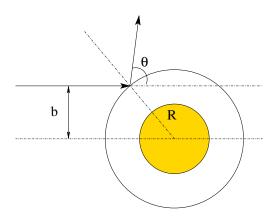

UNIVERSITÄT KONSTANZ

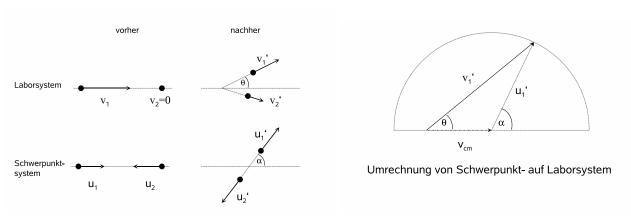
Fachbereich Physik

Prof. Dr. Guido Burkard Dr. Wolf-Rüdiger Hannes

http://tinyurl.com/2024ik4


Physik IV: Integrierter Kurs (Theoretische Physik)

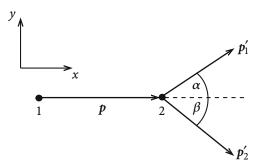
Sommersemester 2024 - Übungsblatt 1


Ausgabe: 10.04.2024, Abgabe: 17.04.2024, Übungen: 12./19.04.2024

Aufgabe 1: Elastische Streuung harter Kugeln (Präsenzübung 12.04.2024)

Es soll die elastische Streuung zweier harter Kugeln mit Radius R und mit den Massen m_1 und m_2 betrachtet werden. Nehmen Sie an, die Kugel 2 ruhe vor dem Stoß (im Laborsystem).

a) Bestimmen Sie den Stoßparameter $b(\vartheta)$ als Funktion des Streuwinkels ϑ , wenn Kugel 2 festgehalten wird.x


b) Betrachten Sie nun den Fall, dass Kugel 2 nicht festgehalten wird. Zeigen Sie unter Ausnutzung der Impuls- und Energieerhaltung, dass zwischen dem Streuwinkel im Laborsystem ϑ und dem Streuwinkel im Schwerpunktsystem α folgender Zusammenhang gilt:

$$\tan \vartheta = \frac{\sin \alpha}{\cos \alpha + \frac{m_1}{m_2}}$$

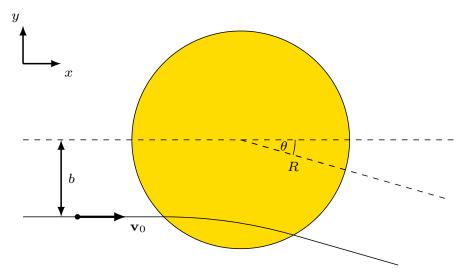
Was folgt daraus für $m_1 = m_2$? Wann erhalten Sie den in a) betrachteten Fall?

Aufgabe 2: Elastischer/Inelastischer Stoß

Ein Teilchen der Masse $m_1 = m$ mit dem Impuls $\mathbf{p_1} = \mathbf{p}$ treffe auf ein ruhendes Teilchen gleicher Masse. Nach dem Stoß
streuen die Teilchen unter den Winkeln α bzw. β . Gehen Sie
allgemein von einem inelastischen Stoß aus und lösen Sie die
Aufgabe im Laborsystem.

a) Leiten Sie eine Beziehung zwischen $p = |\mathbf{p}|$ und den Winkeln α und β her.

Hinweis: Nutzen Sie die Impulserhaltung, um p'_1 bzw. p'_2 zu bestimmen und werten Sie dann die allgemeine Energieerhaltung mit innerem Energieterm Q aus.


b) Diskutieren Sie den Fall $\alpha = \beta$. Welchen Wert hat α beim elastischen Stoß (Q = 0). Welcher Anteil der kinetischen Energie kann beim inelastischen Stoß (Q > 0) maximal verloren gehen?

Aufgabe 3: Thomson Atommodell

(schriftlich - 9 Punkte)

In dieser Aufgabe soll gezeigt werden, dass die Streuung von geladenen α -Teilchen an einer homogen geladenen Kugel (Ladung Q=Ze, Radius R) nur zu kleinen Streuwinkeln führt. Das α -Teilchen (Masse m) streue mit der kinetischen Energie von 1 MeV an einem Gold-Atom (Z=79, R=1 Å). Die Gesamtenergie bleibt beim Durchflug durch die homogen geladene Kugel konstant.

 $\it Hinweis$: Vernachlässigen Sie die Ablenkung außerhalb der geladenen Kugel (neutrales Atom), relativistische Effekte (1 MeV $\ll mc^2$), sowie einen Impulsübertrag vom α -Teilchen auf das Atom.

- a) Formulieren Sie die Lagrange-Funktion für das α -Teilchen innerhalb der Kugel. (1 Punkt) Hinweis: Der Betrag des elektrischen Feldes ist dort gegeben durch $E(r) = \frac{Q}{4\pi\epsilon_0} \frac{r}{R^3}$.
- b) Stellen Sie die Bewegungsgleichungen mithilfe der Lagrange-Gleichungen zweiter Art auf. Bestimmen Sie die Lösung $\mathbf{r}(t)$ mit den Anfangsbedingungen zum Zeitpunkt t=0 des Eintritts des α -Teilchens in die Kugel. (3 Punkte)

c) Berechnen Sie $\mathbf{v}(t)$. Verwenden Sie die Energieerhaltung ($|\mathbf{v}(t_e)|^2 = v_0^2$), um den Zeitpunkt t_e

des Austritts aus der Kugel zu bestimmen.

$$Ergebnis$$
: $\tanh \alpha t_e = \frac{2v_0\alpha\sqrt{R^2-b^2}}{v_0^2+\alpha^2R^2}$, wobei $\alpha^2 \equiv \frac{2Ze^2}{4\pi\epsilon_0R^3m}$. (2 Punkte)

- d) Maximieren Sie $\frac{v_y(t_e)}{v_x(t_e)}\equiv\frac{1}{f(b^2)}$ als Funktion des Stoßparameters. Prüfen und verwenden Sie dabei die Näherung $(\alpha R/v_0)^2 \ll 1$. (2 Punkte) *Hinweis*: Es ist hilfreich, $f'(\lambda) = 0 \Leftrightarrow \frac{d}{d\lambda} \ln f(\lambda) = 0$ zu verwenden.
- e) Bestimmen Sie damit den maximalen Ablenkwinkel $\theta_{\rm max}$ unter Verwendung der Kleinwinkelnäherung. (1 Punkt)