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Abstract
We present a framework that formulates the quest for the most efficient quantum state
tomography (QST) measurement set as an optimization problem which can be solved numerically,
where the optimization goal is the maximization of the information gain. This approach can be
applied to a broad spectrum of relevant setups including measurements restricted to a subsystem.
To illustrate the power of this method we present results for the six-dimensional Hilbert space
constituted by a qubit–qutrit system, which could be realized e.g. by the 14N nuclear spin-1 and
two electronic spin states of a nitrogen-vacancy center in diamond. Measurements of the qubit
subsystem are expressed by projectors of rank three, i.e. projectors on half-dimensional subspaces.
For systems consisting only of qubits, it was shown analytically that a set of projectors on
half-dimensional subspaces can be arranged in an informationally optimal fashion for QST, thus
forming so-called mutually unbiased subspaces. Our method goes beyond qubits-only systems and
we find that in dimension six such a set of mutually-unbiased subspaces can be approximated with
a deviation irrelevant for practical applications.

1. Introduction

There has been a strong interest in quantum computing since the publication of Shor’s algorithm [1] for
prime factorization. Among other tasks performed efficiently by quantum computers are quantum
simulations [2], aiming at finding the state of a system which is described by quantum mechanics or to
compute its time evolution. Many physical platforms have been suggested for building a quantum
computer, including trapped ions [3], superconducting qubits comprising Josephson junctions [4, 5],
electron spins in semiconductor quantum dots [6, 7], and electron or nuclear spins at a nitrogen-vacancy
(NV) defect in diamond [8]. However, despite impressive results regarding the coherent control and
coupling of qubits, the implementation of a general purpose quantum computer with a number of qubits
relevant for practical applications remains a challenge.

Any physical system which is supposed to function as a building block of a quantum computer would
require tests of its functionality. The measurements and computations which allow the estimation of a
quantum state are called quantum state tomography (QST) [9]. Alongside methods to characterize
quantum processes, such as quantum process tomography, randomized benchmarking (RB) [10, 11], and
gate set tomography [11–14], QST is part of the emerging field of quantum characterization, verification,
and validation (QCVV), which is dedicated to the above mentioned tests of quantum systems. QST is a
central tool for verifying and debugging a quantum device and can be helpful for the process of
implementation of a quantum computer in a physical system. It allows for checking of the initialization of
the quantum device and—as a building block of quantum process tomography—also the quantum gates.
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Therefore, the scaling of QST is not only relevant for characterizing the initialization procedure within
quantum computing but also for testing quantum gates. Specifically, quantum process tomography can be
done by performing QST many times with different initial states [15] or even by QST with one initial state
by using an ancillary system [16, 17]. The QST procedure calls for the acquisition of the full information of
a quantum state, which requires numerous repetitions of a set of measurements and is typically very
time-consuming. For situations where specific symmetries of the quantum state are known, the number of
parameters which need to be determined can be reduced, e.g. for permutationally invariant tomography
[18]. Other QCVV methods like low-rank tomography [19] or RB [20] while allowing to extract full
information of a quantum state or a quantum process in limiting cases are designed for and typically
applied to situations where prior knowledge of a quantum state or a quantum process is available. In
contrast to that QST and quantum process tomography aim at determining unknown quantum states or
processes without prior knowledge available, i.e. QST and quantum process tomography are complex
procedures for gaining comprehensive information.

Because full QST is such a time consuming task, finding the most efficient QST measurement set is thus
of high practical relevance. Note that analytical solutions to this problem are only known in a few cases, as
we will see in the following discussion. Here, most efficient is used in terms of largest average information
gain for a fixed number of experimental runs of each element of the QST measurement set, see section 2.
For a minimal set of non-degenerate measurements, this problem was considered by Wootters and Fields
[21]. For an n-dimensional Hilbert space, the ideal choice is a set of n + 1 measurement operators whose
eigenbases are mutually unbiased bases (MUBs) [21]. Improvements to QST using MUBs are possible by
allowing (i) for more than the minimum number of measurements [22], (ii) for generalized measurements
using ancillary systems yielding symmetric, informationally complete positive operator-valued measures
(SIC-POVMs) as optimal measurements [23, 24], and (iii) for adjusting the choice of measurements on the
run [25–27]. Wootters and Fields [21] introduced a geometric quality measure to evaluate the QST
measurement set. It is important to note that the use of this quality measure is not limited to
non-degenerate measurements. We have already applied this measure in the scenario where the
measurements distinguish one state from the remaining (n − 1)-dimensional subspace [28, 29]. These
measurements are described as independent rank-1 projectors. The states can be chosen such that they
belong to a set of MUBs [28], but a numerically optimized set of measurements outperforms the MUBs
[29]. Furthermore, the geometric quality measure is not limited to rank-1 projection operators; on the
contrary, we use it in this paper to evaluate a quorum of projection operators of higher rank.

We describe a general framework to formulate the search for an optimal QST measurement scheme as
an optimization problem and use numerical methods to solve it. To illustrate the power of this method, this
paper examines the settings where only a part of a composite system is accessible to direct measurements.
The relevance of this scenario becomes clear when considering the following quantum computer
architecture. One logical qubit is realized by a set of physical qubits and only one of the physical qubits is
equipped with a measurement device. This can save resources on the hardware level compared to a system
where each physical qubit is assigned its own measurement device. For a quantum algorithm to be
performed, reading out one physical qubit out of the set of physical qubits which constitute the logical qubit
is sufficient. However, the ancilla physical qubits are needed for quantum error correction. We have to
require that universal quantum gates are available, i.e. any unitary operation can be performed in the
Hilbert space describing this quantum system. The reasons for this are that universal quantum gates are
needed for a general-purpose quantum computer as well as for realizing different measurements in the
tomography scheme considered in this paper as we describe in the following. Results for optimal QST by
measuring one out of several qubits are already available [30]. Therefore, we consider here the simplest
composite system which does not consist only of qubits, i.e. a qubit–qutrit system, see figure 1. We describe
the realization of such a system—in NV centers in diamond. We reveal the relation between our
optimization problem of finding the optimal QST measurement set and packing problems in Grassmannian
manifolds, which have been studied in great detail [30–40] and are relevant for many fields, such as wireless
communication, coding theory, and machine learning [39, 41–44]. As we are able to approximate the
optimal measurement scheme of the qubit–qutrit system, we solve a greater problem, namely we find a
close approximation to an optimal Grassmannian packing of half-dimensional subspaces in Hilbert space of
dimension six.

2. Our general framework for QST optimization

Now we present our general framework for finding an optimal QST measurement scheme for a
user-specified system of finite dimension n, by solving a corresponding optimization problem. In figure 2,
the framework of customized QST is visualized: the user interface consisting of input measurement
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Figure 1. (a) Measurement setup for a qubit–qutrit system: only the qubit is measured, all unitary operations on the system
including entangling gates between the qubit and the qutrit are available. (b) Quantum circuit of the measurement procedure:
each of the 35 rank-3 projectors needed for a QST quorum are realized by applying a unitary operation Uj and then performing a
projective measurement on the qubit to distinguish between the qubit states |0〉 and |1〉. The resulting projection operators are
then given by Pj = Uj |0〉 〈0| ⊗ 13U†

j where 13 is the unity operation for the qutrit. Note that U1 = 1. (c) The projection on the
qubit state |0〉 can be realized for an electronic state in an NV center in diamond by resonance fluorescence where only the
electronic state |0〉e is excited by radiation and leads to fluorescence, thus allowing for the read-out of the electronic state in the
basis {|0〉e, |1〉e}. The state of the nuclear spin, mN, is not measured directly.

Figure 2. Workflow of the customized QST framework: on the left (red rectangle) is the user interface; on the right (green
rectangle) are the internal process modules.

specifications and an efficient customized QST scheme as the output is abstracted away from the internal
computational modules. Importantly, this procedure is quite flexible and allows to include case-specific
constraints to the available measurement.

The input is formed by the specifications and restrictions of the available measurements for the
quantum system under investigation. An important example of a restriction to measurement operators is
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the specific rank of the projectors, e.g. reference [29] considers two-outcome measurements where the
outcomes correspond to a rank-1 projector or to a rank-(n − 1) projector, respectively. Importantly, the
situation where only a subsystem of the quantum system is measured can be described by a restriction on
the ranks of the projection operators. Namely, the ranks of projection operators corresponding to this
measurement are at least the dimension of the subsystem’s complement. In this paper, we investigate in
detail the restriction to measuring one qubit as part of a composite system yielding measurements described
by projectors of rank n/2.

After the specifications of the system of interest are formulated, we parametrize the measurement
operators such that the parameters determine the states in Hilbert space which span the subspace,
corresponding to the projection operators. This allows us to use a minimal number of parameters for each
projector and thus minimizes the dimension of the optimization problem.

In our framework, we adopt the geometric quality measure, as defined by Wootters and Fields [21],
based on the information gain from the measurement results,

I = − ln

(
V

V0

)
+ const. (1)

where V0 is the volume of the space of all possible density matrices and V is the confidence volume, which
we will define more precisely in the following. The probability distribution after the measurement is
assumed to be Gaussian. We consider the part of this Gaussian distribution which is at least 1/e times its
maximum value. This part has an ellipsoidal shape. Now, the confidence volume V is the smallest
rectangular volume enclosing this ellipsoid. Note that the factor 1/e is an arbitrary choice. When choosing a
different number between zero and one, while changing the volume V and at the same time the constant in
equation (1), neither the information gain nor the quality measure, which we will define below, is affected
by this choice. For a set of measurement operators {Mj}, each measurement operator can be represented in
its spectral decomposition, i.e. as the sum of its eigenvalues λjk times the projectors Pjk onto the respective
eigenspaces, Mj =

∑
k λjkPjk. Then, the quality measure Q is defined as the volume spanned in operator

space by the traceless parts of the projectors. We will see soon the relation of Q to the confidence volume V.
Wootters and Fields [21] considered the case of non-degenerate measurements where each measurement is
represented by n rank-1 projection operators projecting on the eigenstates of the measurement operator. As
the eigenvectors of one measurement operator form an orthogonal basis, the optimization problem lies in
optimizing the relation between the different measurement operators or—in other words—between their
eigenbases. The confidence volume V is given by [21]

V =
V1 . . .Vn+1

Q with Vj˜

√
pj1 . . . pjn

(Nj)(n−1)/2
, (2)

where pjk = tr(Pjkρ) and Nj is the number of repetitions of the measurement j. Here, Vj is the confidence
volume for the part of the density distribution for measurement j and using the same factor 1/e as above.
The measurement outcome follows a multinomial distribution which can be approximated by a Gaussian
for a large number of repetitions. This also justifies the previously mentioned assumption that the overall
distribution after the measurements are performed is Gaussian. Averaging over the space of all density
matrices removes the dependence on the pjk and, under the assumption that each measurement is repeated
the same number of times Nrep :=N1 = · · · = Nn+1, yields

〈I〉 = ln(Q) +
n2 − 1

2
ln(Nrep) + const. (3)

In the case considered in [29], the optimization problem is to arrange independent rank-1 projectors Pj

maximizing the geometric quality measure. The extension of Wootters’ and Fields’ formalism is

straightforward, just the expression for the confidence volume is changed to V =
∏n2−1

j=1 Lj/Q with

Lj ∼
√

pj(1 − pj)/Nj where pj = tr(Pjρ). Here, we extend the use of the quality measure Q to degenerate
measurements where the measurement operators are denoted by projection operators which can be of rank
higher than one. This is relevant for situations where a subsystem is measured rather than the full system.
Further below, we will focus on measurements represented by projectors on half-dimensional subspaces.
However, the approach could also easily cover other cases, e.g. measuring the qutrit in a qubit–qutrit
system, where each measurement is described by three rank-2 projectors, two of which are independent. We
use the geometric measure detailed above in the formulation of our optimisation problem. Note that all
two-outcome measurements including the rank-1 case considered in [29] and the situation considered in
this paper have in common that one measurement determines one parameter because by repeating the
measurement two frequencies for the two possible outcomes are obtained. The two frequencies
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(probabilities) depend on each other as they have to add up to one. Consequently, a QST measurement set
consists of at least n2 − 1 different measurements because the density matrix is given by n2 − 1 real

parameters. Then the confidence volume is—also in this more general case—given by V =
∏n2−1

j=1 Lj/Q and

again we have Lj ∼
√

pj(1 − pj)/Nj following from the underlying binomial distribution. Then, it follows
straightforwardly that the expression for the averaged information gain is still of the form equation (3). The
constant in that expression, however, depends on the rank of the projectors and is different for the
non-degenerate case compared to the two-outcome measurements. However, this is unimportant for our
optimization problem. The length of a projection operator of rank l in operator space is given by√

tr(P2) =
√

l. Nevertheless, the volume spanned by the n2 − 1 projectors is the correct quality measure for
all ranks l following from the above considerations. Rescaling to unit vectors in operator space would be in
principle possible by changing again the constant in equation (3). However, we will keep the length
unchanged and instead compare to the upper bound of Q which would be reached if the traceless parts of
the Pj form a hypercube. A formal description for the specific example solved in this paper is provided
below.

We then tackle this problem by numerical means. The optimization problem of maximizing the volume
spanned by the projection operators is a non-convex optimization problem. In order to explore the search
space and find the global optimum, we used a combination of standard numerical methods, which for this
problem was sufficient. More details on the methodology will be given below. For larger systems, the
problem of finding optimal measurement schemes calls for more sophisticated approaches, such as ones
based on machine learning and deep learning.

The output of our framework is a set of measurement operations, determined by the system’s
specifications and restrictions which have been given as input. This set of measurements allows the user to
perform the most efficient state tomography procedure possible. This means the QST measurement set
suggested by our optimization scheme maximizes average information gain for a fixed number of
repetitions Nrep of each of the measurements. At the same time, if we aim at a certain fixed value for the
information gain, then Nrep is minimized, see equation (3). Note that we limit the search to QST
measurement sets with the minimal number of different measurements (quorum).

3. QST by measuring a qubit in a composite system

Despite the limitation of measuring no more than one qubit in each run, complete state tomography is
possible if we combine the available measurement with unitary transformations. We ask what is the ideal
choice of a minimal measurement set (quorum) for QST. If one out of N qubits is measured, a complete set
of MUBs can be harnessed to construct an ideal quorum in the sense that the traceless parts of the
rank-2N−1 projectors form a hypercube [30]. Then the geometric quality measure reaches its upper bound.
For two qubits, QST with parity readout, a scenario equivalent to measuring one of the qubits, was
proposed [46] and implemented [47] for spin qubits in quantum dots.

For a Hilbert space of (non-prime power) dimension six, which corresponds to the qubit–qutrit system
we consider in this paper, a complete set of MUBs is not available. The goal of this paper is to show that a
quorum of projectors can come so close to the upper bound for the geometric quality measure described
above that the deviation is without practical relevance for performing QST. This is of practical importance
because qubit–qutrit systems are among the experimentally studied quantum devices, as we will show
below using a physical example. Moreover, our result has implications for Grassmannian packing problems,
as we will discuss in detail in sections 4 and 5. Note that the work by Bodmann and Haas [30] is of
frame-theoretical nature and the implication for QST is rather a corollary. In the same way our numerical
result has implications for frame theory.

Formally, the problem we are solving is to find unitary operations Uj(j = 1, . . . , 35) acting on the
six-dimensional Hilbert space such that the projection operators

Pj = U†
j |0〉 〈0| ⊗ 13Uj (4)

maximize Q. Here, |0〉 〈0| is the projector on the ground state of the qubit and 13 is the identity operator
for the qutrit. Also see figure 1(b).

An example for a qubit–qutrit system is a negatively charged NV center in diamond [48, 49]. If the
nitrogen nucleus is a 14N, then the nuclear spin is one, i.e. it represents a qutrit. Two states of the electronic
spin-1 of the NV center effectively constitute a qubit. NV centers have been under intense investigation due
to the long spin lifetimes of both, the nuclear spin and the electron state, and due to the possibility to
perform unitary operations by microwave driving or by selectively exciting optical transitions between the
energy levels of this quantum system [48]. Single-shot projective measurements on the lowest electronic
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state can be done by resonant excitation fluorescence [49–52]. Such measurements can be described by
rank-3 projectors which are considered here (see figure 1).

4. Packings in a Grassmannian manifold

The subspaces of dimension l described by the projection operators of rank l form a vector space with
special properties, called a Grassmannian manifold. We will define this notion below. Given an
n-dimensional vector space V over a field F, a Grassmannian Gr(l,V) is the space of l-dimensional linear
subspaces of V. Subspace packing in a Grassmannian manifold, or Grassmannian packing, is the problem of
maximizing the minimum pairwise distance in a set of subspaces. We will describe below in detail how this
packing problem relates to the problem of optimal QST in the setting considered here. We consider the case
in which F = C and V = C6. The problem of arranging a set of m subspaces {Uj ∈ Gr(l,Fn), j = 1, . . . , m}
in an optimal, maximally spread fashion has been studied for both F = R and F = C [30–40]. Typically,
optimality here refers to maximizing the minimum chordal distance d2

c (Pj, Pi) = l − tr(P†
j Pi) where Pj is the

projector on the subspace Uj, i.e. mini	=j d2
c (Pj, Pi) shall be maximal.

Here we consider a problem which is different from optimal spreading, as we are not interested in
maximizing the smallest distance between the projectors on the subspaces but in the subspaces being
informationally independent. However, for the specific situation we consider, F = C, l = n/2, the optimal
solutions for QST can be naturally extended to a maximum set of an optimal Grassmannian packing as we
will discuss in the following.

5. Optimality condition, upper bound, and consequences

We consider a Hilbert space of dimension n and projection operators projecting onto subspaces of
dimension l, later we will specialize to n = 6 and l = 3. Then, the measurements are described by rank-l
projection operators. The matrix corresponding to a rank-l projection operator has l linearly independent
columns, which define an l-dimensional subspace. Conversely, every l-dimensional subspace can be
described by a projection operator of rank l.

A minimal state tomography set consists of n2 − 1 of those projectors, {P1, . . . , Pn2−1}. In this case, the
problem of finding an optimal QST quorum is equivalent to the problem of arranging the projectors
Pj(j = 1, . . . , n2 − 1) in an optimal fashion. We define the traceless parts of these operators Qj = Pj − l1/n.
As stated above, we evaluate the quorum by using the quality measure Q introduced by Wootters and Fields
[21], defined as the volume spanned by {Q1, . . . , Qn2−1} in the vector space of traceless n × n matrices with
the scalar product tr(A†B). The length of the Qj in this vector space is fixed to

√
tr(Q†

j Qj) =

√√√√tr

((
Pj −

l1

n

)† (
Pj −

l1

n

))
=

√
l − l2

n
, (5)

and thus, the volume is fully determined by the angles between the Qj.
An upper bound for the quality measure is

Qub =
(
l(1 − l/n)

)(n2−1)/2
, (6)

which is reached only if tr(Q†
j Qi) = 0 for all i 	= j. Note that any rank-l projector is available since we

assume that it is possible to perform one basic measurement projecting on an l-dimensional subspace and
that all unitary operations can be performed. Below we describe how an upper-bound-reaching set of
rank-n/2 projection operators relates to two other notions, namely mutually unbiased subspaces and
quantum 2-designs.

5.1. Mutually unbiased subspaces
We want to see how reaching the upper bound compares to the chordal distance and find for tr(Q†

j Qi) = 0,

d2
c (Pj, Pi) =

l(n − l)

n
. (7)

This is the so-called orthoplex bound, which appears as an upper bound for the minimal chordal distance
of projectors on l-dimensional subspaces in Cn for a set of at least n2 + 1 elements [30]. If for two subspaces
of the Hilbert space the corresponding projectors fulfill equation (7), they are called mutually unbiased
subspaces [53]. Now, we will focus on the case l = n/2, i.e. the problem of packing of half-dimensional
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subspaces. For this case, Bodmann and Haas [30] showed using a construction from a complete set of MUBs
that if n is a power of two, an optimal orthoplex-bound-achieving packing, maximal in terms of the
number of its elements, exists. This packing consists of n2 − 1 projectors Pj whose corresponding Qj are
pairwise orthogonal, and the projectors Pj+n2−1 = 1 − Pj for j = 1, . . . , n2 − 1. The maximal number of
elements of a set of projectors which achieves the orthoplex bound is 2(n2 − 1), thus this maximum of
elements is reached here. In general—not limited to the case of n being a power of two—for l = n/2, the
bound simplifies to Qub = (n/4)(n2−1)/2 and the condition for the pairwise chordal distance becomes

d2
c (Pj, Pi) =

n

4
. (8)

For the qubit–qutrit system considered here, n = 6, and a quorum has 35 elements, and with l = n/2 = 3,
the quality measure’s upper bound is given by Qub = (3/2)35/2 ≈ 1206.69. Note that the construction by
Bodmann and Haas to obtain a maximal orthoplex-bound achieving set does not work in dimension six.
Thus our numerical result contains novel insights in the existence of an (approximated) orthoplex bound
achieving set and potential inspiration for numerically tackling the problem for higher dimensions which
are not powers of two, such as ten or twelve.

5.2. Quantum 2-designs
The problem of optimal arrangement of projections is closely related to the notion of quantum t-designs.
Furthermore, quantum t-designs are known to be highly relevant to optimal QST measurement schemes.
For the situation of measuring a qubit in a qubit–qutrit system, we are interested in t-designs formed by
projectors of higher rank—namely rank three. Nevertheless, we will briefly first review the case of t-designs
formed by rank-1 projection operators. In this case, quantum t-designs can be defined as sets of projectors
{
∣∣ψj

〉 〈
ψj

∣∣ ; j = 1, . . . , N} on the states
∣∣ψj

〉
and corresponding weights pj > 0 with

∑N
j=1 pj = 1 which

fulfill [54]
N∑

j=1

pj

∣∣ψj

〉 〈
ψj

∣∣⊗t
=

∫
dψ |ψ〉 〈ψ|⊗t (9)

where the integral is taken over a uniform distribution of all states of the Hilbert space. POVMs are
1-designs [55]. Examples of quantum 2-designs with equal weights, pj = 1/N for j = 0, . . . , N, are
SIC-POVMs [24] and complete sets of MUBs [56]. If complete sets of MUBs are not available, as is the case
for dimension six, the construction of weighted 2-designs with non-equal weights can be useful [54]. Under
the assumption of linear reconstruction, it has been shown that quantum 2-designs are ideal for QST
performed by one repeated generalized measurement described by one informationally complete POVM
[55] and for projective non-degenerate measurements [54].

In references [30, 57, 58], quantum t-designs of higher rank have been investigated and examples have
been constructed. Appleby [58] has found quantum 2-designs of higher rank which behave similarly to
SIC-POVMs, termed symmetric informationally complete measurements. The maximal
orthoplex-bound-achieving sets of half-dimensional subspaces discussed above are examples of higher-rank
(n/2) quantum 2-designs [30, 57]. It was first considered by Zauner [57] as an example of a quantum
2-design consisting of operators of higher rank. Bodmann and Haas [30] explicitly construct these 2-designs
using complete sets of MUBs and Johnson codes.

6. Methods

6.1. Formulation of the optimization problem
The QST quorum for a qubit–qutrit system consists of 35 measurements each described by a projector on a
three-dimensional subspace of the six-dimensional Hilbert space. In order to parametrize the projectors, we
use three pairwise orthogonal vectors of the Hilbert space. By vectors we mean here normalized vectors with
arbitrary global phase. In general, such a vector in C6 is given by ten real parameters. However, we can
choose each of the three vectors effectively in a four-dimensional Hilbert space. The reason is the
dimensionality of the involved spaces: for any three-dimensional subspace and any four-dimensional
subspace of a six-dimensional Hilbert space there is at least one vector which is a common element of both
subspaces. If we have chosen the first vector of our three-dimensional subspace in this way, we can choose
the second vector from a four-dimensional subspace of the five-dimensional space which is orthogonal on
the first vector. Analogously, any two-dimensional subspace and any four-dimensional subspace of a
five-dimensional Hilbert space have at least one vector in common. Finally, the third vector is chosen from
the remaining four-dimensional subspace orthogonal on the first and the second vector. Each of the vectors,
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denoted in a basis of the respective four-dimensional subspace by |ψ〉 =
∑4

i=1 xi |i〉, is given by six real
parameters, θ1, θ2, θ3 and ϕ2,ϕ3,ϕ4, in the following way,

x1 = cos θ1, (10)

x2 = sin θ1 cos θ2 eiϕ2 , (11)

x3 = sin θ1 sin θ2 cos θ3 eiϕ3 , (12)

x4 = sin θ1 sin θ2 sin θ3 eiϕ4 . (13)

We compute a unitary operation which maps the second vector into the space orthogonal to the first. Then
we compute a unitary operation which maps the third vector on the space orthogonal to the first and the
second vector. Thus, each projector is given by 18 real parameters. Furthermore, we know that the quorum
performance is invariant under any unitary operation on the Hilbert space. Therefore, we can choose for
the first projector without loss of generality, P1 = diag(1, 1, 1, 0, 0, 0), i.e. that it projects on the first three
basis states for whatever basis we have chosen. Overall, our optimization problem has
Nparams = 34 × 3 × 6 = 612 real parameters.

6.2. Numerical approaches
The goal of this section is to describe the numerical methods used, and to provide sufficient technical
details of packages, function implementations, and parameters used, in order to allow for reproducibility of
the results.

6.2.1. Maximizing the volume spanned by the traceless parts of the projection operators
The set of traceless parts, {Q1, . . . , Qn2−1} of the projectors forming the QST quorum can be written in a
(n2 − 1) × (n2 − 1) matrix using an orthogonal basis for the space of traceless Hermitian n × n matrices.
Then the quality measure Q is the determinant of this matrix. The objective of our optimization problem is
to maximize the value of Q.

6.2.2. Minimizing the non-orthogonal contribution
Coming close to the upper bound for the quality measure, Qub = (3/2)35/2, see equation (6), we conjecture
that Qub can indeed be reached. In the following we can make use of this conjecture because then a quorum
which reaches the maximum for the geometric quality measure also has no non-orthogonal contributions
for the matrices Q1, . . . , Q35. To deal with slow convergence, we additionally consider a measure of
non-orthogonality,

L =
∑
i	=j

|tr(Q†
i Qj)|, (14)

where i, j ∈ {1, . . . , 35}. Details of the optimization procedure including maximizing Q and ln(L) are
provided in section 6.2.4 below.

In figure 3(a) we demonstrate the relationship between projectors’ parameter values and the quality
measure Q. In figure 3(b) we show the relationship between the parameter values, describing the projection
operators and the non-orthogonal contribution of the traceless parts of the projectors for the same two
parameters. For simplicity of the visual representation, all parameters here are optimized, except for
parameters 611, 612. These two parameters give the phases ϕ4, see equation (13), for the third vector
spanning the 34th and the 35th subspace, and are denoted by ϕ34,3

4 and ϕ35,3
4 . The two plots show the

respective search spaces of the two aforementioned optimization objectives. We explore the search
spaces to look for the optimum. The global optimum coincides for both objectives, it maximizes the
volume spanned by the projection operators, as well as the traceless parts of the projection operators
in the optimal quorum are orthogonal. The numerically optimized values used for the plot are available as
supplemental material at [59].

6.2.3. Powell’s local search
In order to numerically optimize the set of measurement operators, we used a local search method (Powell’s
derivative-free method [45]) suitable for finding local optima in continuous optimization problems. The
optimization problem is non-convex with many local optima, which is why the local search approach was
used with different starting points in parallel to assure diverse exploration of the search space.

Powell’s derivative-free method is useful for calculating the local minimum of a continuous but
complicated function, where it is not trivial to take a derivative. Powell’s method is known to perform very
well as a local optimizer. Two of us applied it successfully to another QST optimization problem [29]. By
starting it with 1000 diverse and different starting points we explore (and exploit) the search space well.
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Figure 3. Optimization search in the landscape of potential solutions. For simplicity of the visual representation, all parameters
are optimized, except for parameters that give the phases ϕ4, see equation (13), for the third vector spanning the 34th and the
35th subspace. Therefore, they are denoted by ϕ34,3

4 and ϕ35,3
4 .

Table 1. Parameters for the minimize function applied to
minimize −Q and ln(L). The first column gives the number the
minimize function is applied.

# Minimize xtol ftol Maxiter

1–104 10–4 10–4 6.12 × 105

105–144 10–6 10–6 6.12 × 105

145–159 10–7 10–7 6.12 × 105

159–164 10–8 10–8 6.12 × 105

165–169 10–8 10–8 106

169–172 10–8 10–8 107

173–182 10–8 10–8 106

183–242 10–8 10–8 105

242–512 10–8 10–8 104

6.2.4. Technical details
Using Powell’s local search method, we alternated between maximizing the volume spanned, and
minimizing ln(L) for 512 iterations. We start this alternation procedure with using the standard parameters
for the minimize function in the scipy package for python. For the sake of reproducibility, we provide the
parameters of the minimize function in table 1.

6.3. Construction of the maximal orthoplex set from the optimal set of projectors
Finally, we use the optimal set of 35 projectors to construct a maximal orthoplex set of 70 projectors, by
using the method described in [30]. Namely, for each of the projectors in the optimal set, we add its
orthogonal complement. The construction of the maximal orthoplex set in such a way is made possible by
the fact that the traceless parts of the 35 projectors in the optimal set are (approximately) pairwise
orthogonal, tr(Q†

i Qj) ≈ 0 for j 	= j.

7. Numerical results

The best result we obtained numerically for the geometric quality measure is

Qnum = 1206.53, (15)

which corresponds to a deviation of ΔQ/Qub = (Qub −Qnum)/Qub = 1.3 × 10−4. For the following
measure of non-orthogonality, L this quorum yields ln(L) = −0.083 94. We include the corresponding
parameters which determine the rank-3 projection operators of the quorum as well as the implementation
of the computation of the quality measure Qnum and of ln(L) from these parameters in supplemental
materials available at [59].

Certainly, coming close to the upper bound for the geometric quality measure is not a proof of the
existence of a quorum which actually achieves the upper bound. However, for practical purposes, the small
deviation of our numerical result from the upper bound is inconsequential for the following reasons. The
average information gain 〈I〉, quality measure Q, and number of repetitions of each of the measurements,
Nrep obey the relation given in equation (3), see section 2. This relation yields

Nrep ∼ Q−2/(n2−1). (16)

9
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Figure 4. Loss-affected quality measure Ql as a function of the probability 1 − p that a quantum state is lost.

Here (n = 6), the relative deviation of 1.3 × 10−4 for the quality measure corresponds to a necessary
relative increase in the number of repetitions of merely 10−5. This implies that if Nrep = 105 for the ideal
quorum, the deviation in quality of our quorum can be compensated by just one more repetition of each of
the measurement.

The relation equation (16) also allows to take loss into account. For simplicity, we consider here the case
where each of the measurement is subject to loss at the same rate. This is justified if the loss happens during
the elementary measurements while the unitary operations are free of loss. Let us assume that for each
experimental run, with a probability p the measurement is performed as intended and with a probability
1 − p the quantum state is lost and there is no measurement result. This can be compensated by increasing
the numbers of repetitions by a factor of 1/p. To take this into account, a loss-affected quality measure Ql is
given by Ql = Qp(n2−1)/2, see figure 4.

8. Discussion

In this paper, we have optimized a QST scheme for a qubit–qutrit system where only the qubit can be
measured directly and all unitary operations are available. The quality of our solution approximates the
upper bound which corresponds to the situation where the measurements project onto subspaces which are
mutually unbiased. For practical purposes, the disadvantage of not fully achieving the upper bound can be
disregarded. From a mathematical perspective, however, the explicit construction of a set of 35 mutually
unbiased three-dimensional subspaces in C6 remains an open problem. Such a construction might also
allow a generalization to higher composite dimensions such as ten or twelve, where the numerical approach
is significantly more difficult than for the six-dimensional case studied in this paper. While this example of a
qubit–qutrit system is of importance in its own right given its realization by an NV center, our general
approach can be applied to a broad range of QST problems under limited measurements. This might allow
experimentalists to find the most optimal QST scheme for their specific system.

Our method of numerically solving the smaller-dimensional problem of finding a set of projection
operators, optimal for QST in the sense of [21], and then extending this set to build a maximal set which
approximates the orthoplex bound may be employed for looking for approximations of maximal
orthoplex-bound-achieving sets in higher dimensions.

For a higher dimension n > 6, the optimization problem becomes computationally more challenging.
Further future research might include the application and tailoring of machine learning methods to the
high-dimensional optimization problem. In reference [60], we have already applied machine learning
methods and obtained rank-1 QST quorums in dimension eight which are improved compared to the result
achieved by standard numerical methods used in [29].
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