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Noise affects the coherence of qubits and thereby places a bound on the performance of quantum
computers. We theoretically study a generic two-level system with fluctuating control parameters in a
photonic cavity and find that basic features of the noise spectral density are imprinted in the transient
transmission through the cavity. We obtain analytical expressions for generic noise and proceed to study the
cases of quasistatic, white and 1=fα noise in more detail. Additionally, we propose a way of extracting the
noise power spectral density in a frequency band only bounded by the range of the qubit-cavity detuning
and with an exponentially decaying error due to finite measurement times. Our results suggest that
measurements of the time-dependent transmission probability represent a novel way of extracting noise
characteristics.
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A main threat to large-scale quantum computation is
noise-induced decoherence of the qubit state [1,2].
Common noise sources include fluctuating electromagnetic
fields that arise from noisy control parameters as well as the
interaction with the environment, e.g., 1=f noise due to
two-state fluctuators in the material [3], the nuclear spin
bath in semiconductor quantum dots [4–6], and magnetic
flux noise, quasiparticles, and two-level fluctuators in
superconducting circuits [7–10]. Noise may even affect
spin qubits in isotopically purified materials as the spin-
orbit interaction couples the spin and charge, thus intro-
ducing charge noise to the system [11,12]. Relevant
examples are hole spins in germanium [13–20].
With quantum error correction still a long way off, the

characterization and suppression of noise is of the utmost
importance in intermediate-scale quantum devices [21–23].
In this Letter, we propose a novel way of extracting noise
characteristics using the cavity transmission which has
been used for the dispersive readout of quantum systems
[24–27] as well as for the determination of system
parameters [28,29] and to detect signatures of the strong
coupling regime of cavity quantum electrodynamics
[27,30–33]. We go beyond the standard steady-state case
and demonstrate that fluctuations affecting the qubit leave a
clear trace in the transient transmission. Our model is
generally applicable to a wide range of cavity-coupled
qubit systems, and in contrast to established noise spec-
troscopy techniques such as the filter function formalism or
relaxometry [34], our method does not require many
high-fidelity pulses for dynamical decoupling [35–39],
nor do we have to make any assumptions on the noise,
e.g., it is not necessary to restrict the analysis to weak or
Markovian noise.
We study a single mode of an electromagnetic cavity

with frequency ωc interacting with an infinite number of

external modes. A qubit affected by noise is placed inside
the cavity and interacts with the cavity mode (Fig. 1). We
consider both transverse and longitudinal qubit-photon
couplings. In the absence of external driving, in a frame
corotating with the probe field at frequency ωp, and within
the rotating wave approximation, only the transverse
coupling g is relevant, and the cavity-coupled two-level
system is described by the Hamiltonian

H ¼ ½ωq þ δωqðtÞ − ωp�σz=2þ Δa†aþ gðaσþ þ a†σ−Þ;
ð1Þ

where Δ ¼ ωc − ωp is the cavity-probe detuning, σz the
Pauli Z matrix, a the photon annihilation operator, and σ− a
ladder operator acting on the qubit. The qubit energy
separation is affected by noise, ωq þ δωqðtÞ, and the
fluctuating component may be written to leading order
as δωqðtÞ ¼ λδXðtÞ, where δXðtÞ is the dynamical noise
that couples to the qubit control parameter X with strength
λ ¼ ∂XωqjδX¼0. The qubit-cavity coupling can also be
affected by noise, and we will take this into account further
below. As is shown in the Supplemental Material [40], the
system is well described by the quantum Langevin equa-
tions for the expectation values of the operators σ− and a,

dhσ−i
dt

¼ −i½ωq þ δωqðtÞ − ωp�hσ−i −
γ

2
hσ−i þ ighσzihai;

dhai
dt

¼ −iΔhai − κ

2
hai − ighσ−i þ

ffiffiffiffiffi
κ1

p hbinðtÞi; ð2Þ

where γ is the total noise-independent qubit decoherence
rate [41], and κ ¼ κ1 þ κ2 is the total cavity loss rate given
by the sum of the rates κj at port j ∈ f1; 2g. hσzi can
depend on time but knowledge of its specific form is not
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required for computing the transmission within the pertur-
bative approach presented below. The bath input field at
port 1 is chosen to be a plane wave and hence a constant in
the rotating frame, hbinðtÞi ¼ hbini, while we assume no
input field to be present at port 2.
By solving the system of coupled differential equa-

tions (2), one may obtain the cavity transmission ampli-
tude by employing input-output theory [42–44], AðtÞ ¼
hboutðtÞi=hbinðtÞi ¼ − ffiffiffiffiffi

κ2
p haðtÞi=hbinðtÞi. An exact solu-

tion of Eq. (2) cannot be obtained for generic noise.Working
in the regime where the qubit-cavity coupling is small
compared to the dominant energy scale, jgj ≪ η≡
maxfjδ0j; jκ − γjg with the unperturbed qubit-cavity detun-
ing δ0 ¼ ωc − ωq, we may solve Eq. (2) perturbatively to
leading order in g=η,

AðtÞ ¼
ffiffiffiffiffiffiffiffiffi
κ1κ2

p
iΔþ κ=2

ðe−iΔt−κt=2 − 1Þ

−
ffiffiffiffiffi
κ2

p
hbini

e−iΔt−κt=2½hað0Þi − ighσ−ð0ÞiIðtÞ�;

IðtÞ ¼
Z

t

0

eiδ0t
0þðκ−γÞt0=2−iλXðt0Þdt0: ð3Þ

Here, hσ−ð0Þi and hað0Þi are initial conditions, and we
introduce the noise integral IðtÞ containing the stochastic
phaseXðtÞ ¼ R

t
0 δXðt0Þdt0. There are a few remarks in order

here: (i) Although we treat g perturbatively, this does not
mean that our approach does not contain strong coupling
cases with jgj > κ, γ. There, the approximation remains
sound if jgj ≪ jδ0j. (ii) To leading order in g the long-time
solution is unchanged by the noise, and only the transient
transmission allows for a determination of noise character-
istics. The transient phasegenerally lasts for a time∼1=κ, but
the decay of the noise integral also depends on γ and the
details of the noise as discussed below. The minimum

detection time interval Td decreases with increasing κ2
and signal-to-noise ratio (SNR), Td ∼ 1=ðκ2SNRÞ [45,46],
and itmust be smaller than the typical timescale onwhich the
noise changes, a condition that can be particularly restrictive
for high-frequency noise. The number of data points N
attainable in the transient phase is then determined by the
SNR of the detector, N ∼ ð1=κÞ=Td ∼ SNR, and SNRs
exceeding 102 have been reported in the solid-state literature
[45,47,48]. Additionally, the finite time averaging process
dictates a maximum detuning δm0 , and for κ ∼ γ we require
g ≪ δm0 ∼ 1=Td for our results to be valid. (iii) Even at this
pointwe can see the role of the initial qubit state. For hσ−ð0Þi
to be nonvanishing, we need the qubit to be initialized in a
coherent superposition of its energy eigenstates, and in the
following we assume hσ−ð0Þi ¼ 1=2. Moreover, we assume
that hað0Þi ¼ 0, e.g., the cavity may initially be empty.
(iv) There are two quantities in Eq. (2) that are affected by
finite temperature effects: the qubit level population hσzðtÞi
and the decoherence rate γ. The former appears in the
expansion of haðtÞi only at higher orders in perturbation
theory, and the latter is only altered inmagnitude at increased
thermal energies, while the form of the Langevin equations
is unchanged. As a result, Eq. (3) also describes the noisy
transmission at finite temperature. Remarkably, temperature
does not wash out the noise traces in the transient cavity
transmission inmagnitude.However, an increased γ can lead
to a quickly decaying noise signal, hence requiring small
measurement times.
Averaging over the noise is possible once we consider an

observable quantity, such as the transmission probability
jAj2 that will be investigated here. We remark that since the
zeroth-order term in Eq. (3) is not affected by noise one has
⟪jAj2⟫ ¼ ⟪jAj⟫2 to first order in g=η, and hence the
variance of jAj vanishes. In general, the kth central moment
of jAj can become nonzero only at order k or higher in g=η,
implying ⟪jAjk⟫ ¼ ⟪jAj⟫k þO½ðg=ηÞ2� [40]. In present-
day two-level systems one may expect γ ∼ κ ∼ g ∼MHz
[27]. For the perturbative approach to be valid we then must
consider the dispersive regime, jδ0j ≫ jgj. Assuming sym-
metric mirrors κ1 ¼ κ2 ¼ κ=2 and choosing hbini to be real,
we obtain up to leading order in g=η,

⟪jAðtÞj⟫ ¼ jA∞j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0ðtÞ þ ξ1ðtÞ

p
: ð4Þ

Here, jA∞j ¼ κ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Δ2 þ κ2

p
is the Lorentz-shaped trans-

mission through an empty cavity at long times κt ≫ 1, and
we introduce the quantities

ξ0ðtÞ ¼ 1þ e−κt − 2e−κt=2 cosΔt;

ξ1ðtÞ ¼
ge−κt=2ffiffiffiffiffiffiffiffi
2=κ

p hbini
½FðtÞRe⟪IðtÞ⟫þ GðtÞIm⟪IðtÞ⟫�;

FðtÞ ¼ 2Δ
κ

ðcosΔt − e−κt=2Þ − sinΔt;

GðtÞ ¼ cosΔt − e−κt=2 þ 2Δ
κ

sinΔt: ð5Þ

bin(t)

bout(t)

δωq(t)

ωq

ωc

port 1

port 2

FIG. 1. A two-level system (qubit, shown in blue) with energy
splitting ωq is affected by noise δωq (red) and is placed inside a
single-mode electromagnetic cavity with frequency ωc. Partially
transparent mirrors allow for the interaction of the qubit-cavity
system with external modes. An input field binðtÞ enters at port 1,
causing an output field boutðtÞ that leaves the cavity at port 2,
thereby creating a time-dependent transmission through the
system from left to right.
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ξ0ðtÞ describes the transient signal of an empty cavity,
while ξ1ðtÞ is a correction term due to the interaction with
the noisy qubit. The latter can be seen as the normalized
fluctuations in the averaged transmission probability,

ξ1 ¼
⟪jAj2⟫ − jA∞j2ξ0

jA∞j2
¼ δ⟪jAj2⟫

jA∞j2
; ð6Þ

and features the averaged noise integral (ANI),

⟪IðtÞ⟫ ¼
Z

t

0

eiδ0t
0þðκ−γÞt0=2⟪e−iλXðt0Þ⟫dt0; ð7Þ

where ⟪…⟫ denotes the average over many measurements.
Since only first-order processes are taken into account and
single photons hence cannot contain noise correlations,
only the averaged fluctuations ξ1 allow for a characteriza-
tion of noise features. In order to be able to neglect the g2

term when expanding the absolute value squared of the
transmission amplitude (3) while still suppressing higher
orders in the perturbation expansion, we requireffiffiffi
κ

p
=hbini ∼ 1. This restriction, however, is not severe as

hbini may be tuned externally and independently of the
remaining parameters. Equation (4) describes the trans-
mission for quite general systems and without any spec-
ifications of the noise δXðtÞ or the corresponding stochastic
phase XðtÞ, and it is shown for exemplary parameter
settings in Fig. 2. By recording the noisy part of the
transmission via comparison with the transmission through
an empty cavity for two distinct detunings Δ1 and Δ2, one
may extract the real and imaginary part of the ANI for any
δ0 up to a desired maximum time tm by choosing jΔ2 −
Δ1jtm < π [40].
Up to this point the linearized noise has been treated

exactly. In many realistic systems, however, noise affecting
ωq will also affect g. Writing g → gþ δgðtÞ, where to
leading order δgðtÞ ¼ λ0δXðtÞ with λ0 ¼ ∂XgjδX¼0, we may
work to first order in δg and integrate by parts to obtain an
additional term in the averaged transmission [40],

⟪jAðtÞj⟫ ¼ jA∞j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ξ0ðtÞ þ ξ1ðtÞ þ ξ01ðtÞ

q
; ð8Þ

where ξ0ðtÞ and ξ1ðtÞ are as given in Eq. (5) and

ξ01ðtÞ ¼
λ0

λ

e−κt=2ffiffiffiffiffiffiffiffi
2=κ

p hbini
F ðtÞ ð9Þ

with

F ðtÞ ¼ eðκ−γÞt=2⟪e−iλXðtÞ⟫½GðtÞ cos δ0t − FðtÞ sin δ0t�

þ GðtÞ
�
δ0Im⟪IðtÞ⟫ −

κ − γ

2
Re⟪IðtÞ⟫ − 1

�

þ FðtÞ
�
δ0Re⟪IðtÞ⟫þ κ − γ

2
Im⟪IðtÞ⟫

�
: ð10Þ

In this case the fluctuations are δ⟪jAj2⟫=jA∞j2 ¼ ξ1 þ ξ01
in analogy to Eq. (6). While we must treat the noise in g
perturbatively, this is not a severe restriction since the
fluctuations in g are expected to be bounded by the
coupling itself, δg ¼ λ0δX < g. The effect of noise in
the energy separation and the qubit photon coupling on
the averaged transmission can be clearly seen in Fig. 2(b).
At the double resonance Δ ¼ δ0 ¼ 0 the term ξ1 vanishes
identically, and for weak coupling ξ01 is the dominant
contribution.
Having obtained an expression for the measurable

average transmission probability for generic longitudinal
qubit noise affecting the energy separation and the coupling
constant, we proceed to study the averaged phase (AP)
⟪e−iλXðtÞ⟫ and the ANI ⟪IðtÞ⟫ in more detail. The
stochastic phase XðtÞ is defined as the time integral over
the noise δXðtÞ which is assumed to have zero mean in the
remainder of this Letter. When the autocorrelations
⟪δXð0ÞδXðτÞ⟫ decay on timescales τc which are small
compared to the time of integration, the random phase is a
sum of many independent random variables. In this
situation the central limit theorem guarantees that the

FIG. 2. The normalized fluctuations in the averaged trans-
mission probability δ⟪jAj2⟫=jA∞j2 ¼ ξ1 þ ξ01 as a function of
time. We compare the cases of a noise-free (green) and noisy
(blue/orange) qubit placed inside the cavity. Solid lines are drawn
according to Eqs. (5) (blue) and (9) (orange). Squares are
numerical results obtained by averaging over 103 exact solutions
of the full Lindblad equation, allowing for up to 12 cavity
photons and assuming normally distributed quasistatic noise with
zero mean and standard deviation δXrms ¼ 0.05δ0. (a) The
complete first-order transient curve for the case g ¼ 0.1κ ¼
0.1γ ¼ 0.01δ0 at Δ ¼ 0. We find excellent agreement between
the analytical and numerical results, even in the presence of a
fluctuating coupling constant as can be seen from the magnified
section of the plot in panel (b). (c) The initial first-order transient
curve for the strong coupling case g ¼ κ ¼ γ ¼ 0.01δ0 at Δ ¼ 0.
(d) The first-order transient curve for g ¼ κ ¼ 0.01γ at δ0 ¼ Δ ¼
0.1γ with δXrms ¼ γ. The remaining parameter values used are
hσzð0Þi ¼ 0, λ ¼ 0.9, λ0 ¼ −0.1, ωq=T ¼ 1, and

ffiffiffi
κ

p
=hbini ¼ 1.
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probability distribution of XðtÞ is Gaussian, and we may
write for the AP [49,50]

⟪e−iλXðtÞ⟫ ¼ exp

�
−
λ2

2π

Z
∞

0

sin2ðωt=2Þ
ðω=2Þ2 SðωÞdω

�
; ð11Þ

where SðωÞ is the noise spectral density, given by the
Fourier transform of the noise autocorrelator. Since the
lower integration bound is zero, the Gaussian approxima-
tion is not expected to hold at measurement times t that are
of the same order as the noise correlation time τc. Instead,
the condition τc ≪ t must be met for Eq. (11) to accurately
describe the stochastic phase in the transient cavity trans-
mission. On the other hand, δXðtÞ itself may be the sum of
many uncorrelated microscopic modes. In this case XðtÞ
will follow Gaussian statistics regardless of the integration
time t. If none of the above conditions are met, one must go
beyond the Gaussian approximation [51].
There are two prominent special cases for which the ANI

in the Gaussian approximation may be explored further
analytically, quasistatic noise and white noise. We first
consider the case of quasistatic noise [52]. Assuming the
total integration time t to be smaller than the time scale on
which the quasistatic noise changes, the ANI becomes a
Gaussian and may be evaluated,

⟪IðtÞ⟫qs ¼
ffiffiffi
π

2

r
eY

2

λδXrms

�
erfðYÞ þ erf

�
λδXrmstffiffiffi

2
p − Y

��
;

ð12Þ

where Y¼½iδ0þðκ−γÞ=2�= ffiffiffi
2

p
λδXrms, δXrms ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
⟪δX2⟫

p
is the root mean square of the noise, and erf denotes the
error function. We now turn to the case of white noise,
where S ¼ S0 is constant. The exponent of the AP becomes
linear in time, yielding the exact expression for the ANI,

⟪IðtÞ⟫w ¼ eiδ0tþðκ−γÞt=2−λ2S0t=2 − 1

iδ0 þ ðκ − γÞ=2 − λ2S0=2
: ð13Þ

For S0 ¼ 0, Eq. (13) is the ANI in the noise-free case. As
white noise describes a Markovian process, it only renorm-
alizes the qubit decoherence rate γ stemming from the
Lindblad formalism, γ → γ þ λ2S0.
Next, we investigate generic noise. In real measure-

ments, data cannot be acquired over an infinitely broad
frequency band. This can be taken into account by
introducing an ultraviolet (uv) cutoff in Eq. (11), i.e., by
shifting the upper integration bound from infinity to ωuv.
For ωuvt ≪ 1, the sine function in Eq. (11) may be
expanded around zero. Taking into account the leading
term in the expansion, the exponent of the AP becomes
quadratic in time and the ANI may be evaluated,

⟪IðtÞ⟫ ¼ πffiffiffiffiffiffi
2P

p eZ
2

λ

�
erfðZÞ þ erf

� ffiffiffiffiffiffi
P
2π

r
λt − Z

��
; ð14Þ

where Z ¼ ffiffiffiffiffiffiffiffiffiffiffi
π=2P

p ½iδ0 þ ðκ − γÞ=2�=λ and P ¼ R
SðωÞdω

is the noise power in the band ½0;ωuv�. As noise in quantum
computation must be considered over a large bandwidth
corresponding to gate operation times, the noise power P
provides a practical figure of merit for the comparison of
quantum information platforms [53]. Realistically, the
condition ωuvt ≪ 1 can be fulfilled for spectra dominated
by low frequencies such as 1=fα noise [54], which is
ubiquitous in solid-state systems [3,55,56]. In these cases
an additional infrared cutoff ωir is needed to regularize the
power integral [57,58], justified, e.g., by finite data acquis-
ition times [59]. For instance, for S ¼ C=ω one has
P ¼ C lnðωuv=ωirÞ.
Finally, we consider arbitrary detunings δ0. Truncation

of the perturbation expansion is valid in the regime
g ≪ jκ − γj, which is often realized through γ ≫ κ ∼ g in
solid-state qubits. Suppose that the ANI has been charac-
terized for at least three values of the noise coupling
strength λ which is controllable by external parameters.
One may then consider the second derivative of the ANI,

d2⟪Iðt;δ0Þ⟫
dλ2

����
λ¼0

¼ eiδ0tþðκ−γÞt=2ζðtÞþ 16

πðκ− γþ 2iδ0Þ

×
Z

∞

0

SðωÞ
ðκ− γþ 2iδ0Þ2þ 4ω2

dω; ð15Þ

where ζðtÞ is a function that is upper bounded by a
quadratic scaling in t. Hence, the relative error caused
by neglecting the first term is upper bounded by the scaling
jκ − γj2t2eðκ−γÞt=2, and for measurement times t with κt ∼
1 ≪ ðγ − κÞt it can be safely neglected, while the effect of
the noise on the transmission is still visible [Fig. 2(d)]. By
employing a partial fraction decomposition and using the
symmetry of SðωÞ ¼ Sð−ωÞ, the nonvanishing part of
Eq. (15) may be rewritten as [40]

d2⟪Iðδ0Þ⟫
dλ2

����
λ¼0

¼ 16

ðκ − γ þ 2iδ0Þ2
Cðδ0Þ; ð16Þ

where Cðδ0Þ ¼ ðS⋆KÞðδ0Þ denotes the convolution of S
with the kernel Kðδ0Þ ¼ ðκ − γ þ 2iδ0Þ−1. After Fourier
transforming the kernel analytically, we may apply the
convolution theorem to obtain

SðωÞ ¼ −4
Z

∞

0

C̃ðτÞ cosðωτÞeðγ−κÞτ=2dτ; ð17Þ

where C̃ðτÞ denotes the Fourier transform of the measurable
convolution. Hence, S can be obtained by extracting Cðδ0Þ
and its Fourier transform from ⟪jAj⟫ and evaluating (17).
A numerically reconstructed spectral density is shown in
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Fig. 3. Finite detection times do not introduce any addi-
tional restrictions on δ0 and γ, and the results remain valid if
Td ≪ minf1=κ; 1=Δg [40].
Future research may assess the effect of quantum noise

on the transmission. In this case S can have an antisym-
metric contribution and its extraction is not possible using
the scheme described in this Letter. Additionally, given the
overarching goal of noise mitigation one may investigate
whether the qubit coherence in the presence of noise can be
protected by the cavity photons.
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