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relationship between the maximal and minimal distances
between the EFs and the QPC. The simplest case, which is
quite realistic, is when these distances are of the same order of
magnitude. When Gÿ1T 5 jtj5Gÿ1min the noise intensity can be
expressed as (cf. Ref. [11])

S�t� � 2e2V

h

� �2
4pP0kTA0

3

� �2
� ln�1=Gminjtj�

ln�GT=Gmin�
� �2

:

By obtaining estimates for GT=min from noise spectra in the
normal state one can, in principle, estimate the coupling
parameter A0. A key point is to make measurements of both
the MAQI interference pattern and the normal-state noise
spectra in a rather large frequency range. This combination
does not look too simple.

To conclude, we have presented a method for investigat-
ing the influence of noise in bias and gate voltage of a SQPC
on coherent Andreev states. This is done by estimating the
effect of the fluctuations on the so-called microwave-
activated quantum interferometer [3]. Finally, we note that
this paper together with work in Ref. [12] presents a frame-
work which can be used to investigate the coupling of a SQPC
to its electromagnetic environment.
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Spin-entangled electrons in mesoscopic
systems

G Burkard, E V Sukhorukov, P Recher, D Loss

Abstract. Entanglement acts as a fundamental resource for
many applications in quantum communication. We propose and
theoretically analyze methods for preparing and detecting
entanglement between the spins of electrons in a mesoscopic
environment. The entanglement production mechanism which
we present is based on two quantum dots coupled to a
superconductor from which paired electrons are injected via
Andreev tunneling. The spin-correlated electrons can then hop

from the quantum dots into normal leads. For detection we
propose to measure the shot noise which is produced by the
entangled electrons after they have passed a beam splitter. The
enhancement of the noise by a factor of two turns out to be a
unique signature for the spin singlet, a maximally entangled
state. In a different setting, the entangled ground state in two
tunnel-coupled quantum dots is detected via the Aharonov ±
Bohm oscillations in the co-tunneling current.

1. Introduction

The recently demonstrated injection of spin-polarized elec-
trons into semiconductor material [1, 2] is an important
progress towards replacing the spatial (charge) degrees of
freedom of the electron by its spin as the carrier of
information in electronics [3]. Moreover, Kikkawa et al. [4]
have found very long quantum coherence times for the
electron spins in GaAs, which makes them candidates for
carriers of quantum information (qubits) [5]. The long-term
goal of implementing quantum information into physical
systems is building a quantum computer, a device that could
efficiently solve some problems for which there is no efficient
classical algorithm (for a recent review, see [6]). However,
there are also other ideas, e.g. in quantum communication,
which seem to be more feasible with the presently available
technology. One of the fundamental resource for many
applications in quantum communication are pairs of
entangled particles [7]. Two qubits (spins) are called
entangled if their state cannot be expressed as a tensor
product of states of the two qubits (spins). Well-known
examples of maximally entangled states of two qubits are
the spin singlet and triplet (with mz � 0) of two spin-1/2
particles. In quantum optics, violations of Bell inequalities
and quantum teleportation with photons have been investi-
gated [8, 9], while so far, no corresponding experiments for
electrons in a solid state environment are reported. This
reflects the fact that it is very hard to produce and to measure
entanglement of electrons in solid state.

One possibility for producing entangled states from
product states is using the quantum gates which are the
building blocks of quantum computers [5, 10]. In this paper,
we present and theoretically analyze another proposal for
the production of spin entangled electron pairs in meso-
scopic systems, which uses the properties of the super-
conducting condensate and the simultaneous tunneling of a
Cooper pair into a pair of quantum dots [11]. After this
process, the entangled pair of electrons can hop from the
dots into normal Fermi leads. We then discuss the persis-
tence of this entanglement during electron transport in the
Fermi leads where a large number of other electrons are
present and interact with the entangled electrons. Further-
more, we propose an interference experiment, in which the
EPR pairs produced in this way can be unambiguously
tested for entanglement [12]. Here, the indicator for
entanglement is the shot noise at the outgoing arm of a
beam splitter into which the electrons to be tested are
injected. Finally, it is known that the two-electron ground
state of a pair of quantum dots coupled by a tunneling
barrier is a spin singlet at zero magnetic field, which can
cross over into a spin triplet at finite magnetic fields [10]. We
discuss a recently proposed detection scheme [13] for these
entangled ground states, which involves the Aharonov ±
Bohm phase in the co-tunneling current in the Coulomb
blockade regime.
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2. Andreev entangler

In this section, we consider an s-wave superconductor which
acts as a natural source of spin-entangled electrons, since the
electrons form Cooper pairs with singlet spin-wavefunctions
[14]. We assume that the superconductor is held at the
chemical potential mS, and is weakly coupled by tunnel
barriers to two separate quantum dots D1 and D2 which are
themselves weakly coupled to Fermi liquid leads L1 and L2,
respectively, both held at the same chemical potential m1 � m2
(see Fig. 1). The tunneling amplitudes between superconduc-
tor and dots, and dots and leads, are denoted byTSD andTDL,
respectively (for simplicity we assume them to be equal for
both dots and leads).

In general, the tunnel-coupling of a superconductor to a
normal region allows for coherent transport of two electrons
of opposite spin due to Andreev tunneling, while single-
electron tunneling is suppressed [15]. In the present setup,
we envision a situation where the two electrons are forced to
tunnel coherently into separate leads rather than both into the
same lead, which can be enforced by two intermediate
quantum dots in the Coulomb blockade regime [16] so that
the state with double occupation of one quantum dot is
strongly suppressed, and thus tunneling into separate dots
and subsequently separate leads is preferred.

A bias voltage Dm � mS ÿ ml > 0 is applied in order to
obtain transport of entangled electrons from the super-
conductor via the dots to the leads. The chemical potentials
E1 and E2 of the two quantum dots can be tuned by external
gate voltages [16] such that the coherent tunneling of two
electrons into different leads is at resonance, described by a
product of two Breit ±Wigner resonances peaked at E1 � mS
and E2 � mS. In contrast, we will see that the resonance for the
coherent tunneling of two electrons into the same lead is
suppressed by the on-site Coulomb repulsionU of a quantum
dot.

Before presenting our result, we introduce the relevant
parameters describing the proposed device and specify their

regime of interest. We work at the resonances E1 � E2 � mS
since then the total current and the desired suppression for
tunneling into the same lead is maximized. Also, the desired
injection of the two electrons into separate leads at the same
orbital energy is then achieved; this turns out to be crucial for
thedetectionof entanglementwhichwepropose inSection3.2.
It is most convenient to work in the regime where the dot
levels En have vanishing occupation probability. For this
purpose we require that the quantum dot-lead coupling is
much stronger than the superconductor-quantum dot cou-
pling, i.e. jTSDj5 jTDLj, so that electrons which enter the
quantum dots from the superconductor will leave the
quantum dots to the leads much faster than new electrons
can be provided from the superconductor. The stationary
occupation due to the coupling to the leads is indeed
exponentially small if Dm > kBT, T being the temperature
and kB the Boltzmann constant. In this asymmetric barrier
case, the resonant dot levels En can be occupied only during a
virtual process.

Next, the quantum dots are allowed to contain an
arbitrary but even number of electrons, ND � even, with
total spin zero in the ground state (i.e. antiferromagnetic
filling of the dots). An odd numberND must be excluded since
a simple spin flip on the quantum dot would be possible in the
transport process and as a result the desired entanglement
would be lost.Moreover, we have tomake sure that also spin-
flip processes of the following kind are excluded. Consider an
electron that tunnels from the superconductor into a given
dot. In principle, it is possible (e.g. in a sequential tunneling
process [16]) that another electron with the opposite spin
leaves the dot and tunnels into the lead, and, again, the
desired entanglement would be lost. However, such spin-flip
processes will be excluded if the energy level spacings of the
quantum dots, dE, (assumed to be similar for both dots)
exceeds both, temperature kBT and bias voltage Dm. A
serious mechanism for the loss of entanglement is given by
electron hole-pair excitations out of the Fermi sea of the leads
during the resonant tunneling events. However, one can show
that such many-particle contributions are suppressed if the
resonance width gl � 2pnljTDLj2 is smaller than Dm (for
En ' mS), where nl is the density of states (DOS) per spin of
the leads at the chemical potential ml.

Finally, an additional energy scale that enters the
consideration is the superconducting energy gap D, which is
theminimal energy it costs to break up aCooper pair into two
quasi-particles. This gap energy also characterizes the time
delay between the subsequent coherent Andreev tunneling
events of the two electrons of a Cooper pair. In order to
exclude single-electron tunneling where the creation of a
quasi-particle in the superconductor is a final excited state
we require that D4Dm; kBT. Summarizing all above inequal-
ities, we can specify the following regime of interest for
entanglement production [11]

D; U; dE > Dm > gl; kBT ; and gl > gS : �1�

In this regime, we have calculated and compared the station-
ary charge current of two entangled electrons for two com-
peting transport channels, first for the desired transport of the
two entangled electrons each into different leads (current I1)
and second for the unwanted transport of both electrons into
the same lead (current I2). We have calculated the currents
I1; I2 by making use of a T-matrix approach which is well-
adopted for describing Breit ±Wigner resonances. The final

SC, mS

r2r1

L2; m2

TDL

TSD

D2D1U e2

L1; m1

e1

Figure 1. Entangler setup: Two entangled electrons initially forming a

Cooper pair can tunnel with amplitude TSD from two points r1, r2 of the

superconductor, SC, (distance dr � jr1 ÿ r2j) to two dots, D1 and D2 by

means of Andreev tunnelling. The dots are coupled to normal leads L1, L2

with tunnelling amplitude TDL. In order to maximize the efficiency of the

entangler, we require asymmetric barriers with jTSDj=jTDLj5 1. The

superconductor and leads are kept at chemical potentials ml and mS,
respectively.
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result for the ratio of the two currents is [11]

I1
I2
� 2E2

g2
sin�kFdr�
kFdr

� �2
exp ÿ 2dr

px

� �
; �2�

where

1

E �
1

pD
� 1

U
; g � g1 � g2 : �3�

The current I1 becomes exponentially suppressed with
increasing distance dr � jr1 ÿ r2j between the tunneling
points on the superconductor, the scale given by the super-
conducting coherence length x. This does not pose severe
restrictions for a conventional s-wave material with x
typically being on the order of mm. In the important case
0 � dr � x the suppression is only polynomial / 1=�kFdr�2,
with kF being the Fermi wavevector in the superconductor.
On the other hand, we see that the effect of the quantum dots
consists in the suppression factor �g=E�2 for tunneling into the
same lead. Thus in addition to Eqn (1) we have to impose the
condition kFdr < E=g. We would like to stress that the
suppression (rather than only the absolute current) is
maximized by working around the resonance En ' mS � 0.
We remark that incoherent transport (sequential tunneling) is
negligible as long as the scattering rate Gj is much smaller
than gl since �Iseq=Icoh� ' �Gj=gl� [17].

3. Transport and detection of entangled electrons

We first consider the situation shown inFig. 2a. The entangler
is assumed to be a device which can generate entangled
electrons, one possible implementation being the one dis-
cussed in the previous Section. The beam splitter makes sure
that the electrons leaving the entangler are interchanged with
some finite amplitude. We will study the current ± current
correlations (noise) hdIadIbi measured in the outgoing leads
a; b � 3; 4 of the beam splitter.

Particles with symmetric wave functions show bunching
behavior [18, 19] in their noise correlations, whereas for
particles with antisymmetric wave functions one observes
antibunching. Such antibunching effects for electrons in the
normal state were studied theoretically [20, 21] and experi-
mentally [22]. The noise is sensitive to the symmetry of only
the orbital part of the wave function in the absence of spin
scattering processes [23]. According to the Pauli principle,
however, the antisymmetric spin wave function of the spin
singlet requires a symmetric orbital wave function, therefore
leading to particle bunching and thus an enhancement of the
noise. Accordingly, we expect antibunching for spin triplet
states. Therefore, we can distinguish spin singlets from triplets
by measuring the correlations of the outgoing current of the
beam splitter. We first study the transport of entangled
electrons in metallic leads and then extend the standard
scattering matrix approach [20, 21] to entangled states.

3.1 Transport
When electrons are injected from the entangler into the leads
1; 2 with the filled Fermi sea c0, we obtain the state

jct=s
nn0 i �

1���
2
p �ayn"ayn0# � a

y
n# a

y
n0" � jc0i ; �4�

with n � �q; l�, q the momentum of an electron, and l the lead
number. The operators ayns and ans create or annihilate an

electron in state n with spin s. The propagation of the triplet
or singlet, interacting with all other electrons in the Fermi sea,
can be described by the Green's function

Gt=s�12; 34; t� � hct=s
12 ; tjct=s

34 i : �5�

If we prepare a singlet (triplet), jGt=s�12; 12; t�j tells us how
large the amplitude is to find a singlet (triplet) after time t. In
order to evaluate this quantity, a perturbative calculation was
performed, invoking the time- and spin-independent Hamil-
tonian, H � H0 �

P
i<j Vi j, where H0 describes the free

motion of the electrons, and Vi j is the bare Coulomb
interaction between electrons i and j. The problem of
evaluating the two-particle Green's function defined above
can be reduced to evaluating the single-particle Green's
function G1;2 if the Coulomb interaction between lead 1 and
2 is neglected and only interactions within the leads are taken
into account. This is a reasonable assumption if the leads 1
and 2 are sufficiently separated. The (time-ordered) single-
particle Green's function close to the Fermi surface is given
by [24]

G1;2�q; t� � ÿizqY�Eq ÿ EF� exp�ÿiEqtÿ Gqt� ;

for times in the range smaller than the quasi-particle lifetime
1=Gq. Here, Eq � q2=2m denotes the energy of the quasi-
particle, and EF is the Fermi energy. In two dimensions,
Gq / �Eq ÿ EF�2 log�Eq ÿ EF� [25] within the random phase
approximation (RPA). We find jGt=s�12; 12; t�j � z2F, and
have thus further evaluated the quasi-particle weight at the
Fermi surface, defined by

zF � 1ÿ qReS�kF;o � 0�
qo

� �ÿ1
;

where S�q;o� is the irreducible self-energy. For a two-
dimensional electron system (2DES), we obtain within RPA

zF � 1ÿ rs
1

2
� 1

p

� �
; �6�

1

1
0

2
0

3 4

2

Beam splitter

Entangler

Â
m3

m1 m2

m4

B
2~G

1

t

b

G exp�ij=4�

Figure 2. (a) Setup for measuring the noise of entangled states. Uncorre-

lated electrons are fed from leads 10; 20 into the entangler, which produces

entangled electron pairs, injecting them separately into leads 1; 2. The
entanglement is detected in the noise in lead 3 or 4 after the beamsplitter.

(b) Double-dot (DD) containing two electrons, weakly coupled to leads

1; . . . ; 4, at chemical potentials m1; . . . ; m4. The tunnelling amplitudes from

dots to leads are G, ~G. Tunnelling (t) between the dots results in a singlet

(triplet) ground state. The closed tunnelling path between dots and leads

1; 2 encloses the area A.
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in leading order of the interaction parameter rs � 1=kFaB,
where aB � E0�h

2=me2 is the Bohr radius. In a GaAs 2DES we
have aB � 10:3 nm, and rs � 0:614, and thus we obtain
zF � 0:665 [26, 27]. The amplitude of recovering a singlet or
triplet state after injecting it into an interacting Fermi sea is
reduced by a factor of zÿ2F � 2. Except for this renormaliza-
tion, the entanglement of the singlet or triplet state is not
affected by the interacting electrons in the filled Fermi sea.
Therefore we can study the noise of entangled electrons using
the standard scattering theory for quasi-particles in a Fermi
liquid.

3.2 Detection
When calculating the noise correlations for scattering with
the entangled incident state j�i � jct=s

12 i, we set n � �en; n�,
now using the electron energies en instead of the momentum
as the orbital quantum number in Eqn (4). Correspondingly,
the operator ayas�e� creates an incoming electron in lead awith
spin s and energy e. The theory for the current correlations in
a multiterminal conductor as given in Ref. [20] is valid for
uncorrelated Fermi leads. It has to be slightly generalized in
order to be applicable for the case of correlated (entangled)
incoming particles. The current operator for lead a of a
multiterminal conductor is

Ia�t� � e

hn

X
e e0s

ayas�e�aas�e0� ÿ byas�e�bas�e0�
� �

� exp
i�eÿ e0�t

�h
; �7�

where the operators bas�e� for the outgoing carriers are given
by bas�e� �

P
b sababs�e�, where sab denotes the (spin- and

energy-independent) scattering matrix, and n is the density of
states in the leads. The scattering matrix allows us to write
Eqn (7) as

Ia�t� � e

hn

X
ee0s

X
bg

a
y
bs�e�Aa

bgags�e0� exp
i�eÿ e0�t

�h
; �8�

Aa
bg � dabdag ÿ s�absag : �9�

The spectral density of the current fluctuations (noise)
dIa � Ia ÿ hIai between the leads a and b,

Sab�o� � lim
T!1

hn
T

�T
0

dt exp�iot�h�jdIa�t�dIb�0�j�i ; �10�

can now be evaluated, using the scattering matrix for the
beam splitter (Fig. 2a) s31 � s42 � r, and s41 � s32 � t, where r
and t denote the reflection and transmission amplitudes. In
the absence of backscattering s12 � s34 � saa � 0. For the
noise correlations, we obtain

S33 � S44 � ÿS34 � 2
e2

hn
T 1ÿ T� � 1� de1e2� �; �11�

at zero frequency and

Saa�o� � SFS
aa �o� �

e2

hn

��1ÿ do;0�
� T�1ÿ T ��2do;0 � do;E1ÿE2 � do;E2ÿE1�

� �12�

at finite frequencies, where SFS
aa �o� denotes the noise con-

tribution due to the Fermi sea. Here, the upper (lower) sign
refers to the spin triplet (singlet), T � jtj2 is the transmittivity

of the beam splitter, and n the density of states in the leads.
The average current in lead a, hIaij j � e=hn, is not sensitive to
the orbital symmetry of the wave function. Our result (11)
implies that if two electrons with the same energies, e1 � e2, in
the singlet state are injected into the leads 1 and 2, then the
zero frequency noise is enhanced by a factor of two, compared
to the shot noise of uncorrelated particles [20, 28, 29],
2e2T�1ÿ T �=hn. We emphasize that the entangling mechan-
ism presented in the previous section produces pairs of
entangled electrons with equal energy, and thus satisfies the
requirement e1 � e2. The predicted enhancement of noise
arises because the electrons arrive in the outgoing leads in
`bunches' (preferably zero or two electrons) due to their
symmetric orbital wave function. On the other hand, the
triplet states exhibit antibunching, leading to a complete
suppression of the noise, S�o � 0� � 0. Since the noise
enhancement for the singlet is a unique signature for
entanglement (there exists no unentangled state with the
same symmetry), the entanglement can be observed by
measuring the noise power in the outgoing arms of the beam
splitter.

4. Probing entanglement in a double dot

The double-dot (DD) system (see Fig. 2b) contains four
metallic leads which are in equilibrium with associated
reservoirs kept at the chemical potentials mi, i � 1; . . . ; 4.
The leads are weakly coupled to the dots with tunneling
amplitudesG and ~G, and the leads 1; 2 are coupled to both dots
and play the role of probes where the currents Ii aremeasured.
The leads 3 and 4 are feeding electrodes to manipulate the
electron filling in the dots. The quantum dots contain one
(excess) electron each, and are coupled to each other by the
tunneling amplitude t, which leads to a level splitting [5, 10]
J � Et ÿ Es � 4t2=U in the DD, with U being the single-dot
Coulomb repulsion energy, and Es=t are the singlet/triplet
energies. We recall that for two electrons in the DD (and for
weak magnetic fields) the ground state is given by a spin
singlet. For convenience we count the chemical potentials mi
from Es. The coupling ~G to the feeding leads can be switched
off while probing the DDwith a current. Here we assume that
~G � 0.

Using a standard tunneling Hamiltonian approach [24],
we write H � H0 � V, where the first term in
H0 � HD �H1 �H2 describes the DD and H1;2 the leads
(assumed to be Fermi liquids). The tunneling between leads
and dots is described by the perturbationV � V1 � V2, where

Vn � G
X
s

Dyn;scn;s � cyn;sDn;s

h i
;

Dn;s � exp � ij
4

� �
d1;s � exp � ij

4

� �
d2;s ; �13�

and where the operators cn;s and dn;s, n � 1; 2, annihilate
electrons with spin s in the nth lead and in the nth dot,
respectively. The Peierls phase j in the hopping amplitude
accounts for an AB or Berry phase (see below) in the presence
of a magnetic field. The upper sign belongs to lead 1 and the
lower to lead 2. Finally, we assume that spin is conserved in
the tunneling process. For the outgoing currents we have

In � ieG
X
s

Dyn;scn;s ÿ cyn;sDn;s

h i
:

October, 2001 Quantum computing 129



The observable of interest is the average current through the
DD system, I � hI2i.

From now on we concentrate on the CB regime where we
can neglect double (or higher) occupancy in each dot for all
transitions including virtual ones, i.e. we require m1;2 < U.
Further we assume that m1;2 > J; kBT to avoid resonances
which might change the DD state. The lead-dot coupling G is
assumed to be weak so that the state of the DD is not
perturbed; this will allow us to retain only the first non-
vanishing contribution in G to I. Formally, we require
J > 2pntG2, where nt is the tunneling density of states of the
leads. In analogy to the single-dot case [30], we refer to above
CB regime as co-tunneling regime.

Continuing with our derivation of I, we note that the
average h. . .i � Trr . . .f g is taken with respect to the equili-
brium state of the entire system set up in the distant past
before V is switched on [24]. Then, in the interaction picture,
the current is given by

I � hUyI2�t�Ui; U � T exp ÿi
�t
ÿ1

dt0V�t0�
� �

: �14�

The leading contribution in G to the co-tunneling current
involves the tunneling of one electron from the DD to, say,
lead 2 and of a second electron from lead 1 to the DD (see
Fig. 2b). This contribution is of order V2V

2
1, and thus I / G4,

as is typical for co-tunneling [30]. Taking the trace over Fermi
leads, we arrive then at the following compact expression for
the co-tunneling current

I � 1

2
epn2tG

4
X
i;f;s;s0

ri jhijDy2;s0D1;sjfij2 Di;fy�Di;f�
m1m2

;

Di;f � m1 ÿ m2 � Ei ÿ Ef : �15�

This equation shows that in the co-tunneling regime the initial
state jii (with weight ri) of the DD is changed into a final state
jfi by the traversing electron. However, due to the weak
coupling G, the DD will have returned to its equilibrium state
before the next electron passes through it.

For small bias, jm1 ÿ m2j < J, only elastic co-tunneling is
allowed, i.e. Ei � Ef. However, this regime is not of interest
here since singlet and triplet contributions turn out to be
identical and thus indistinguishable. We thus focus on the
opposite regime, jm1 ÿ m2j > J, where inelastic co-tunneling{
occurs with singlet and triplet contributions being different.
In this regime we can neglect the dynamics generated by J
compared to the one generated by the bias (`slow spins'), and
drop the energies Ei and Ef in Eqn (15). Finally, using
1 �Pf jfihfj we obtain

I � epn2tG
4C�j� m1 ÿ m2

m1m2
; �16�

C�j� �
X
s;s0
hdy1s0d1sdy1sd1s0 i � cosjhdy1s0d1sdy2sd2s0 i
h i

: �17�

For the purpose of our analysis we assume that theDD is in its
ground state. Equation (16) shows that the co-tunneling
current depends on the properties of the ground state of the
DD through the coherence factorC�j� given in (17). The first

term in C is the contribution from the topologically trivial
tunneling path which runs from lead 1 through, say, dot 1 to
lead 2 and back. The second term (phase-coherent part) inC is
the ground state amplitude of the exchange of electron 1 with
electron 2 via the leads 1 and 2 such that a closed loop is
formed enclosing an areaA (see Fig. 2b). Thus, in the presence
of a magnetic field B, an AB phase factor j � ABe=h is
acquired.

Next, we evaluate C�j� explicitly in the singlet-triplet
basis. Note that only the singlet jSi and the triplet jT0i are
entangled EPR pairs while the remaining triplets jT�i � j""i,
and jTÿi � j##i are not (they factorize). Assuming that the
DD is in one of these states we obtain the important result:

C�j� � 2ÿ cosj ; for singlet,
2� cosj ; for all triplets.

�
�18�

Thus, we see that the singlet and the triplets contribute with
opposite sign to the phase-coherent part of the current. One has
to distinguish, however, carefully the entangled from the non-
entangled states. The phase-coherent part of the entangled
states is a genuine two-particle effect, while the one of the
product states cannot be distinguished from a phase-coherent
single-particle effect. Indeed, this follows from the observa-
tion that the phase-coherent part in C factorizes for the
product states T� while it does not so for S;T0. Also, for
states such as j "#i the coherent part of C vanishes, showing
that two different (and fixed) spin states cannot lead to a
phase-coherent contribution since we know which electron
goes which part of the loop. Finally we note that due to the
AB phase the role of the singlet and triplets can be inter-
changed which is to say that we can continually transmutate
the statistics of the entangled pairs S;T0 from fermionic to
bosonic (like in anyons): the symmetric orbital wave function
of the singlet S goes into an antisymmetric one at half a flux
quantum, and vice versa for the triplet T0.

We would like to stress that the amplitude of the AB
oscillations is a direct measure of the phase coherence of the
entanglement, while the period via the enclosed area
A � h=eB0 gives a direct measure of the nonlocality of the
EPR pairs, withB0 being the field at whichj � 1. The triplets
themselves can be further distinguished by applying a
directionally inhomogeneous magnetic field (around the
loop) producing a Berry phase FB [31], which is positive
(negative) for the triplet m � 1�ÿ1�, while it vanishes for the
EPR pairs S;T0. Thus, we will eventually see beating in the
AB oscillations due to the positive (negative) shift of the AB
phase F by the Berry phase, j � F� FB.

5. Conclusions

In summary, we have presented methods for producing and
detecting spin-entangled electrons (EPR pairs) in mesoscopic
structures such as wires and dots which could be used as a
resource for quantum communication. For entanglement
production (Section 2), we have proposed to use the Andreev
tunneling process from an s-wave supercondutor into two
quantum dots which are coupled to normal Fermi leads, and
we have specified in which regime, Eqn (1), this process is
possible. In this regime, entangled electrons with equal
energies are produced. Moreover, we have calculated the
ratio between the current produced by electron pairs going
into different leads (useful EPR pairs) and the electron pairs
going into the same lead (useless as EPR pairs). The result is

{ Note that the AB effect is not suppressed by this inelastic co-tunnelling,

since the entire co-tunnelling process involving also the leads is elastic: the

initial and final states of the entire system have the same energy.
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given in Eqn (2) and allows to optimize this process of
creating entangled electrons.

In Section 3.1 we have discussed the propagation of
entangled electrons in Fermi leads, i.e. in the presence of
many other (identical) electrons interacting with the electrons
belonging to the entangled pair. We find that the entangle-
ment becomes reduced by a factor z2F due to the transport
through such an environment, where zF denotes the quasi-
particle weight factor of the host material. For a two-
dimensional electron gas, we explicitly calculate zF, see
Eqn (6). Then, in Section 3.2, we discuss a method for
detecting entangled electrons which were produced, e.g.,
using the method from Section 2. We consider a scattering
setup with a beam splitter, where electrons to be tested are
injected in the two ingoing arms, and the current noise is
measured in one of the outgoing arms. For the maximally
entangled singlet and triplet states of electrons with equal
energies (such as those produced by the method presented in
Section 2) we find the resultant Eqn (11), predicting an
enhancement by a factor of two of noise for the singlet, and
a complete reduction for the three triplets. We conclude that
the enhancement of noise unambiguously indicates an
entangled state (the spin singlet).

Finally, in Section 4 we analyze a different situation, in
which the entanglement of the ground state of a double dot is
probed. This is done by measuring the Aharonov ±Bohm
oscillations in the co-tunneling current which are predicted in
Eqns (16) and (17). It is found that the phase-coherent part
(17) which distinguishes spin singlets from triplet factorizes in
the expression (16) for the co-tunneling current.
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Unpaired Majorana fermions in quantum
wires

A Yu Kitaev

Abstract. Certain one-dimensional Fermi systems have an
energy gap in the bulk spectrum while boundary states are
described by one Majorana operator per boundary point. A
finite system of length L possesses two ground states with an
energy difference proportional to exp�ÿL=l0� and different
fermionic parities. Such systems can be used as qubits since
they are intrinsically immune to decoherence. The property of a
system to have boundary Majorana fermions is expressed as a
condition on the bulk electron spectrum. The condition is
satisfied in the presence of an arbitrary small energy gap
induced by proximity of a three-dimensional p-wave super-
conductor, provided that the normal spectrum has an odd
number of Fermi points in each half of the Brillouin zone (each
spin component counts separately).

1. Introduction

Implementing a full-scale quantum computer is a major
challenge to modern physics and engineering. Theoretically,
this goal should be achievable due to the possibility of fault-
tolerant quantum computation [1]. Unlimited quantum
computation is possible if errors in the implementation of
each gate are below a certain threshold [2 ± 5]. Unfortunately,
for conventional fault-tolerance schemes the threshold
appears to be about 10ÿ4, which is beyond the reach of
current technologies. It has been also suggested that fault-
tolerance can be achieved at the physical level (instead of
using quantum error-correcting codes). The first proposal of
these kind [6] was based on non-Abelian anyons in two-
dimensional systems. A mathematical result concerning
universal quantum computation with certain type of anyons
has been recently obtained [7], but, generally, this approach is
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