ |Hgp)|v@"), depend on the form
of the interface function Sj,; that can vary across different
samples. To proceed, we take the coefficients to be yg = Aoy,
and yp = AoyDO for which we consider Ay as a fitting parame-
ter and we use the theoretical analysis of Ref. [38] to extract
the coefficients y,? and yg (that are defined for 3D electrons).
This reference applies atomistic calculations to an ideally flat
Sip.7Geg.3/Si/Sip7Geg 3 heterostructure and it finds

Vi) = YRo) f V2 08(2)dz = arp)F.. @31

Using Eq. (10) for the amplitude of the envelope function
at the interface together with the above equations, we find the
Rashba and Dresselhaus coefficients of the spin-orbit interac-
tion presented in Table I. We note that the fitting parameter
Ap does not need to be the same in the Rashba and Dres-
selhaus terms. However, here we assume this for simplicity,
and we show in Sec. VI that this simplified model can suc-
cessfully match experimental measurements. Furthermore, we
note that, similar to the theoretical prediction in Ref. [38],
experimental measurements also indicate that the Dresselhaus
term is much stronger than the Rashba term, yx < yp [39,44].

IV. SPIN-QUBIT LEVELS

The logical states of an ideal spin qubit should contain only
the spin-down state at the qubit ground state and the spin-up
state at the qubit excited state [48]. However, due to the valley

and orbital excitations and the spin-orbit interaction, the qubit
logical ground state acquires another component including the
spin-up state and, likewise, the logical excited state acquires
a component including the spin-down state. This, in turn,
enables qubit relaxation due to the spin-conserving electron-
phonon interaction as well as the Johnson and 1/f charge
noise.

Here we consider modifications to the spin-qubit levels due
to the SVM as well as the SOM. In particular, it has already
been shown that when the Zeeman energy E, = gupB and
valley splittings coincide, the spin-valley mixing gives rise
to a hot spot at which the qubit relaxation time is substan-
tially reduced. However, at higher magnetic fields where the
Zeeman energy becomes sufficiently larger than the valley
splitting, the dominating contribution to the qubit relaxation
turns to be due to the spin-orbit mixing. In this section, we
use our findings for the valley-dependent envelope functions
as well the interface-induced spin-orbit interaction to calculate
the corrections to the spin-qubit levels due to both SVM and
SOM. This, in turn, enables us to study the qubit relaxation as
a function of interface roughness as well as the electromag-
netic fields.

A. Qubit-level modification due to SVM

Here we assume that the Zeeman energy is much smaller
than the orbital splitting so that it is sufficient for us to
only consider the two low-lying valley-orbital states given
by Egs. (19) and (20). We then consider only the following
unperturbed states:

1) = [ve=2, 1),
13) = =, |,

The spin-orbit interaction couples the above states to each
other and, therefore, it modifies the qubit levels. To find
the modified states, often in the literature a 2D spin-orbit
interaction is employed, and it is then argued that p, =
(im; /R)[H,, x] (and similarly for p,) [3,21]. Based on this, one
arrives for intervalley matrix elements at (v4=D|p,[v7=0)) =
(im Eys/R)x19, where the dipole moment is treated as a free
parameter. We stress here that this approach is valid only
in the absence of a magnetic field. Furthermore, as noted in
the previous section, in the presence of interface roughness,
it is appropriate to use Eqs. (29) and (30) for the spin-orbit
interaction in which the presence of the interface function Sy
prevents the use of the above commutation relation. Using
the valley-dependent envelope function [Eq. (11)], we are
now able to calculate the matrix elements of the spin-orbit
interaction, A;; = (i|Hr + Hp|j), as a function of the inter-
face roughness and the electromagnetic fields. We find for the
intervalley coupling (see Appendix C for details)

12) = =0 1),
[4) = [v@=D 1), (32)

Az = —iygcos Pppg. — iyp sin ¢pg.
+ Y& sin ¢y (B, fg cos pp — B, fy sin ¢p)
+ v sin ¢, (B, f sin ¢p — B, f,, c0s ¢p), (33)

and A4; = —Aj,. For the intravalley coupling we find
Aoy = i(1 + cos ‘pv)[yR(Byfﬁ cos ¢B - BXfOt sin ¢B)
+ v (B, f sin ¢z — B, f, cos ¢p)], (34)
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FIG. 5. The intervalley spin-valley coupling A3, (¢p) for various
directions of the magnetic field as a function of the atomic step at xg.
Here we fixed x;, = —0.95x,. Inset: Intravalley spin-valley coupling
Ay (¢p) as a function of the direction of the magnetic field. Here we
set x;, = —0.95xp and x,g = 0.3x. For both panels we assumed B =
1 T. All other parameters are the same as used in Fig. 7, in particular
Ap =8.1.

and A4z = Aj;. We recall here that coefficients of the spin-
obit interaction, yg and yp, are valley dependent (see Table I).

The definitions of fu(s), fy(s)> 8c» and g, are given in
Appendix C. We note that all of these terms are real quantities;
the terms with (without) the prime are due to the Dressel-
haus (Rashba) interaction, and while f,g) and fu;( p) originate
from the magnetic-field-induced coupling between the (unper-
turbed) orbital ground state to the out-of-plane excited states,
gc and g, originate from the presence of interface steps and the
valley coupling. Therefore, g. and g. involve coupling of the
orbital ground state to both in-plane and out-of-plane excited
states.

Given Egs. (33) and (34), we realize that the intervalley
coupling Az, is in general a complex quantity whereas the
intravalley coupling is purely imaginary. However, in a cir-
cular quantum dot when the direction of the magnetic field
is ¢ = /4, one finds Ay} =0 while Az, X iygge + iVpg.
becomes purely imaginary. Remarkably, in this case, and for
certain configurations for the interface steps, the intervalley
coupling can vanish. This happens when g, = —(v&r/¥p)gc
which is possible due to the sign change in the Dresselhaus
term caused by single-layer atomic steps. As we show later in
Sec. VI, extinction of the spin-valley coupling has a profound
effect on the qubit relaxation as it completely removes the
valley-induced qubit decay.

In Fig. 5, we show the intervalley coupling for various di-
rections of the magnetic field (at B = 1 T) as a function of the
location of the step at x;r. The vanishing of Az (¢p = 7 /4)
at a certain position for the interface step is clear in the figure.
Moreover, we observe that the Aj, is strongly anisotropic.
This happens since the Rashba spin-orbit interaction is much
weaker than the Dresselhaus spin-orbit interaction, yg < yp,
together with the fact that the out-of-plane confinement is
much stronger than the in-plane confinement so that for all

Energy
16_<o0

1)
>

E’us/guB B

FIG. 6. Level diagram of a single-electron silicon spin qubit in
the presence of SVM. The dot-dashed line highlights the magnetic
field at which the hot spot occurs. The dotted arrows show the decay
channels made possible by the spin-valley coupling As,. The decay
rates are studied in Sec. V.

relevant values of the magnetic field, B, f,, Byfp < g. and
B.f,. Byff; <« g.. In the inset plot in Fig. 5 we show the
intravalley coupling A;; as a function of the direction of the
magnetic field at B = 1 T for given positions of the interface
steps. Since Aj; solely originates from the coupling to the
out-of-plane excited states, for a disordered quantum dot, we
observe that in general it is much smaller than the intervalley
coupling, As;, and it vanishes in the absence of the magnetic
field. As such, we neglect the intervalley spin-valley coupling
in the following analysis. In Appendix E we explicitly show
that neglecting A, is well justified.

This enables us to obtain the following simplified relations
for the modified qubit levels by only considering the coupling
between states |1) and |4), and between |2) and |3),

. 1 ;
i) =[5 -

~ l—a_ 1 _ .
|z>=\/ = |2>—\/ T pmiraly) 36

l—a+

14), 39

2 2
- 14+a_ 1—a_ —iarel A
13) = 3 12) + 7 ¢ 23), (3D

in which ay = 8./,/8% + 4|A3 |2, 81+ = E, + E,. To arrive
at the above relations, we have neglected the coupling between
states with the same spin direction (e.g., the coupling between
[1) and |3)). It is easy to show that the corrections to the qubit
levels due to such same-spin couplings result in a subleading
contribution to the spin relaxation.

For the low magnetic fields where §_ < 0, the qubit logical
excited state is |2), whereas for higher fields at which _ >
0 the qubit logical excited state is |3) (see Fig. 6). In both
cases, the component of the qubit excited state including the
state |3) enables the qubit relaxation. Likewise, the component
including state |4) in the qubit ground state opens a decay
channel. Note that these components are present only if the
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intervalley coupling is finite (A3, # 0), while the coefficient
of state |3) in the qubit excited state reaches its maximal value
at B = Evs/gMB-

This condition defines the spin-valley hot spot at which the
qubit relaxation time is severely reduced. This is well stud-
ied in several experiments [3,22-25] while the excited states,
Egs. (36) and (37), are also already given by a number of pre-
vious works [3,8,21,22,26]. However, in sharp contrast with
previous works where the spin-valley coupling A3, has been
treated as a fitting parameter, the valley-dependent envelope
function theory that we developed earlier in Sec. II enabled us
to calculate Aj; as a function of the interface roughness, and
study its anisotropic properties.

B. Qubit-level modification due to SOM

We now turn to study the corrections to the qubit levels
due to the coupling to the orbital excited states induced by
the spin-orbit interaction. The SOM becomes important at
sufficiently high magnetic fields when the coupling between
the levels |1) and |3) and the orbital excited states dominate
over the intervalley couplings. Moreover, at the leading order
we can also neglect the corrections to the orbital states due to
interface steps. We then find the modified qubit ground and
excited states due to SOM,

18) =10, {) +c1lle, 1) + cally, 1), (38)

&) =10, 1) +c3l1x, ) +cally, |). (39)

Here the unperturbed orbital states, i.e., in the absence of
spin-orbit interaction and assuming two valley states are de-
generate, can be written as

0) = €Uy v 0¥y.0¥2.0s (40)
L) = ™ uy Y 1¥y0Y20, (41)
11,) = €™ %uy Y 0¥y 1 ¥z 0 (42)

and the coefficients c; to ¢4 are presented in Appendix D. We
note that the coefficients ¢; and ¢, are proportional to (fiw!, +
E;))~' and (ho;, + E.)~! and, therefore, they decrease with
increasing magnetic field. However, c3 and ¢, are proportional
to (fiw, — E;)”" and (iw}, — E;)™" so that the spin-down com-
ponent of the qubit excited state grows when increasing the
magnetic field (for all practical values of magnetic field).

V. QUBIT RELAXATION

Having studied the modifications to the spin-qubit levels
due to SVM and SOM in the previous section, we now turn to
study the qubit decay rate. We consider the relaxation due to
the electron-phonon interaction as well as the Johnson noise
due to a lossy transmission line and the 1/ f charge noise.

A. Relaxation induced by electron-phonon interaction

As silicon has a nonpolar and centrosymmetric lattice,
there is no piezoelectric interaction. However, the deformation
potential is common to all semiconductors, and it gives rise to
an energy shift of the electronic states in the presence of lat-
tice deformations. The electron-phonon deformation potential

interaction can be described by the following Hamiltonian,
HL"Ph = Hc{-ph + Het,-ph’ (43)

where the contributions from the longitudinal and transverse
phonons are

eph 2:

(Eg + B, cos ) )

2/)51‘/ vy
X (bg1 — b*_qJ)e“", (44)
=—iE, cos 8, sin 6,
He ph Z 2ps1 Uy ! 7
X (b + b, e, (45)

respectively. Here, the phonon wave vector is q =
q(cos ¢, sin 8, sin ¢, sin 6, cos 6,), ps = 2330 kg/m? is
the mass density of silicon, V is the volume, the deformation
potential strengths are E; = 5 eV and E, = 8.77 eV, and the
sound velocities for silicon amount to v; = 9330 m/s and
v, = 5420 m/s [49].

We now use Fermi’s golden rule to calculate the decay
rate. We start by considering the spin-valley mixing and also
use the electric dipole approximation ¢4" =~ 1 + iq - r in the
following analysis. We find for the qubit relaxation rate

5
SVM.e-ph _

1) =1

s(N(E) + D(xg1° L + |21°L),  (46)
47 psi
where N(E;) = (%/*" —1)7!, and rp; = (fIr[i) (r =x,2)
are the dipole moments between qubit states. Given the mod-
ified qubit states due to SVM discussed in Sec. IV A and
the intervalley and intravalley dipole moments we found in
Sec. II B we can readily calculate the dipole moment between
the qubit states as a function of the quantum dot parameters
(see Appendix E for details). We also defined

172 4 2 18
IX——[ T3,+—Edau+—s§}+— g, @D

T35 35 v/ 105

172 4 2 14
I =—|Z824+_-8,8,+ =82 g2 48
¢ u7[3 a T 5Rast g }Jr R

As mentioned in the previous section, below the spin-
valley hot spot where §_ < 0, the qubit logical excited state
is | f) = |2), whereas above the spin-valley hot spot, the qubit
logical excited state is | f ) = |3). In addition to the |3) — |1)
relaxation in this case, there is an additional decay through
I3) — |2), and we can again use Eq. (46) to find its corre-
sponding decay rate by replacing E, by §_.

Let us now study the relaxation due to spin-orbit mix-
ing for which the qubit levels are given by Egs. (38) and
(39). We note that, as the magnetic field becomes larger, the
electric dipole approximation becomes less accurate due to
the phonon-bottleneck effect [49]. Therefore, we retain all
multipoles and find for the relaxation rate

E3
SOM, e-ph z
o = ——=——(N(E,)+ 1
&)1 8n2psih4( (E)+D
—~2 - —~2 -2
E5ly+28,E,L+ By, B
d u u u
x ( 3 + 5 ) (49)
l t
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in which we defined

I, = |cT+C3|2/d¢q/d9q sin 6, cos” 0, | (1,]¢'910)|?

+ |c§+C4|2/d¢q/d9q sin 6, cos" 6, (1,14 |0)|?,
(50)

J=|ct +C3|2/d¢q/d9q sin® 6, cos” 0, (1,]€"¥™|0)|?

+1¢3 +C4|2/d¢4/d94 sin’ 6 cos” 0, [(1,]¢'4"|0) 2,
(D

where q;) = %(cos ¢q sin 6, sin ¢, sin b, cos f;). In the

definitions of [, and J given above, the term proportional to
[(cT + ¢3)(ch + c4)| is absent; this is due to the fact that this
term vanishes when integrating over ¢,. We also note that in
order to obtain the formal definition of the 7} time where both
relaxation and excitation are possible, we substitute N — 2N
in Egs. (46) and (49).

B. Relaxation induced by Johnson noise and 1/ f charge noise

The Johnson noise is caused by the electromagnetic
fluctuations in an electrical circuit. Such electromagnetic fluc-
tuations, in turn, are generated by the thermal agitation of the
charge carriers [50]. In particular, the electron reservoir used
for loading and unloading the quantum dot is a relevant source
for the Johnson noise [22,25]. The electric noise spectra for
such a lossy transmission line (LTR) is studied in Ref. [25]
and it reads

1 1 ho
T (w) = —Dyg—Hh th . 2
Sg(w) 205 Vo co T (52)

Here, we defined Dy = [ 2 J/RJ/C in which [ is the length
scale between the source and drain, R and C are the resistance
and capacitance per unit length, and 7;; is electron temperature
in the reservoir. We can consider Dy as a fitting parameter
whereas T is assumed to be known from experiment.
Another possible electric noise is the 1/f charge noise
that is generally known to originate, e.g., from the fluctuating
two-level systems in the vicinity of the Si quantum well. The
electric charge noise spectra can in general be written as

S
S (@) = w—i, (53)

in which S, determines the power spectral density at 1 Hz and
the exponent « is device dependent and it is typically reported
to be between 0.5 and 2 [51].

Given the electric noise spectral function from the Johnson
noise and 1/f charge noise, we can calculate the resulting
qubit relaxation rate by using

477 ¢?
2

Ty = —5-Se@) Y 1FIrlD P, (54)
J

where Sg can denote either the Johnson or 1/f noise power,
or a combination of both, and where the form of the initial
and final states, |i) and |f), depends on whether we consider
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FIG. 7. Qubit relaxation rate 1/7; as a function of magnetic
field. Here the step positions are assumed to be at x; = —0.95x,
x;r = 0.3x9. The violet solid curve describes the total calculated
1/T;, whereas the other curves indicate the contributions due to
electron-phonon interaction (yellow dot-dashed and dotted) and the
1/f charge noise (red dashed and dot dashed). Experimental data
points from Ref. [23] are shown as black circles. Following this
reference, we set ¢p = /4, hw, = 3.9 meV, and T,; = 115 mK.
Inset: Comparison with Johnson instead of 1/f charge noise.

spin-valley mixing or the spin-orbit mixing, as discussed in
Sec. IV. Here r = (x, y, z) and we recall that in our model
the dipole moment of y vanishes for qubit levels obtained due
to SVM, whereas the dipole moment of z vanishes for qubit
levels obtained due to SOM.

VI. DISCUSSION

In the previous sections, we developed a theory that, for a
given interface roughness and electromagnetic field, predicts
the valley splitting, the dipole matrix elements, and the spin-
valley couplings Az, and Aj;. As we showed in Sec. V, all
of these quantities influence the qubit states and are therefore
important in understanding the qubit relaxation time. In this
section, we first show that our theory can faithfully repro-
duce and explain the experimental measurements presented
in Ref. [23] with a minimal set of fitting parameters. We then
proceed by investigating the behavior of the spin relaxation
as a function of interface roughness, the direction of the mag-
netic field, and the out-of-plane electric field.

In Fig. 7 we show the theoretical prediction for the spin
relaxation rate as a function of the magnetic field as well
as the experimental data points from Ref. [23]. To obtain
the theoretical result, we first searched for a set of locations
for the interface steps {x,., x;r} that gives rise to the same
valley splitting energy as found from the experiment. Given
the magnetic field where the spin-valley hot spot occurs,
B ~0.91 T, it turns out that the valley splitting amounts to
E,s ~ 105.2 ueV. Among a number of possibilities for the lo-
cations of the interface steps that give rise to this value for the
valley splitting energy, we find that choosing x;, = —0.95x)
and x;g = 0.3x¢ results in the best fit to the data. At the
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FIG. 8. The spin relaxation rate as a function of the magnetic
field for various positions x;z of one of the interface steps. The
experimental data are from Ref. [23]. Here we fixed the position of
the other interface step x;. = —0.95x, and the other parameters are
the same as used in Fig. 7.

next step, we consider the relaxation at high magnetic fields
where the total relaxation rate is strongly dominated by the
SOM and the electron-phonon interaction. By matching our
model to the experimental data we find for the parameter
controlling the spin-orbit interaction strength Ag = 8.1. Af-
terwards, we consider the low B-field part of the data points.
We find that considering the Johnson noise is not sufficient
to explain the low B-field behavior of the spin relaxation (see
the inset plot of Fig. 7). However, it is possible to fit the ex-
perimental data at the low B fields by considering 1/f charge
noise. The fit shown in the main plot of Fig. 7 is obtained by
taking Sp = 1073 (/,LV/HI)Z and o = 1.5. Assuming [y = 100
nm, this gives the amplitude of the voltage noise at 1 Hz to
be 10 peV?/Hz which is within the range that has been re-
ported for silicon quantum dots [51]. We note that in Ref. [26]
another source for the Johnson noise is investigated in combi-
nation with considering the couplings between states |1) and
|4}, and similarly it is found that the low B-field behavior of
the spin relaxation is determined by 1/ f charge noise. Having
fixed these parameters, in Fig. 8 we study how the qubit relax-
ation time is changed by moving the position of the step at xg.
We find that by increasing x,gr, the decay rate at high magnetic
fields above the hot spot increases. This is due to the behavior
of the Dresselhaus term, Eq. (30), together with the fact that
yr < yp. As we mentioned earlier in Sec. III, the coefficient
of the Dresselhaus spin-orbit interaction changes sign when
encountering a single-layer atomic step. As such, by moving
the position of the atomic step away from the quantum dot
center, the spatially averaged value (yp cos(4mz/ag)) grows.
This, in turn, increases the coefficients c; to ¢4 that quantify
the correction to the qubit levels due to SOM in Eqgs. (38) and
(39). See Appendix D for the exact mathematical expression
of the coefficients ¢ to cy4.

At low magnetic fields, the relaxation rate is determined
by the 1/f charge noise. However, depending on the con-
figuration of the interface steps, the dominant spin mixing

mechanism can be either SVM or SOM. As long as the SOM
is the main source of spin mixing, placing x,r further away
from the dot center gives rise to an increase of the relaxation
rate, similar to the behavior observed at high magnetic fields.
This can be seen in Fig. 8 for x,x > 0.5xy. Furthermore, in
Fig. 8 we observe that in general by increasing x;, the hot spot
occurs at higher magnetic fields which is due to increase of
the valley splitting. Remarkably, at x,g = 0.72x9 we do not
observe the spin-valley hot spot which is due to a lack of
spin-valley coupling (see Fig. 5).

We now turn to study how the qubit relaxation time de-
pends on the out-of-plane electric field. Changing F, alters
the out-of-plane envelope function at the interface, Eq. (10).
This directly modifies the corrections to the qubit levels due to
the SVM and SOM. For the latter, the coefficients ¢; to ¢4 in
Egs. (38) and (39) at the leading order only involve the ground
state of the out-of-plane motion. Using Eq. (10), we realize
that these coefficients scale linearly with the electric field. For
the SVM, the scaling of the spin-valley coupling A3, with the
electric field actually depends on the direction of the magnetic
field. At ¢p = 7 /2 in our model, the dominant contribution to
A3, comes from the ground state of the out-of-plane motion,
leading to a linear scaling. At ¢p = 0, however, one needs to
rely on numerical analysis since a sizable contribution of As;
involves excited states of the out-of-plane motion.

In addition, using Eqs. (7) and (10), one can see that at the
first order in perturbation, the valley splitting from Eq. (15)
scales linearly with the electric field. This linear dependence
is already observed in experiment [3,52] and it was also
previously predicted from theoretical analysis [34,45]. Based
on the same reason, the in-plane dipole matrix elements also
scale linearly with the electric field [see Fig. 11(a)]. In Fig. 1
we show the obtained qubit relaxation time for some fixed
values of the electric field. As expected, the magnetic field
at which the spin-valley hot spot accrues is reduced when de-
creasing the electric field. Interestingly, this feature enables us
to turn the spin-valley hot spot into a “cold spot” by properly
reducing the electric field. In Fig. 1, the vertical dashed lines
highlight this possibility. We observe that the spin-valley hot
spot obtained at F, = 15 (11) MV/m becomes a cold spot if
the electric field is lowered to F, = 8 (4) MV /m. Note that
at this cold spot, the relaxation rate is also first-order insen-
sitive to the fluctuations of the magnetic field. We stress that
while we can tune the electric field to increase the relaxation
time, this electrical tunability also enables us to significantly
shorten the relaxation time on demand, which allows for fast
qubit reset and initialization, which is of crucial importance
in performing quantum error correction [43]. In the inset of
Fig. 1, we show the magnetic field at which spin-valley hot
spot and cold spot occur as a function of the electric field.
One should bear in mind that these quantities depend of the
interface roughness, and they would change by having some
other positions for the interface steps.

Finally, we consider the anisotropic behavior of the spin
relaxation. In Fig. 9, we use the same interface roughness as
in Fig. 7, and observe a strong dependence of the spin relax-
ation rate on the direction of the magnetic field (described
by the angle ¢p in the plane). As discussed in Sec. IV A,
the intervalley spin-valley coupling Aj, given by Egs. (33)
is strongly anisotropic for a quantum dot with disordered
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FIG. 9. The qubit relaxation rate as a function of magnetic field
for different directions ¢ of the in-plane magnetic field. Inset: Qubit
relaxation rate as a function of the direction of the magnetic field for
fixed B. All the other parameters are the same as used in Fig. 7.

interface (see Fig. 5). Therefore, at low magnetic fields, where
the SVM is the dominant decay channel, the qubit relaxation
shows the same anisotropic response as Aj3;. We recall that
away from ¢p = 7 /4, the intravalley coupling A,; becomes
finite. However, its effect remains small for the full range of
magnetic fields (see Fig. 12 in Appendix E).

At higher magnetic fields we observe a different
anisotropic behavior in Fig. 9. This is because at high
fields the SOM becomes the dominant decay channel (see
Fig. 7), and because, within our model where the steps are
assumed parallel to the § axis, we have (1,[{py, Sin}|0) <
(L,|{py, Sinc}|0), where the equality (for a circular dot) is
reached only when the steps are far away from the dot center
(i.e., when the quantum dot is ideally flat) [see Eqgs. (D3)
and (D4)]. This inequality in the presence of interface steps
gives rise to c3(¢pp = 0) K ca(¢pp = 0) and c4(¢pp = 7/2) K
c3(¢pp = m/4) < cq(¢pp = 0) which, in turn, leads to the
anisotropic behavior of the spin relaxation at high magnetic
fields above the hot spot. In the inset of Fig. 9 we show
the spin relaxation rate as a function of the direction of the
magnetic field for two fixed values of B below and above the
hot spot. We find a change of nearly two orders of magnitude
in the 7} time for B =0.5 T. A similarly large effect has
recently been reported in experiment (see Ref. [24]).

VII. CONCLUSIONS AND OUTLOOK

Silicon spin qubits are among the most promising plat-
forms for scalable quantum computation. However, the
presence of two low-lying valley states in silicon quantum
dots can potentially be harmful for Si spin qubits. It has been
known that the presence of interface steps can render the val-
ley structure and with it the relaxation (77) time characteristics
of Si spin qubits sample dependent. This, in turn, can pose a
challenge to the scalability of silicon-based platforms. On the
other hand, to the best of our knowledge, so far there has not
been a general theory to predict the behavior of spin relaxation

as a function of the interface roughness. In this paper, we
achieved this by first developing a valley-dependent envelope
function theory in Sec. II that can predict the valley splitting,
the dipole matrix elements, and the spin-valley coupling for a
given interface roughness and the electromagnetic fields.

Our approach enables us to substantially reduce the num-
ber of free parameters in the theory of qubit relaxation. For
the sake of simplicity, throughout this work we assumed that
the interface roughness is stairlike, and the steps are formed
parallel to the ¥ axis, as schematically depicted in Fig. 2.
However, it is easy to generalize our perturbative treatment
of the interface roughness to any arbitrary configuration of
the interface steps. In Sec. III, we formulate a general form
for the interface-induced spin-orbit interaction for a 3D elec-
tron. Based on this description, we find the corrections to the
spin-qubit levels due to spin-valley and spin-orbit coupling in
Sec. IV. Remarkably, we discovered that under certain condi-
tions for a disordered quantum dot, the spin-valley coupling
can vanish. This can have a major effect on the qubit lifetime
as it completely blocks the valley-induced decay. Moreover,
our analysis also allows us to investigate the anisotropic be-
havior of the spin-valley coupling (see Fig. 5).

In Sec. V we consider the electron-phonon interaction and
the Johnson and 1/f charge noise and discuss how these
mechanisms give rise to qubit relaxation. Finally, in Sec. VI
we present our final results for the qubit relaxation time 7;.
In Fig. 7 we show that our theory can well reproduce experi-
mental data for the qubit relaxation [23] with only a minimal
set of free parameters. We found that in order to fit the data at
low B fields, it is necessary to include the effects of the 1/f
charge noise. We also investigated how the qubit relaxation
rate changes when one step that is close to the dot center is
moved away (see Fig. 8). Here we show that the spin-valley
hot spot disappears when the spin-valley coupling vanishes.

We further studied how the qubit relaxation depends on the
direction of the magnetic field. We find that the presence of the
interface steps can give rise to a strong anisotropic behavior.
Within our model, we find that the 7} time can either increase
or decrease by changing the magnetic field, depending on
whether SVM or SOM represents the dominant decay channel
(see Fig. 9). We finally studied how the out-of-plane electric
field F, generated by the gate voltages influences the qubit
relaxation time (see Fig. 1). We find that the relaxation rate
can vary by several orders of magnitude when F; is changed.

At a fixed magnetic field, there is an optimal electric field
that sets the qubit on a cold spot where the 7 time reaches
a local maximum and becomes first-order insensitive to the
fluctuations of B. Importantly, the electric field can also be
tuned to set the qubit at the spin-valley hot spot. This, in
turn, enables an on-demand qubit reset which is necessary,
and of great importance, for scalable quantum computation.
While the presence of the valley degree of freedom in sil-
icon heterostructures has so far been commonly viewed as
a problematic feature, we therefore demonstrate that upon
proper control over the out-of-plane electric field, the spin-
valley coupling can in fact be an advantage for silicon-based
platforms.

In conclusion, we point out that while we employed the
valley-dependent envelope function theory for analyzing a
single-electron Si/SiGe quantum dot, our theory can also be
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applied for a disordered Si/SiO, quantum dot by using the
offset potential of the SiO, (UOSlo2 =3 meV), and with the
knowledge of the periodic parts of the Bloch function in SiO,.
The latter is studied in Ref. [30]; however, based on the same
reference, further studies may be required for a more accurate
understanding.

Furthermore, we would also like to point out that in ad-
dition to the steps and miscuts at the interface, SiGe buffer
disorder is one other factor that can influence the valley split-
ting, and therefore the 7} time behavior. Examples of the alloy
disorder include having a single Ge-Ge bond per eight-atom
supercell or having random placement of Ge atoms. If a Ge
atom diffuses to the quantum well, it leads to the broadening
of the interface potential. Since a sharp interface potential
is responsible for lifting the valley degeneracy, a “softer”
interface potential naturally gives rise to a smaller valley
splitting. Reduction of the valley splitting due to a softer
interface potential has been shown using the effective mass
theory in Ref. [28]. Moreover, the effect of alloy disorder
has also been studied numerically via multimillion atomic
tight-binding simulations [53,54]. Further analysis combining
effective mass theory with microscopic approaches [55] might
be required to investigate the net effect of alloy disorder and
interface steps combined.
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APPENDIX A: THE VALLEY-DEPENDENT ENVELOPE
FUNCTION: PERTURBATIVE METHOD

Here we present how to solve Eq. (3) in order to arrive
at the valley-dependent envelope function, Eq. (11), in the
presence of valley coupling, interface steps, and an in-plane
magnetic field. To begin with, we assume for the moment that
the valley-dependent envelope functions \P;‘;i are known. We
then start from Eq. (3) and first multiply it by (\I’gé)*e’ik"z
followed by an integration over the spatial coordinates. This,
at the leading order, leads us to

ay[Ey; + Al +a Ay =ar E, (A1)
where we defined
E,. = / (W) Hwldr, (A2)
Ay, = / (W) V) iid’, (A3)
Ay = / e 2R (WY, (W iidir. (A4)

In a similar way, we multiply Eq. (3) by (‘~If)c’y§)"e"k"z and
perform an integration to find

ap AT+ a_[E_,+A_]=a_.E, (AS)

where E_, and A_, are defined similar to Egs. (A3) and
(A4) by using W_Z. Later on, it turns out that E_, = E,

xyz*

and A_, = A,,.

We now use these relations in order to recast Eqs. (A1) and
(AS5) into a matrix equation,

Ep + Ay, Ay Atz | _ gl 9+
A7 Ei.+ Ay ||la— a—;|
Solving Eq. (A6) yields for the energies of the valley-orbital
ground (¢ = 0) and excited (g = 1) states

(A6)

EWOD = E 4+ A F A, (A7)
with the eigenvectors given by
|
alf) = (£1)' 71 —=eFrmeldl, (A8)

We note here that all of the quantities on the right-hand
side of Eq. (A7) (i.e., E4;, A4, and A}) in general turn out
to be dependent on the valley-orbital index g. As we will see
in the following, this dependence is due to the fact that the
envelope function depends on the valley-orbital index so that
in general W2 @=" = wt2@=D The valley splitting, i.e., the
energy gap between the two low-lying valley-orbital states,
then becomes

E, = E“D — =0, (A9)

In order to model the valley coupling parameter V,, let us
consider a quantum dot with an ideally flat interface at zero
magnetic field. As we will see later, we can argue that, due
to the strong out-of-plane confinement caused by the electric
field, the valley-dependent correction to the envelope function
is negligible, enabling us to write Wi =" ~ @io@= =
Yyyz,0. In this case, as also explained in detail in Ref. [29], the
valley coupling becomes intraorbital and the valley splitting,
Eq. (A9), is simplified to

EN = 2| A (A10)

Given the above equation, we set Ai®®d! equal to the valley-
orbit coupling for an ideal quantum dot, A% The latter
quantity is explained and discussed in detail in Ref. [34]. It
has been shown in that work that

Aiud:al = (wxyz,OMJrz(r)eikquOg (Z)|WX}'Z,Oufz(r)e_ikoz)

ek, 1 ,k0Z0i|1>
=—iCo—=(1—|1— —+i—22| ). (All
’°2ko< [ 200 "' /0, A

We now use Egs. (72 and (8) and take Vvide“l(r) =V,é(r) to
find Aldedl ~ V, /(z00). By setting this equal to Eq. (A11),
we find a relation for the valley-coupling parameter,

V, = 2000 A%, (A12)

We note here that, as explained in Ref. [34], the quantity
Co =) ¢ Ci(G)C_(G) >~ —0.2607 in Eq. (A11) has a micro-
scopic nature and originates from the lattice-periodic parts of
the Bloch function, uy.(r) in Eq. (1).

Having found the appropriate relation for the valley-
coupling parameter, Eq. (A12), we now consider the presence
of the interface steps and magnetic field and study how the
valley-dependent envelope function can be obtained. The out-
of-plane potential in Eq. (4) is modified by the presence of the
interface steps and it becomes

Ugis(x,2) =U(2) + Usteps(x’ 2), (A13)
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where U (z) is given by Eq. (5) and

a
Useps (6, 2) = Upb(=2)6 (2 + T )x. — )

— Usf(2)0 (z - %)m —xr). (Al4)

Furthermore, we can write for the valley-coupling parameter
V38 (r) = V,Sine(x, z) in which the interface function Siy(x, z)
within our model is defined in Eq. (17).

In order to consider the presence of a homogeneous in-
plane magnetic field, B = (B, By, 0) = B(cos ¢, sin ¢, 0),
similar to Ref. [34], we use the gauge where A = [0, 0, yB, —
xBy]. The confinement Hamiltonian, Eq. (4), is accordingly
modified by replacing p; — p; — eA;. We then find that in the
presence of the interface steps and the in-plane magnetic field
the confinement Hamiltonian becomes

H. = Hy + H)| + Ugieps(x, 2). (A15)

Here H is the separable and exactly solvable Hamiltonian of
the same form as Hy in Eq. (4) with o, and o, replaced by
magnetic-field-dependent confinement frequencies ), and w;,
while the couplings induced by the in-plane magnetic field
become
e e e’
Hy = —B,—yp; + B,—xp. — B:B,—xy. (A16)
my my my
Let us first define the cyclotron frequency and magnetic length
induced by B,y by

(A17)

We can then write
: " Q2"
W, = Wy 1+E . Wy =y 1+¥ . (A18)

In order to find the valley-dependent envelope function, we

begin by rewriting Eq. (3) in the presence of interface steps
and the magnetic field as

Z aﬁ-q)eik‘fz{Hé +H, - E(q)}\y){;’gq) =0, (A19)
Jj=%z
where we defined
HP = HH + Vijm(X, )+ Usteps(xv 2), (AZO)

which can be considered a perturbation due to the presence
of the in-plane magnetic field, the valley coupling, and the
interface steps. In the absence of Hp,, as explained before,
the contributions from the two valleys become (nearly) de-
coupled. This enables us to simplify Eq. (A19), leading to
Hgyry,. = €'Yy, This is the generalization of Eq. (6) in which
the confinement Hamiltonian and, therefore, the eigenenergies
and eigenstates are modified by the magnetic field. For sim-
plicity, from now on, we drop the prime (') of the energy and
eigenstate and bear in mind that v, ,, and v, , and their corre-
sponding energies depend on the magnetic field, according to
Egs. (A18).

We now argue that since the eigenstates of Hj form a com-
plete basis, in the presence of the perturbation H,, the solution
for the ground (¢ = 0) and first excited (¢ = 1) valley-orbital

envelope function of Eq. (A19) can be described by the fol-
lowing general expansion:

+z, +z,
\I]x)é(q) = Yyz0 + Z Cm,p(,‘é)Wx,m%,p%m

m,p,n

(A21)

where ¥,y 0 = Yy 0¥y,0¥z,0 is the orbital ground state and
thus {m, p,n} = {0, 0,0} is excluded from the summation.
A similar disorder expansion is performed in Ref. [56] in
combination with a tight-binding method. Given Eq. (A21),
the problem now simplifies to finding the coefficients ¢y, 2.
In the following, we aim to obtain these coefficients for the
ground and first excited valley-orbital states up to the first
order in the perturbation. As such, we write, for the perturbed

eigenenergy,
E@D = ¢y+ SED, (A22)

We now first substitute Eqs. (A21) and (A22) into
Eq. (A19). Afterwards, we multiply the resulting relation

by e Yy y Yo (', pyn') # (0,0,0)) followed by
an integration over the spatial coordinate, r = (x, y, z). This
enables us to find at the first order (and after changing

(m', p',n") — (m, p,n))

a{(Enpn = €)% + Povpn ()}

+ & Fop pn(Hp)} = 0, (A23)
where we defined the tensor elements,
Pun.pn(Hp) = [ YWy p¥entp nyz,OdSi’, (A24)

Fonpn(Hy) = / MY e Hopnod . (A25)

Here the unperturbed eigenenergy reads

1 1
€mpn = (5 + m>hw; + (E + p) ho, + €.,  (A26)

while € =€, with (m, p,n)=(0,0,0). By using
Eq. (A8) we then arrive at
_ —iarg[Aq] _
e = T Tmen Z P p)

6m,p,n — €

In a similar way, after substituting Eqgs. (A21) and
(A22) into Eq. (A19), we multiply the resulting relation by
etikoz Y, Wy, p ¥z, and perform the same calculations as pre-
sented here. We then find

—1)4taglA] —
e = TV i = Prpn (A28)

m,p,n
€m,p,n — €0

Note that at the first order in the perturbation, A is given by
Eq. (15). Given Eq. (A25), we find F,,  ,(H)) > 0. This is
due to the fast oscillations caused by the factor e~2*0% inside
the integrand in Eq. (A25). We thus realize from Eqgs. (A27)
and (A28) that the corrections to the envelope function due to
the presence of the magnetic field are identical for both valley-
orbital states, g = 0 and ¢ = 1, so that we can drop the g index
of the corrections in this case. On the other hand, for the other
two contributions that are both influenced by the presence and
configuration of the interface steps, it is easy to confirm that
in general F, o (VySint (X, 2) + Usgieps (%, 2)) # 0.
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TABLE II. The out-of-plane eigenenergies €,, as well as the
coefficients ¢, (in units of inverse tesla). Here we consider a circular
dot at B = 0 (so that o, = ), and we set for the thickness of the
Si quantum well d; = 10 nm and for the thickness of the upper
SiGe barrier d, = 46 nm. The other used quantum dot parameters
are given in the caption of Fig. 3. We also find from Eq. (A31) that
n=-889x 1074 T2

n €,.. (meV) a, (1073 T
0 40.92 0

1 77.29 —7.28

2 106.84 2.25

3 133.30 —1.09

Indeed, (only) the corrections due to these interface-step-
related terms depend on the valley-orbital index, g. Moreover,
for such corrections to the envelope function, since in our
model the steps are assumed to be parallel to the ¥ axis, we
find from Eqs. (A24) and (A25) that cﬁf;(f,{) can be nonzero
only by setting p = 0. We then find the valley-dependent
envelope function in the presence of the perturbations given
by Eq. (A20) (for g = 0 and ¢ = 1 states) has the general form
given by Eq. (11) in Sec. II.

Using H) and Eqs. (A24) and (A27), we arrive at ¥ in
Eq. (12) in which the perturbative coefficients become

1 0 0/0z

4 = — Ll (¥:019/ waz,n)’ (A29)
2 my 2o €0 — €0 — o)
1 ¢ 0/0Z|Yzn

B, = LT (:,019/92[ ¢, ’ (A30)
2 mp 2o €0 — €zn — Fla);

1e 1
n= (A31)

X ——
4m 0% hw\ + ho,

where 7 = z/z9. Equations (A29) and (A30) show that «,, =
B, for a circular dot when either B = 0 or ¢p = /4 (and B is
nonzero). In other cases (and for quantum dots with realistic
parameters), these coefficients are different but remain close
to each other since the confinement along Z in quantum dots
is always stronger than the in-plane confinements. In Table II

and its caption, we show an example for the coefficients used
in writing v.

We now move to consider the perturbative coefficients
cre@ in Eq. (13). We can numerically find them by first
calculating P, 0.,(Hs) and Fy,0.,(Hs) from Egs. (A24) and
(A25), followed by using Eq. (A27) and setting p = 0. We re-
mind that ¢,,5'? = [¢,%]* as can be seem from Eqs. (A27)
and (A28). Table III contains an example for the values of

ch;,(q) for the ground and excited valley-orbital states.

APPENDIX B: DIPOLE MATRIX ELEMENTS AND
THEIR PROPERTIES

Here we present some details of the calculations leading
to the intervalley and intravalley dipole matrix elements pre-
sented in Sec. IIB, and also study some properties of the
valley-dependent dipole moments. Using Eqgs. (18) and the
plane-wave expansion of the Bloch periodic part of the wave
function, Eq. (2), we can write

<+Z(611)|x| +Z(q2)> = Z C;k_(Gl)C+(G2)
G1,G2

—i(G1=G2).r\y—2,(q1) +2,(q2)
X fe Ho1— \I/x}é a x\Inyé 2 dr,
(B1)
The above equation indicates that the only wave vectors
that contribute to the sum are the ones where G| = G,. It is
then easy to show ) . C;(G)C4(G) = 1 due to the normal-

ization of the wave function. To calculate the integral, we note
that for harmonic oscillators we can write

x= %xo(a +ah), (B2)

where a and a' are the ladder operators. Using this together
with the valley-dependent envelope function, Eq. (11), we
readily find

1 _ z
(+Z(q])|ff| +Z(qz)> — E)C()(le),(tll) + Cta(qz)). (B3)

TABLEIII. The perturbative coefficients ¢%@ used in Eq. (13). The location of interface steps and other parameters are the same as given

m,n

by caption of Fig. 3.

m C;,zd(qZO) c”tfi(qZO) C:;‘zz.(q:ﬂ) C,;Zé(q:o)

0 N/A —0.0235+4-0.0138i 0.0131-0.0075i —0.0091+0.0050i
1 0.2795-0.0638i —0.027740.0065: 0.0160—0.0038i —0.0111+0.0027i
2 0.0309—-0.0204i —0.0056+40.0035: 0.0034—0.0020i¢ —0.0024+0.0013:
3 —0.0304+0.0123: 0.0076—0.0030i —0.0047+0.0018i 0.0034—0.0013:
4 —0.0140+0.0059: 0.0043—-0.0018i —0.0028+0.0011: 0.0020—0.0008:
m C;:?(a(q= D C;,Zi(q= )] C;?Z.(q= 1)) C;g(q= ]

0 N/A —0.0008—0.0041: 0.0006+0.0022i —0.0005—0.0015:
1 0.2205+0.0831: —0.0210—0.0081: 0.0116+0.0046i —0.0078—0.0032i
2 —0.0827+0.0188i 0.0142—-0.0033: —0.0081+4-0.0019i 0.0054—0.0013:
3 0.0190—-0.0129: —0.0045+4-0.0031: 0.0026—0.0019i —0.0018+0.0013:
4 0.0104—0.0061: —0.0030+4-0.0018: 0.0018—0.0011: —0.0012+0.0008i
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FIG. 10. The in-plane dipole matrix element |xy;| as a function
of the positions of the interface steps, x;. and x,. . Here, similar to
Fig. 4, weset B=0and F, = 15 MV/m.

In the same way, we find
@2 — @) 1 tola) | —2(@)
(=218 =) = (e + ™). (B4

If g, # g», from the above two equations and Eq. (21), it
is easy to arrive at Eq. (23). Similarly, when g; = ¢, and
given Eq. (22) it is easy to verify Eq. (24). The dipole matrix
elements of z given by Egs. (25) and (26) are also derived in
the same way by noting that the contribution from the Bloch
periodic part of the wave function average to 1, as presented
here.

In Fig. 4 we show the dipole moments as a function of x;g
at fixed x;;, = —0.95xp. In Fig. 10 we show a broader result
for the intervalley dipole moment xo; as a function of the
positions of the steps at the left and right side of the dot center,
x,.. and x,r. Noticeably, we observe that at certain positions
for the interface steps, the dipole moment vanishes, xy; — 0.
This, in turn, indicates that at such step configurations, the
relaxation rate at magnetic fields around and below the hot
spot where the SVM gives rise to the dominant relaxation
channel is significantly reduced. It can be shown that the
vanishing of the in-plane dipole moment x is caused by the
phase shift due to the change in the quantum well thickness.
The same phase shift is known to be responsible for the
suppression of the valley splitting in the presence of interface
steps [29,33,34].

In Fig. 11(a), we show the dipole matrix elements as a
function the electric field. By increasing F, the out-of-plane
confinement becomes stronger and therefore the z dipole ma-
trix element becomes smaller. On the other hand, increasing
the electric field further pushes the envelope function towards
the interface. Note that the coefficients cfé‘(q) in Egs. (23)
and (24) originate from the envelope function at a narrow
region around the interface set by the width of the step [see
Eqgs. (A24) and (A25)]. Using Egs. (7) and (10), it is easy to
justify the linear scaling of x;; in Fig. 4(a) with respect to the
electric field.

‘ ----- |xoo| — |zo1] |T1q ] - |z00] = -|201] ‘211"
5 -_— 16 T i ' i '
(a) +(b)
| 3
12}
73"
= B
Lo}
1t

0 — o e ! ! —
2 4 6 8 1012141618
F, (MV/m)

o ! ! ! !
15 2 25 3 35 4
hw, (meV)
FIG. 11. (a) The dipole matrix elements as a function of the out-
of-plane electric field. (b) The in-plane dipole matrix elements as a

function of the in-plane orbital splitting at B = 0. In both panels, all
the other parameters are the same as used in Fig. 3.

In Fig. 11(b) we show the in-plane dipole matrix elements
as a function of the in-plane orbital splitting at B = 0. Note
that xo oc ;72 and ¢ 5 oc !, As such, the x dipole mo-
ments scale by the orbital splitting as w;¥/?. We also note that
since the in-plane magnetic field further confines the in-plane
envelope function, according to Eq. (A17), B also modifies
the in-plane dipole moments. However, up to a few tesla, the
magnetic confinement length Eq. (A17) remains small (e.g.,
at B=2T, we find [z >~ 18.1 nm) and the change in |x;;| is
therefore negligible.

APPENDIX C: SPIN-VALLEY COUPLING

Here we present in detail the expression we find for
the intervalley spin-valley coupling, A3z, = (3|Hg + Hpl2),
and intravalley coupling, Ay} = (2|Hg + Hp|1), discussed in
Sec. IV. The form of the interface-induced spin-orbit interac-
tion in the presence of interface steps is given in Egs. (29) and
(30) for the Rashba and Dresselhaus terms. Let us first define
Fr = Sine(x,2) and Fp = cos(%)sim(x, z) for convenience.
We can then write

Az = Lyra T W=D (py, Fr}v@=")
— 5veoy T (W=D {py, Fr}@=?)
+ Lypo T W=Dy, Fp}v=")

— Sy T WD (py Fp) D). (C1)

To calculate the matrix elements shown above, we use
Eqgs. (21) and (18) and find, for both ¢ = ¢’ and g # ¢/,

(EF)2{py, Fr}| £2'7) = —2B. f,, (C2)

085309-16



RELAXATION OF SINGLE-ELECTRON SPIN QUBITS IN ...

PHYSICAL REVIEW B 104, 085309 (2021)

in which f, is defined as

2h
Jo = \/_ Z G11(G1,Go)

Yo G1,G,
n=3

e [ Bt 0z

As such, using Egs. (21) and (C2) we arrive at
%(V(q:”l{pys FR}|U((1:0)) = _infOt sin ¢v-

The matrix element of {p,, Fp} is also found in a similar way,
where in this case we find f, — f, in which f is defined
similar to Eq. (C3) by replacing Fr — Fp. It is easy to prove
that f, and f, are real quantities.

We also find

(C5)

where
(g=1) (g=0)y _
G: (G, Ga) = CL(G1)C4(G2)3(Gay — G1)8(Gay — Giy). (27 P Bl + 270 = 2B,y + 281, (CO)
(C4) where here we defined
J
—— Y G4 (Gy, GZ)Z B / Y20+ Y2 — V20V VoW Fre OO dx dz, 7
2 X0 G G
g1 = f Z G1+(G1,Gy) Y [ehn @ =2 0]
V2% GG, (mm)£(0,0)
x /( vm -+ 1WX,m+IWX,O - wx,IWX,m - \/Evfx,mflwx,O)wz,()wz,nFRei(GZZ_Glj)zdx dZ’ (Cg)
where we used the time-reversal-symmetry relation szn(q) [c ;f;l(q)]*. We further find (noting that fg is a real quantity)
(—=2=Dlpy, Fr}l = 277) = 2B, f3 — 24, (€9)
(+29=D{py, Fr}| — 29=0) = 2B, f5 + 282, (C10)
(—=2=Dl{py, Fr}l +297") = 2B, f3 — 2¢5, (C1D)
in which g; reads
= f 3 CHGIC (GG — Ga8(Gry — Goy) Y [ — ]
2% G1,G, (m,m)#(0,0)
x /( vm + lllfx,m-'rl Yo — %,1 wx,m - ﬂl/fx,m—l wx,O)wz,OIpz,nFRei(G227G]:72k0)de dz. (C12)

Using the above equations, we arrive at

1w4=Dl{py, FR}v=) = g. + iB, fgsing,,  (C13)
in which we defined
gc = Re[g — e o). (C14)

The matrix element of {p,, Fp} is calculated in a similar
way by replacing fz — ff’, and g, — g, in which these two
quantities are defined by replacing Fr — Fp in all related
relations presented above. We note that the Pauli matrices in
the spin-orbit interaction are defined with respect to the lattice
crystallographic axes whereas the spin states are defined with
respect to the direction of the applied magnetic field. For an
in-plane magnetic field, we then have o7 = —o}* = cos ¢,
o}l = —isingp, 0!’ = —o ¥ = sinpp, and o} " = icos ¢s.
Using these relations together with Egs. (C6) and (C13), it is
easy to arrive at the expression for As;, given by Eq. (33).

On the other hand, we find for the intravalley matrix ele-
ments

1Pl py, Fr} @) =

B, fg(1 4 cos ¢,), (C15)

1@ py, F}v'?) = =B fo(1 + cos ). (C16)

(

It is then easy to verify the form of the intravalley spin-orbit
coupling A, given by Eq. (34).

APPENDIX D: CORRECTIONS DUE TO SOM

Here we present the relaxation for the coefficients c¢; to ¢4
in Egs. (38) and (39) that give the corrections to the spin-qubit
levels due to spin-orbit mixing. Given the interface-induced
spin-orbit interaction, Egs. (27) and (28), we find by using the
standard perturbation theory at the first order

e FI0) yy 1 (Llpe Foll0) 4,

cp = EVR hwf\ +Ez G)r 2 D ﬁa))’c +EZ x °
(D)
o= Ly s Ny 1 (lpys FllO) o,
277 hej+ B Y27 Do)+ E
(D2)

The coefficient c3 (c4) is defined similar to ¢ (c;) by replacing
E, - —E, and axT(l) — O’l(T Here Fr and Fp are the same as
defined in Appendix C, and the states |0), [1,), and |1,) are
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defined in Sec. IV B. We also find

(L:{px, Frapy}0)
h
= l_/ Z g++/ (Vio+vi — \/El”x,ol/fx,z)
*o GG,

X wZOFR(D)e_i(GlZ_GZZ)ZdX dz, (D3)

2ih
(I,H{py, Frn}10) = — Z Gy / V0w oFro)

Yo GG

x e OOy dz, (D4)

where G, is defined in Eq. (C4).

APPENDIX E: DIPOLE MOMENTS BETWEEN THE
MODIFIED QUBIT STATES

Here we present the dipole matrix elements between the
modified qubit levels. We begin by considering the SVM in
which case, by neglecting the intravalley coupling A,;, the
qubit levels are given by Eqs. (35)—(37). We find for r = (x, z)

2r|T) = 3 =Dy =2)

X [=/(+a )1 +ap)++/(1—a)(d —ap)],
(E1)

where we used (V=0 |r|p@=D) = —(p@=D|r|p@=0) a5 a re-
sult of Eqgs. (23) and (25). The (3|r|1) dipole moment can also
be found in a similar way. In Fig. 12 we show the X dipole
moment between modified qubit levels. As noted in Sec. IV A,
below the hot spot, the logical qubit excited state is | f) = |2)

107"
- ~¢pp=1/2
—¢5B:7|'/4
5 ¢B:W/10
10 ¢ op =0 ]

FIG. 12. The dipole matrix elements between modified qubit
levels due to SVM as a function of the magnetic field for various
B directions, ¢p. The color lines are obtained by only considering
the intervalley coupling A3, in finding the qubit modified levels; see
Eq. (E1) for the dipole moment below the hot spot. The black dashed
lines are obtained by considering both intervalley and intravalley
couplings, A3, and Ay;. All other parameters are the same as used in
Fig. 7.

whereas above the hot spot the logical qubit excited state is
| f ) = |3). The black dashed lines in the figure are obtained by
considering the intravalley coupling A;; as well and finding
the qubit levels by exact diagonalization.

We observe that the effect of the intravalley coupling is
indeed negligible as mentioned in Sec. IV A. The anisotropic
behavior of the dipole moment is due to the anisotropic re-
sponse of the intervalley spin-valley coupling A3, (see Fig. 5).
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