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Digital quantum simulation of the BCS model with a central-spin-like quantum processor
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The simulation of quantum systems is one of the most promising applications of quantum computers. In this
paper, we present a quantum algorithm to perform digital quantum simulations of the (reduced) Bardeen-Cooper-
Schrieffer (BCS) model on a quantum register with a star-shaped connectivity map, as it is, e.g., featured by color
centers in diamond. We show how to effectively translate the problem onto the quantum hardware and implement
the algorithm using only the native interactions between the qubits. Furthermore, we discuss the complexity of
the circuit. We use the algorithm to simulate the dynamics of the BCS model by subjecting its mean-field ground
state to a time-dependent perturbation. The quantum simulation algorithm is studied using a classical simulation.
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I. INTRODUCTION

The current state of quantum computing hardware plat-
forms has been termed the era of noisy intermediate-scale
quantum (NISQ) computers [1], thereby referring to their lim-
itations due to gate errors and decoherence effects. However,
recent rapid developments may soon lead to the demonstration
of advantages of useful quantum or hybrid algorithms over
pure classical algorithms [2,3]. Quantum algorithms [4] have
a broad area of applications, from the generalized Shor al-
gorithm for the solution of the hidden subgroup problem [5,6]
and quantum approximate optimization [7,8] to the simulation
of real quantum systems [9—17]. The goal of these algorithms
is to solve problems whose high computational cost makes
them hard or even impossible to solve with classical hardware.
Particularly, the simulation of quantum systems is among
these problems due to the exponentially large dimension of
the state space [18]. Since the currently available quantum
hardware platforms are limited, it is important to develop
implementations of quantum algorithms that make optimal
use of the available hardware. To achieve this, the algorithms
can be aligned with the structure of the quantum processor,
i.e., with the coupling map which describes the possible con-
nections between the qubits. Because of the limited number
of available qubits and the need to protect them against de-
coherence and error-prone gates, it is desirable to minimize
the number of operations that are required to translate the
quantum algorithm to the hardware [19-24].

As small quantum systems only require a limited number
of logical qubits, their simulation on the current NISQ devices
has already been demonstrated for very small systems [25].
There already exist many quantum algorithms to perform such
tasks [9—17]. For instance, Ref. [15] presents an algorithm that
may be used to analyze the ground state and phase diagram of
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the Hubbard model. However, most of the algorithms do not
consider any restrictions given by the structure of the quantum
hardware. This may cause the transpilation to be costly in
terms of additionally needed gates.

In this paper, we present an implementation of the quantum
simulation of the Bardeen-Cooper-Schrieffer (BCS) model for
superconductivity. Our implementation is an example of a
Hamiltonian simulation, where the quantum time evolution
of a system is simulated. We will restrict the physical sys-
tem to the space of Cooper pairs, which enables us to map
the system efficiently onto a spin system with O(1). This
improves the performance of the algorithm; however, it also
implies that the presented quantum circuit effectively simu-
lates a spin model and not a fermionic model. To simulate the
whole fermionic system, one has to use a fermionic mapping
such as the Jordan-Wigner mapping [26]. While there exist
analytical solutions for a time-independent system [27], our
numerical quantum algorithm is applicable to the simulation
of time-dependent problems and can be extended, by using
trotterization techniques, to include perturbation terms. The
error of the algorithm is only of a numerical nature, which
can, theoretically, be reduced to be arbitrarily small. This is
in contrast to analytical approximations. We restrict ourselves
to the state space of paired electrons, the Cooper pairs. The
algorithm is tailored to a quantum computer with a coupling
map based on a central spin system (CSS). Such a quan-
tum computer can, for instance, be realized with a spin-qubit
register consisting of a nitrogen-vacancy defect in diamond
[28—42]. In addition to the simulation of the BCS model,
the proposed algorithm offers an efficient implementation for
multiqubit gates that are double products of two-qubit gates
on a CSS-like quantum register.

The paper has the following structure: In Sec. II, we in-
troduce the physical model of a BCS superconductor, the
simulated quantum system. Next we establish the connectivity
map of a quantum computer based on a CSS. In Secs. III
and IV, we show how to decompose the BCS Hamiltonian
into CSS-like Hamiltonians and perform the mapping of
the physical problem onto a quantum computer. Section V

©2023 American Physical Society
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describes the quantum algorithm and in Sec. VI we present our
numerical results, where we simulate the time evolution of the
mean-field ground state using a simulated quantum computer.
We perform a quench, i.e., an abrupt parameter change in
time, as a possible application of the algorithm and discuss
how the algorithm can be improved.

II. THE MODEL

The BCS theory was introduced by Bardeen, Cooper, and
Schrieffer to describe the phenomenon of superconductivity
through the pairing of electrons in a metal [43]. In the case of
discrete states (e.g., in metallic grains) where the level spacing
is of the order of the superconducting energy gap, a reduced
BCS model can be used [44—-46]. The Hamiltonian can then
be written in the form [27,45]

n—1 n—1
_ t o
Hacs =) ) €i¢joCio =8 Y pycpycuicr, (1

j=0 o=1.4 Jk=0

where the first term corresponds to the single-particle Hamil-
tonian with fermionic operators cj.ﬂ and cj, describing the
creation and annihilation of electrons in orbital j with energy
€; and spin o, respectively. The second term describes an
effective pairwise interaction between the electrons where
we assume a constant and energy-level-independent coupling
strength g. This coupling arises as the result of a perturba-
tive description of the interaction between the electrons and
phonons [47]. The pairing takes place between states of equal
energy but antiparallel spins, i.e., between |j, 1) and |j, |),
which occurs in a system with time-reversal invariance where
the single-particle energy levels €; are only degenerate with
respect to the spin [27] or if the basis states are real wave
functions. The number n of energy orbitals is assumed to
be finite, for example, as in models that describe supercon-
ductivity in ultrasmall metallic grains with an energy cutoff
[45,48]. Under the assumption of constant parameters g and
€j, the Hamiltonian in Eq. (1) is a well-described integrable
model [49]. The BCS model given by Eq. (1) can be used to
calculate the superconducting energy gap A; see Appendix B.
Analytical mean-field solutions, derived with algebraic sep-
aration of variables methods [50-52], exist for its dynamics
[27]. In contrast to that, the quantum algorithm to be proposed
here is able to simulate the BCS system with time-dependent
parameters and can be easily extended to include perturbation
terms.

A central spin system can be described by a Hamiltonian
of the following form [53]:

n—1 n—1
Hess =Y JiSo-S;+BY ;S )
j=1 j=0

where §; = (S}, Sif, S;)T are spin-% operators, defined via the
matrix representation (S¥, S;, Sj)T = g(a", ¥, 097, with
the standard Pauli matrices

. (0 1 s (0 —i
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FIG. 1. The coupling map of a quantum register based on a
central spin system with eight qubits. The central qubit (Sy) is con-
nected to all other qubits (S, ..., S7), while the other qubits are not
connected with each other.

The first term on the right-hand side of Eq. (2) represents the
three-dimensional Heisenberg interaction between the spins,
where the sign of the coupling constant J; determines whether
the interaction is ferromagnetic or antiferromagnetic. The in-
teraction only appears between one central spin Sy with the
surrounding spins. Thus, the connectivity map of a quantum
register based on a CSS is star shaped, as shown in Fig. 1.
Native two-qubit gates only exist between the central spin
and the surrounding spins. This is in contrast to ideal quan-
tum computers, where an all-to-all connectivity is assumed.
The second term in Eq. (2) describes the Zeeman interaction
with a magnetic field of strength B and coupling constants
w; = gjup/h with the Landé factor g; and the Bohr magneton

MUB-

III. MAPPING ONTO A CENTRAL SPIN SYSTEM

The total Hilbert space of the considered system in Eq. (1)
is given by H =@’y H, = span[®'Zy B;l. with H, =
spanB; and the bases B; = {|O),c;¢|0>,c}|0),c%c;UO)}.
In equal manner, we define the space of Cooper
pairs  Hc =*®;;é Hc,j, with  Hej =spanBc; and
Be,j = {10}, c} ¢C}¢|0>}~ The orthogonal complements of
Hc,j and Hc are defined via ’Hé—’j = span[B;\Bc ;] and
HE = Span[(@?;(]) B})\(@?;g Bc, )], respectively.

In order to bring the BCS Hamiltonian in connection with
the Hamiltonian of a central spin system, we define the oper-
ators

i i
1 _CjTCjT _Cj¢Cj¢

Kj = 2 : 4)
K =cel ®
K =cjicjr. ©)

Here, K denotes the (shifted, negative) number operator for
the jth orbital, and KJ+ (K j_) creates (annihilates) a Cooper
pair in the jth orbital. With these operators, one can rewrite
the Hamiltonian in Eq. (1) into the following form:

n—1 n—1
Hges = — Z 2¢;K; — g Z K K, +const.  (7)
Jj=0 Ji k=0
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The operators K7 effectively represent spm—

K.++K
us define the remaining components K; = ———- and K; =

2
KK and set K;,= (KJF,K;,K;)T. One can easily show

2i
that these operators fulfill K j’Hé ;= 0 and K;Hc ; € Hc ;.

Moreover if we map |0) — (1, 0)7 and &! ¢@T¢|O> — (0, 1),
we find the mapping K |3, ; — %o*, where 0 = (0%, 07, %)
represents the vector of Pauli matrices, as in Eq. (3).

Before we map the BCS problem on a CSS-based quantum
computer, we introduce the Gaudin Hamiltonians [52], a fam-
ily of operators similar to a CSS Hamiltonian. For simplicity,
we assume nondegenerate energy levels €;; however, the fol-
lowing can also be generalized via introducing summed-spin
operators K = Z;(l) K S, ¢, and describing the BCS Hamil-

operators. Let

tonian with these operators. For g € {0, ..., n — 1}, we define
the Gaudin Hamiltonians as
K, K;
H,=2 Z - vk, (8)
im0 €4 T €
J#4q

with the free parameter y. These Hamiltonians can be seen
as a special case of the CSS Hamiltonian in Eq. (2), if we
assume either constant u; = for j=1,...,n—1, with a
conserved total spin, or u; < o for j=1,...,n—1. The
central spin is at index g. If we choose y = —i, the Gaudin
Hamiltonians represent a set of invariants with respect to the
BCS Hamiltonian [49], i.e., [Hpcs, H;] = O and [H,, H,] = 0.
Moreover, we can construct the BCS Hamiltonian with them,

n—1
=—g ) egHy+ gL + g(L*)*, )
g=0

Hgcs

where we used the total spin operator L that is defined as
L=Y" = 0K Note that the Gaudin Hamiltonians also ful-

fill —yL* = >"" =0 H If the energy levels €; are degenerate,
there is an add1t10nal term in the Hamiltonian in Eq. (9) (see
Appendix A for more details) [52,54].

IV. MAPPING ONTO A QUANTUM COMPUTER

We restrict ourselves to the Hilbert space Hc of Cooper
pairs. This enables us to map the operators K ; with a resource
overhead of the order of O(1) onto a quantum computer. This
stands in contrast to other mappings, e.g., the Jordan-Wigner
mapping, which maps creation and annihilation operators to
Pauli operators with an overhead of the order of O(n), where
n is the number of qubits, or the Bravyi-Kitaev mapping with
a mapping of the order of O(logn) [26]. As demonstrated
in Sec. III, the space Hc is invariant under the action of the
operators K ;. This implies that Hc is also invariant under
Hgcs [Eq. (1)] since Hpcs can be expressed through the spin
operators as in Eq. (9). Moreover, since the Hamiltonian Hpcs
is Hermitian, it is block diagonal with respect to H¢ and its
complement H¢ . From a physical point of view, this is caused
by the fact that the interaction term in Eq. (1) only rearranges
the energy levels that are occupied by Cooper pairs; it does
not break up or create any Cooper pairs into or out of single
occupied energy levels, respectively. The block-diagonal form

enables us to consider the Hilbert space Hc as a self-contained
system.
The mapping onto qubits is done via

n—1

[J&HP10) — 1gh. (10)

J=0

with g; = g, € {0, 1} and

K; > io;, (11)

where |{g;}) = |gu—1...q0) represents a basis state of the
qubits on the quantum computer. Here we make use of the
possibility to represent the operators K ; with the Pauli opera-
tors in Hc, as described in Sec. III. This mapping is similar to
the proposed mapping in [55], where different kinds of pair-
ings are investigated. Note that we do not have to consider any
parity signs caused by fermionic anticommutators since the
fermionic creation and annihilation operators always appear
pairwise. This makes the proposed mapping more efficient
than the mapping of single creation and annihilation opera-
tors.

V. SIMULATION

Let us first consider the case with constant parameters ¢;
and g, and without perturbation terms. The time-evolution
operator at time ¢ of the BCS Hamiltonian in Eq. (9), mapped
onto a quantum computer as described in Sec. IV, is given by

U(t) = e titlees (12a)
n—1 n—1
— Hei%gequ 1_[ g—i%ga‘;"a,f/4
g=0 k=0
J#k
n—1
[Te |, (12b)
j=0
with the Gaudin Hamiltonians
H, (13)

2(6,1 —€) g
J;ﬁq
Here we made use of the fact that in the BCS Hamiltonian,
given by Eq. (9), every term commutes with all the other
terms (see Appendix A) Please note that we neglect a constant
phase of —% 43"~ "} €; with respect to the Hamiltonian in
Eq. (1). This phase would have to be taken into account, for
example, if one performs a phase estimation [56] to calculate
the eigenvalues of the BCS Hamiltonian and one is interested
in the absolute values of the energies.

To implement the exponential operators in Eq. (12b), we
define the operators

—iao -0y
b

Un jr(@) = e Ug jr(@) = e %%, (14)

for a parameter « € R. The exponent of the first operator
Usn jk (o) describes a Heisenberg-type interaction, while the
exponent of Uy jx (o) describes an Ising-type interaction. We
need to implement these two-qubit operators on the quantum
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@ —4 R.(B/2) p—

'FIG. 2. Implementation of the Ising time evolution operator
e '“?i%  The rotation parameter is given by 8 = 4a. We do not need
to perform a basis transformation, as in Fig. 3, since the evolution
operator is already diagonal in the computational basis.

processor. For this, we briefly repeat the matrix representa-
tions of some standard gates. The Pauli gates are defined,
accordingly with the Pauli matrices in Eq. (3), as X = o,
Y = o0y, Z = o,. Some useful roots of the Pauli gates are

1 . o
X' = _<1 oo ’) =Xy, (15)

o\l —i 1+
S = <(1) 9) —JVZ (16)
i
The Hadamard gate and a rotation around the z axis are given
by
1/l 1
H:§<1 _1>, (17
o—i?2 0
R.(0) =< 0 o) (18)
The CONTROLLED-NOT gate and the SWAP gate are defined as
1 0 0 O
0 0 0 1
CNOTj; = o 0o 1 ol (19)
0 1 0 O
1 0 0 O
0 0 1 O
SWAPk =101 o ol (20)
0 0 0 1

where the jth qubit controls the kth qubit, assuming the basis

10)¢]0); = 100) <> (1,0,0,0)", 1)
|0)4[1); = [01) <> (0, 1,0, 0)7, (22)
[1)410); = [10) <> (0,0, 1,0)", (23)
|1)4[1); = |11) <> (0,0,0, 1)". (24)

With these gates, it is possible to implement Uy jx (o) and
Uq ji(a) in Eq. (14), as shown in Figs. 2 and 3. Figure 3
shows a general approach to construct gates with an action ¢4
for a Hermitian operator A by implementing the basis trans-
formation from the eigenbasis of A to the z basis, followed
by z rotations according to the eigenvalues of A and a back
transformation from the z basis to the eigenbasis. For example,
in the case of Uy, i, the operator ¢ ; - o is diagonal in the Bell
basis,

[00) £ |11)
—

[01) £ |10) )
— 5

lp+) = V) =

inv. Bell eigenvalue rotations Bell

| |

9 Els R.(8/2) PH H |F——
| I
| |

% — e R.(—5/2) - R.(5/2) b———
| I

(b

o — & —]x o

FIG. 3. From Ref. [57]. (a) Implementation of the Heisenberg
time-evolution operator e~*°/ %, The rotation parameter is given by
B = 4a. First the Bell basis, as defined in Eq. (25) (the eigenvectors
of ¢; - %), is mapped to the z basis; then z rotations, according to the
eigenvalues (41 for |¢.), |¥+) and —3 for |y_)), are executed; and,
in the end, the z basis is mapped back to the Bell basis. (b) Imple-
mentation of the first three gates in (a) to replace one CNOT.

with the eigenvalue +1 for |¢4), |¥;) and —3 for |¢¥_).
Therefore we map, as described in Fig. 3 (see, also, [57]),

(Ip+), 19-), [¥4), [¥-)) (26a)
— (]00), |01), [10), |11)) (26b)
> (e7@]00), e7|01), e~|10), €**|11)) (26¢)
> (e pr), e go), e Yy), € Yo)). (26d)

Ug, ji is already diagonal in the z basis, so we can directly
perform the z rotations, as described in Fig. 2,

(100), 101}, [10), [11)) (272)
— (77]00), €*|01), €“|10), e *“|11)).  (27b)

The evolution of
U(H,,t) = e'7¢ts (28)

can be approximated using the Trotter-Suzuki formulas
[58,59], which factorize the exponential operator. The first-
order and second-order Trotter-Suzuki formulas for two
noncommuting operators A and B are given by, respectively,

eil(A+B) — llm (eiAAleiBAt )m (29)
m— o0 ’
eit(A+B) = lim (eiBAt/ZgiAAteiBAt/z)m’ (30)
m— 00

with the discrete time step At = i For finite m, the errors
€1, &, for the first and second order, respectively, have the
upper bound

12 I
&1 < %”[A,B]H +0<$>, (31)
L [AJF}E A B]iH'—i—O(i) 32)
S Tom? 2 mt )

Using the formulas in Eqs. (29) and (30), we decompose
U(H,, t) into terms of single rotations around the z axis and
Usn,qj [Eq. (14)]. With this given, the time evolution U (¢) is
easily implemented on an ideal quantum register with an all-
to-all connectivity. However, such ideal quantum computers
are not realistic.
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(a)

n—1_—it 2
_| UGaudin H UIsing l— H7 -0 e tt97; iz

(b)

qn—1 — — — —
2 — UGau. — = — U/(HO) U/(Hl) U,(anl) —
qa — — — —
a— _ —  — —
(c)
dn—1 — — — —
g2 — UIsing — = — Ul([nfl) Ul([l) U/(IO) —
a1 — — — —
R I —
(d)
v~ +~ 1 + —eJ{reple—
©—U () — = —|UI)— = —@— R.(0/2) | —p—
“n— = - = —e{renle—
e I T R =

FIG. 4. Implementation of the BCS time evolution U (¢) = U (Hgcs) for constant parameters on a CSS quantum register. The lowest wire
represents the central qubit ¢;. (a) Decomposition of the BCS evolution into a Gaudin term, an Ising term, and some single-qubit rotations.
(b) Implementation of the Gaudin term (multiple Gaudin Hamiltonians). The operators U'(H;) = U (Hy, t)[{€;}x, g are recursively defined
via Eq. (28) and {€;}x = hjo({€j—1.t}x) for j > O and {€x}x = {€x}x, Where h; ,, swaps the elements g; and a,, in a tuple {a;}. U (Hy, t) can,
for example, be implemented with the Trotter-Suzuki formulas. (c) The Ising term evolution. Note that this gate inverts the qubit permutations
from the Gaudin gate. (d) Implementation of one of the Ising gates with 8 = rg. Note that the single-qubit gates do not depend on q.

We consider the case of a CSS quantum register with a
star-shaped connectivity map as described in Sec. II. Let ¢;
be the central qubit that couples to all other qubits. To im-
plement the time evolution, we make use of the SWAP gate.
The algorithm is visualized in Fig. 4. First, we implement
U (Hy, t) which only contains couplings with the central qubit
q;- Next we perform a SWAP operation on the qubits g; and
q1- Now we can implement U (H|, t) with adapted parameters
as described in Fig. 4(b). Next we swap the states on the
qubits g and g, and proceed in the same manner until we
reach the last qubit. This procedure implements the first term
]_[ (l)e #&fls in Eq. (12b), however with swapped states at the
end This will be fixed with the second term in Eq. (12b). For

this, we define the operators U (I,, 1) = H, Z0jq € 178907/4

With these operators, we proceed analog as with the Gaudin
terms U (H,, t), however starting with the (n — 1)th qubit, i.e.,
starting with U (I,—1, t), as described in Fig. 4(c).

While the exact total number of required gates depends
on the given set of native gates, the complexity, i.e., the
gate count of the algorithms with respect to the number
of qubits, n, is of great interest. U(H,,t) is implemented
using the Trotter-Suzuki formula by splitting the evolution
into r,(t, €, {€;}, g) - n exponential operators, where the op-
erators are either Ugy jx(or) or single qubit rotations around
the z axis. The factor r,(z, ¢, {€;}, g) depends on the chosen
Trotter-Suzuki decomposition, where ¢ is the error of the
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approximation. For example, a 2pth order Trotter-Suzuki de-
composition exists where

re(t, e, {€j}, 8) = 0(

25P 2 A 1, 2p+1
;;H ( q({E,}gg)t) ) 33)

can be reached [58-61]. For the BCS problem, one finds
that A4 (e}, )8 = Y | 32| + €| However, this value
is only an estimate which provides an upper bound of
the number of needed gates, and smaller r,(z, ¢, {€;}, &)
may be possible. It follows that the algorithm, as pro-
posed in Fig. 4, has a maximum circuit-size complexity of
O(max,(r,(t, €, {€;}, g))nz), both in terms of single-qubit and
two-qubit gates. The circuit-depth complexity is of the same
order. This means that up to the factor max,(7,(z, €, {€;}, 8)),
the complexity is quadratic in the number of qubits. However,
the dependence of max,(r,(t, ¢, {€;}, g)) on the system pa-
rameters €; and g and the time ¢ is not trivial in general.

The algorithm demonstrates that CSS quantum registers
represent a powerful platform when it comes to the implemen-
tation of double products of two-qubit gates. Let us consider
the operator f =[],y ersj fjk, where fj is a unitary op-
erator on the qubits j and &, for the tuples (M;);, (Sj )k C
{0,...,n—1},where j =1, ..., |M|. This operator is a prod-
uct of operators §; = [, s, Jik» where each of these operators
has effectively one central “spin” that needs to interact with
all the other “spins.” On a CSS quantum register, the oper-
ators S ; can be implemented successively by swapping the
central qubit with the jth qubit in between and adapting the
parameters in an analog way as in Fig. 4(b). With this, the
number of necessary SWAPgates for the implementation f is
of the order of O(|M]), where |[M| counts the number of
times where the role of the central spin changes. The trivial
special case, |M| = 1, can, for example, be used to simulate
the central-spin system itself, which has application in solving
nonlinear differential equations [62].

The algorithm for the time-independent BCS Hamiltonian
in Eq. (9), that we have shown above, can be easily expanded
by using the same trotterization techniques that we have al-
ready used, to a more general time-dependent Hamiltonian
including possible perturbations

H(t) = Hpcs(t) + He[{K ;1 (1), (34)

where the perturbation term Hp[{K;}](¢) needs to be express-
ible only using the spin operators {K ;}, so that the mapping in
Sec. IV is applicable. The time-evolution operator is given by
the Dyson series,

Ut 10) = Tle #1040, (35)

where 7T is the time-ordering operator. To simulate the time
evolution up to the time 7, one can discretize the total time
t —ty into m steps and split the time-evolution operator as
follows:

Ult,t) =Ult =ty ty_1)...U(t,1p), (36)

where the operators U (t;, ;) can be approximated with

Ut tjoy) ~ e #6081 (37)

if the chosen time difference At; j_ = t; — t;_; is sufficiently
small. The operators U(t;,t;_1) can be approximated using
the Trotter-Suzuki decompositions and the implementation for
the BCS evolution from the constant case.

VI. RESULTS

In this section, we present our numerical results for the
simulation of the dynamics of the model and discuss further
optimization strategies and application fields. The numer-
ical calculations are performed with a simulated quantum
computer. As a test for the proper function of the quantum
simulation, we calculate the return probability, i.e., the proba-
bility that the system after time ¢ [described by the state vector
| (¢))] has returned to its initial state |y),

(ol @) 2 = | (Wl TTe™ F o s Yy P (38)

Note that the return probability equals the Loschmidt echo,
which constitutes an important quantity in multiple contexts
of the quantum many-body theory, for example, quantum
chaos and nonequilibrium fluctuation theorems [63,64]. Here,
we assume a Hamiltonian Hgcs(?) as in Eq. (9) with time-
dependent parameters. As the initial state, we use |p) =
IBCS), where |BCS) is the ground state of the mean-field BCS
theory at time #(, given as

n—1

IBCS) = [ [(u; — v;K)|0). (39)
j=0

The parameters u;, v; € C depend on the system parameters
€r(to) and g(fy); for details, see Appendix B and Ref. [65].
Since |BCS) € Hc, the problem is suitable for the algorithm
presented above. For a constant Hamiltonian, the state |BCS)
approximates the ground state for n — oo, implying that the
return probability in Eq. (38) approaches 1. Because of its
form of a product state, |BCS) can be easily implemented
using single-qubit rotations.

In the presence of errors, a quantum simulation is not
perfect; rather, the simulation results in a mixed state, which
can be described with a density matrix p(¢). Therefore, instead
of the return probability as in Eq. (38), we actually calculate

R () = (0] pme (1)10). (40)

The density matrix pnr is the result of the quantum simula-
tion, which consists of initializing the mean-field ground state
IBCS), performing the time evolution, and inverting the mean-
field ground-state initialization. All these operations might
be error prone. In the optimal case, without any errors, the
density matrix describes the following pure state:

Pt (1) = 1me (1)) (Pme ()], 41)
|¢mf(t)> = (Wmf,wamf(t)HO)
1= (W ol Y O)PI0T), (42)

where |0+) is a state orthogonal to |0). [¥mr.0) and |Yme(t))
are the state |BCS) and its time-evolved state, respectively. In
this optimal case, R¢(¢) equals the formula in Eq. (38).

In addition to the simulation of the mean-field ground state,
we calculate the return probability for the exact ground state
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of the Hamiltonian in Eq. (9). However, we do not implement
the initialization of this state in the quantum algorithm; in-
stead, we directly specify this state as the initial state. This is
only possible because we use a simulated quantum computer
and not a real quantum device. The resulting quantity of the
simulation is the return probability,

Rexact(t) = {(Wexact,0] Pexact ()| Wexact,0) » (43)

where, in the optimal case, without qubit and gate errors, the
density matrix pexact(t) describes the state

Pornct (1) = [Wexact (1)) (Vexact (1)1 (44)

Here, |Yexact,0) and |Yexact(f)) are the exact ground state, at
time #(, and its time-evolved state, respectively.

A quantum quench describes the process of initializing a
system in a certain state, often an eigenstate, e.g., the ground
state, and subjecting the system to a time-dependent modifica-
tion of parameters or, for example, a perturbation [63,67,68].
We simulate a quench, varying the superconducting gap A,
realized via a change of the coupling constant g. After some
time, the quench is performed backwards, i.e., g is reset to its
initial value.

We introduce a dimensionless time 7(t) = %, where J is
an arbitrary energy unit. Without loss of generality, we set
to = 0. The classical simulation of our quantum circuit is done
for n = 5 qubits. For the energy levels, we choose a harmonic
oscillator, i.e., €; = w(j + %), as one of the simplest nonin-
teracting systems. The coupling strength g is time dependent,
according to

glt) = @[arctan ((I — l‘])%) + %i|

J b4

X |:arctan ((tz ”hF) + 2j| + go, (45)
which is plotted in Fig. 5(a). The parameter I" describes the
smoothness of the quench and #; and #, are the times when the
quench and the reverse quench take place, respectively. go is
the initial coupling constant and g, is the coupling constant
after the quench. The results of the numerical simulation are
depicted in Fig. 5. The chosen set of parameters is given
by ty =94/3, tr =181/J, T = 0.1, and w = 3 J, while go
and g, are calculated from the superconducting gaps Ay = J
and A, = 27, respectively [details are given in Appendix B,
Eq. (B9)]. For all our simulations, we remain at zero tempera-
ture, T = 0 K. The trotterization of the Gaudin Hamiltonians
is performed using the first- and second-order equations from
Egs. (29) and (30), where we specified the error €; in Eq. (31)
to be smaller than %C , where C is the constant factor caused by
the noncommuting terms in the Gaudin Hamiltonians, i.e., we
set the number of Trotter steps to m(t) & %12. This is only an
approximation because the Trotter step width t/m(7) has to
be adapted to the splitting of the Dyson series, which depends
dynamically on the system parameters in our simulation. With
that, we can count the number of CNOTs in our quantum
circuit: There are 2(n — 1) SWAP gates where each can be
decomposed into three alternating CNOTs. We have n Gaudin
terms, where each of them is trotterized with m(t) steps;
each step contains n — 1 Heisenberg evolution operators as in
Fig. 3 (first-order trotterization), which require three CNOTs.

(a) 1.55F
5 145F
<
T 135
5
1.25F
(b)  1.00 ; ;
075
O
E 050
&
025
(c) 1.00
=== classical
o 0.98 \ 10 error
e \ — T, =9x10~2s
% \ """ Ty =9x1073s
& .96, b—m——m—
......... \_‘~'\~~_
05F e, e —
00 T
8 27

T=1tAo/h

FIG. 5. The time-dependent return probability R(¢) of a state
[y (2)) to its initial state |vy) (o = 0), where the state |V (¢)) =
T[exp(—é f[; Hpcs(t')dt')] o) describes the time evolution, deter-
mined by the BCS Hamiltonian in Eq. (9). (a) The time-dependent
coupling function g(t) := g(¢(r)) as defined in Eq. (45). (b) The
return probability Ry (f) := Rue(t (7)), described in (40-42), for the
mean-field ground state |BCS), defined in Eq. (39), as the initial state.
(c) The return probability Rexuet(t) := Rexact (1(7)), as described in
Egs. (43) and (44), for the exact ground state of the BCS Hamiltonian
in Eq. (9) as the initial state. In both (b) and (c), the results are
calculated with a simulated quantum computer provided by Ref. [66].
The dark-blue solid line shows the return probability, calculated with
the quantum algorithm under the assumption of error-free qubits
and gates, and the light-blue dashed line is the classical calculated
return probability (“classical” in the sense that a classical algorithm
with high precision is used). Up to numerical errors, caused by
the trotterization, these lines are the same. The green long-dashed
line and the red-magenta dotted line are the results of the quantum
simulation with noisy qubits, but without gate errors, i.e., the exe-
cution of the gates is assumed to be error free, however, the qubit
errors can still spread from one qubit to another. As for the qubit
error, we model transversal and longitudinal relaxation based on an
amplitude-phase-damping channel with the coherence times 77 =
1.25 x 107's, T, = 9 x 1072 s (green long-dashed), > = 9 x 1073 s
(magenta-red dotted), a single-qubit gate time f, = 5 x 1078 s, and a
two-qubit gate time t, = 5 x 1077 s. We do not consider any coherent
or crosstalk errors.

There are n Ising terms and each of them contains n — 1 Ising
evolution operators as in Fig. 2 with two CNOTs. Summing
things up, the total number of CNOTs is as follows:

Nenor(t) = 6(n— 1)+ 3n(n — Dm(t) + 2n(n — 1) (46a)
=20 +4n—1+ 3’ —n)r’ (46b)
= 69 + 507°. (46¢)

In the last step, we substituted n = 5. If we insert the largest
simulation time in Fig. 5, t = 27, we have 36 519 CNOT gates.
Similar counting can be performed for the single-qubit gates.

Figure 5 shows the results of our simulations. The simu-
lations are performed with and without qubit errors, however
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0.22

0.21

F(W)Inf% |wexact>)

2 4 6 8 10 12

FIG. 6. The fidelity F between the mean-field ground state |{)
and the exact ground state |Vexaer) as a function of the number of
orbitals, n. Note that for pure states the fidelity equals the squared
absolute value of the scalar product, F' = | (V| Wexact) |2. In this case,
F is time independent if the states are subject to the same time
evolution.

always with perfect gates. The qubit errors are modeled with
an amplitude-phase-damping channel. To compare the results,
we additionally plotted the results from a classical algorithm,
which is based on the diagonalization of the Hamiltonian at
multiple time steps. The perfect quantum simulations, without
qubit errors, lead to the same results as the classical algorithm,
up to trotterization errors.

In the plotted regime, the mean-field ground state is ap-
parently not a good approximation of the exact ground state,
but this is not unexpected since we only consider five energy
orbitals. Figure 6 shows the fidelity between the mean-field
ground state and the exact ground state as a function of the
orbital number n for the chosen system parameters. Forn = 5,
the fidelity is approximately 0.217363. The very small gra-
dient of the fidelity in Fig. 6 indicates that the mean-field
approximation does not perform very well for the chosen
system parameters regarding the approximation of the exact
ground state. This may be partly explained by the fact that
the |BCS) state can be considered as a solution of a variation
ansatz minimizing the energy expectation value. This means
that while the energy expectation value of |BCS) approxi-
mates the ground-state energy fairly well, the state itself may
not approximate the ground state similarly well if there is
some other eigenstate that has an energy near to the ground-
state energy. This justifies the use of the exact ground state in
our simulations.

The curves that are simulated with noisy qubits deviate
strongly from the perfect simulation. These deviations in-
crease with time ¢ since more gates are needed and therefore
the duration of the computation increases. This increases the
effect of the qubit relaxation errors. In the case of the exact
ground state, the relative differences between the extrema are
so small that it is difficult to resolve any qualitative behavior
if we consider the qubit noise.

To improve the algorithmic performance for longer times
t, one has to minimize the number of needed gates. One ap-
proach is to optimize the choice of the time steps in Eq. (36).
In areas where g(r) ~ const, the time step At;;_; can be
bigger than in areas where g(¢) is changing fast. We chose the
time steps depending only on the first and second derivative
of g(¢) in a similar manner to gradient descent methods, i.e.,
we made a “big” time step if both the first and second deriva-
tives were “small,” and vice versa. However, this approach

does not directly reduce the number of needed gates for the
trotterization. This may be reached by using higher-order
Trotter-Suzuki formulas; however, please note that the optimal
order depends on the time, e.g., as in Eq. (33), and it is even
more difficult to find the optimal order if the system param-
eters vary over time. In the present paper, we used first- and
second-order formulas as given in Egs. (29) and (30). Another
more hardware-specific optimization would be to implement
the circuit using only native gates and, if possible, using the
ones with the smallest errors, i.e., helping the transpiler to find
the best circuit. One can also try to trotterize U (H,, t) into
gates including more than two qubits. We used the two-qubit
gate described in Fig. 3 and a rotation around the z axis.

VII. CONCLUSION

Our work provides a quantum algorithm capable of simu-
lating the time-dependent BCS model. We restricted ourselves
to the space of Cooper pairs, which enabled us to map the
physical problem very efficiently with order O(1) onto a
quantum register, in contrast, for example, to the Jordan-
Wigner mapping. The algorithm exploits invariants of the
BCS system, i.e., we expressed the Hamiltonian with the
commuting Gaudin Hamiltonians. Furthermore, we used the
structure of the Gaudin Hamiltonians to implement the al-
gorithm on a quantum register with a star-shaped coupling
map, only making use of its native connectivity. Addition-
ally, we demonstrated that this algorithm provides a general
effective method to implement double products of two-qubit
operators on such a quantum register. Finally, we showed
some numerical results, simulating a quenched time evolu-
tion of the mean-field ground state, and proposed possible
optimizations for future work. Further alternative methods,
which might be interesting to improve the performance of
the algorithm, such as simulating the time evolution via trun-
cating the Taylor series of the time-evolution exponential,
are proposed in Refs. [69,70]. The simulation results with
quantum errors indicate that quantum error correction and/or
better quantum hardware will be needed to perform real quan-
tum simulations with valuable results. For example, it has
been shown that crosstalk errors can be mitigated with an
appropriate algorithm [71]. Apart from simulating the time
evolution, a possible extension of our proposed algorithm is
the calculation of the eigenvalues of the BCS Hamiltonian via
(hybrid) quantum phase estimation [56], which makes use of
a controlled time evolution (see Appendix C).
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APPENDIX A: PROPERTIES OF THE GAUDIN
HAMILTONIANS

If not otherwise noted, sums over Latin indices (e.g.,
J, k, p, @) run from O to n — 1, while sums over Greek indices
(e.g., a, B, y) assume the values x, y, z.
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Theorem 1. The Gaudin Hamiltonians commute with each other, i.e., [H,, H,] = 0 [54].
Proof. Let g # p. We calculate the commutator separated in three steps. Let us start with the commutator of the last terms and
the commutator of the mixed terms,

(K, KS] =0, (A1)
K, K K, K K, K K, -K
Ky = P <V 4P K (A2a)
a € —€j € —¢e 7 e, —¢ €—¢€ 7
j#p k#q
1
al— [K; + K. K, K,] (A2b)
—0. (A2¢)
Next is the commutator of the first terms (the intermediate steps are explained below):
Ky Ky 5Ky Ko Ky K5 KEKL] (A3a)
a
S hA sy y SR
Jj#p k#q af j#p k#q
apBrV a Y B BrY ra
Y] S KKK’ > KK/ K! > KK} K
apy J#p.q (€p —€j)eg =€) Jj#q (€ — €g)eg —€)) J#p (€p = €))(€g =€)
(A3b)
KYKPKY KK K? KPK) K¢
_y e | _BRKL KKK KKK,
«By iZpa (€p—€j)eg—€j)  (ep—€9)(eg —€j)  (€p —€;)(€g — €p)
1 1 1
-y zs“ﬂVK“KﬂK"{ - - }
aBy jEpa (ep —€)eg —€j) (6 —€)(eg —€j)  (ep —€j)(€g —€p)
(A3d)
= 0. (A3e)
In Eq. (A3a) — Eq. (A3b), we used
o o Bl _ pa o B o o B o B o o B o
(Ko K7 Ki K] = KpKT[KT K7 ] + K [KG KK + KK KCKG + (K3 KT IR KS (Ada)
L4 o o ﬂ o
= > ie®® (8, KSKPKY + 8, KKV K] + 8,4 K/ K/ KY), (Adb)
¥

with the Levi-Civita symbol €*#” = 1 if (a, B, y) = (x, y, z), cyclical, and otherwise €*#¥ = —1. In Eq. (A3b) — Eq. (A3c),
we used that in the last two sums, the terms for j = p and j = ¢, respectively, cancel each other since, for |{«, 8, y}| = 3 (fix y
and exchange o and f),

B B B B —
K K/K, + KK K — K, K/K;) — KKK}’ « KYK) — K/ K? = 0. (AS)
(
Equation (A3c) — Eq. (A3d) follows from permuting the Proposition 1. The Gaudin Hamiltonians commute with the

indices «, B, y and adapting the signs. Finally, Eq. (A3d) — z component of the total angular momentum, i.e., [H,, L*] =
Eq. (A3e) is valid since the term in the braces equals zero. W 0.

Lemma 1. The sum of the Gaudin Hamiltonians is propor- Proof. Follows directly from Theorem 1 and Lemma 1. W
tional to the z component of the total angular momentum, i.e., Theorem 2. Fory = — %, one can construct the BCS Hamil-
—yL* = Zq H, [52]. tonian with the Gaudin Hamiltonians [49],

Proof.

Z Hy+yLi=2)" ; - 6/ (Aba) Hycs = —¢ Y €gHy + gL° + (LY +const. (A7)
q j#q p
= Z Z IRLY (A6b)
€ — 6/ 7 ST € Proof. It is
/#q J#4q

=0. (A6c)

. D eHy =L =) (K, + ye,Ky), (A8)
q q
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(a)

1)

% (1] (1]
4 —® & R.(—8/2) R.(8/2) R.(8/2) ] &
(b)

1)

qj

a; —— R.(5/2) ——

FIG. 7. Controlled versions of the (a) Heisenberg and (b) Ising gates from Figs. 3 and 2 and Eq. (14), with 8 = 4«. The starred qubit
indicates the central qubit (potentially after some swap operations) and |¢) is the control qubit.

since
€K, K; eK;-K
2% ¢ g B 927 R4 a9,
Z qe —€j Z € — € Z € — € (A%a)
q.j q.j
J#q J#4 J#q
K. -K: K -K;
=Z€q q J_ZEJ 4" (A9b)
Y €g — € Y € —€j
q.j q.j
J#q J#4q
:ZK K. (A9c)
J#q
Splitting the L?, we obtain
Z 2 +7-
ZeqH _— — > 2e,K; + SL'L
q
+ L+ (L) - ) K, (A10)

q

where we can identify the term in the parentheses with the
BCS Hamiltonian. |

Proposition 2. The Gaudin Hamiltonians and the z com-
ponent of the total angular momentum commute with the
BCS Hamiltonian, meaning [Hpcs, H,;] = 0 and [Hpcs, L] =
0. All in all, all terms on the right-hand-side of Eq. (A7)
commute with each other.

Proof. Follows directly from Theorems 1 and 2, and Propo-
sition 1. ]

APPENDIX B: MEAN-FIELD GROUND STATE

The mean-field ground state is obtained by inserting the
approximation

chichereny & (chyeh ) (eryeny) + (efpcf) ery ey

+chiel eryerr) (Bla)

= A% Ak + A% ck\LckT +C Ak (Blb)

Jt N

in the Hamiltonian in Eq. (1) and diagonalizing the result-
ing Hamiltonian with a Bogoliubov transformation. A; =
— >, Vir{ckycry) is the superconducting gap for each energy
level j where we replaced the constant coupling strength —g

with V. Without going into more detail [65], we present the
resulting ground state,

IBCS) = [ [, — v;KI0), (B2)
J
with
|u|2_1 14+ =L (B3)
) E;)
1 €
2 J
1“==(1-=, B4
o t1-2) -
UjAj?
=E;—€; e Ry, (BS)
uj
where we used the mean-field eigenvalues
E,-:,/ef—i—lAjP. (B6)

The superconducting gaps must fulfill the system of gap equa-

tions,
Z V; tanh Ek
’k 2E; 2ksT

for je{l,...,n— 1}, where T is the temperature and kg
the Boltzmann constant. For Vj; = —g, the right-hand side of
Eq. (B7) is independent of j, which implies

(B7)

Aj=A, (B8)

and for A # 0,

(B9)

APPENDIX C: CONTROLLED TIME EVOLUTION

The algorithm described in Sec. V can be extended to a
controlled version. Adding an additional control qubit |¢), the
time evolution shall be executed if |¢) = |1) and not executed
if |¢) = |0). This can be reached by controlling the single-
qubit rotations. Figure 7 shows the Heisenberg and Ising gates
accordingly. The structure of the whole circuit is similar to
the one described in Fig. 4; however, the part containing the
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16)

Q’nfl—  —

@2 —UI)—

q1 — —

a— = —e{rerle—e]r062e—

—&— R=(8/2) 00—

FIG. 8. Controlled version of the the gate in Fig. 4(d). The starred qubit indicates the central qubit and |¢) is the control qubit.

total angular momentum can be optimized to require fewer
SWAP gates. First, one should swap the roles of the control
and target qubit for the Ising-like terms U (l, t), as shown

in Fig. 8; second, the additional controlled rotation e'7%%/2,
from the last term in Eq. (12b), should be executed directly
after U(l,, t).
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